Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Narrative Overview of Coronavirus Infection: Clinical Signs and Symptoms, Viral Entry and Replication, Treatment Modalities, and Management

Author(s): Vishal Chavda*, Dhananjay Yadav, Harisinh Parmar, Raxit Brahmbhatt, Bipin Patel, Kajal Madhwani, Meenu Jain, Minseok Song and Snehal Patel*

Volume 24, Issue 21, 2024

Published on: 10 June, 2024

Page: [1883 - 1916] Pages: 34

DOI: 10.2174/0115680266296095240529114058

Price: $65

Abstract

The global pandemic known as coronavirus disease (COVID-19) is causing morbidity and mortality on a daily basis. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV- -2) virus has been around since December 2019 and has infected a high number of patients due to its idiopathic pathophysiology and rapid transmission. COVID-19 is now deemed a newly identified “syndrome” condition since it causes a variety of unpleasant symptoms and systemic side effects following the pandemic. Simultaneously, it always becomes potentially hazardous when new variants develop during evolution. Its random viral etiology prevents accurate and suitable therapy. Despite the fact that multiple preclinical and research studies have been conducted to combat this lethal virus, and various therapeutic targets have been identified, the precise course of therapy remains uncertain. However, just a few drugs have shown efficacy in treating this viral infection in its early stages. Currently, several medicines and vaccinations have been licensed following clinical trial research, and many countries are competing to find the most potent and effective immunizations against this highly transmissible illness. For this narrative review, we used PubMed, Google Scholar, and Scopus to obtain epidemiological data, pre-clinical and clinical trial outcomes, and recent therapeutic alternatives for treating COVID-19 viral infection. In this study, we discussed the disease's origin, etiology, transmission, current advances in clinical diagnostic technologies, different new therapeutic targets, pathophysiology, and future therapy options for this devastating virus. Finally, this review delves further into the hype surrounding the SARS-CoV-2 illness, as well as present and potential COVID-19 therapies.

Keywords: Viral infection, Severe acute respiratory illness, Coronavirus-2, COVID-19, SARS-CoV variations, Remdesivir, Immunization, and Vaccine resistance.

« Previous
Graphical Abstract
[1]
Peng, X.L.; Cheng, J.S.Y.; Gong, H.L.; Yuan, M.D.; Zhao, X.H.; Li, Z.; Wei, D.X. Advances in the design and development of SARS-CoV-2 vaccines. Mil. Med. Res., 2021, 8(1), 67.
[http://dx.doi.org/10.1186/s40779-021-00360-1] [PMID: 34911569]
[2]
Polatoğlu, I.; Oncu-Oner, T.; Dalman, I.; Ozdogan, S. COVID-19 in early 2023: structure, replication mechanism, variants of SARS-CoV-2, diagnostic tests, and vaccine & drug development studies. MedComm, 2023, 4(2), e228.
[http://dx.doi.org/10.1002/mco2.228] [PMID: 37041762]
[3]
Sabbah, D.A.; Hajjo, R.; Sunoqrot, S. A Critical Assessment of COVID-19 Genomic Vaccines. Curr. Top. Med. Chem., 2023, 23(27), 2552-2589.
[http://dx.doi.org/10.2174/1568026623666230825094341] [PMID: 37622697]
[4]
Shi, Y.; Wang, G.; Cai, X.; Deng, J.; Zheng, L.; Zhu, H.; Zheng, M.; Yang, B.; Chen, Z. An overview of COVID-19. J. Zhejiang Univ. Sci. B, 2020, 21(5), 343-360.
[http://dx.doi.org/10.1631/jzus.B2000083] [PMID: 32425000]
[5]
Contini, C.; Rotondo, J.C.; Perna, B.; Guarino, M.; De Giorgio, R. Special Issue: Advances in SARS-CoV-2 Infection. Microorganisms, 2023, 11(4), 1048.
[http://dx.doi.org/10.3390/microorganisms11041048] [PMID: 37110471]
[6]
Thirumugam, G.; Radhakrishnan, Y.; Ramamurthi, S.; Bhaskar, J.P.; Krishnaswamy, B. A systematic review on impact of SARS- CoV-2 infection. Microbiol. Res., 2023, 271, 127364.
[http://dx.doi.org/10.1016/j.micres.2023.127364] [PMID: 36989761]
[7]
Rotondo, J.C.; Martini, F.; Maritati, M.; Mazziotta, C.; Di Mauro, G.; Lanzillotti, C.; Barp, N.; Gallerani, A.; Tognon, M.; Contini, C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses, 2021, 13(9), 1687.
[http://dx.doi.org/10.3390/v13091687] [PMID: 34578269]
[8]
Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health, 2020, 25(3), 278-280.
[http://dx.doi.org/10.1111/tmi.13383] [PMID: 32052514]
[9]
Singhal, T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[10]
Carfì, A.; Bernabei, R.; Landi, F. Persistent symptoms in patients after acute COVID-19. JAMA, 2020, 324(6), 603-605.
[http://dx.doi.org/10.1001/jama.2020.12603] [PMID: 32644129]
[11]
Tenforde, M.W.; Kim, S.S.; Lindsell, C.J.; Billig Rose, E.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Erickson, H.L.; Steingrub, J.S.; Smithline, H.A.; Gong, M.N.; Aboodi, M.S.; Exline, M.C.; Henning, D.J.; Wilson, J.G.; Khan, A.; Qadir, N.; Brown, S.M.; Peltan, I.D.; Rice, T.W.; Hager, D.N.; Ginde, A.A.; Stubblefield, W.B.; Patel, M.M.; Self, W.H.; Feldstein, L.R.; Hart, K.W.; McClellan, R.; Dorough, L.; Dzuris, N.; Griggs, E.P.; Kassem, A.M.; Marcet, P.L.; Ogokeh, C.E.; Sciarratta, C.N.; Siddula, A.; Smith, E.R.; Wu, M.J. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, March–June 2020. MMWR Morb. Mortal. Wkly. Rep., 2020, 69(30), 993-998.
[http://dx.doi.org/10.15585/mmwr.mm6930e1] [PMID: 32730238]
[12]
Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; Luo, J.; Huang, Z.; Tu, S.; Zhao, Y.; Chen, L.; Xu, D.; Li, Y.; Li, C.; Peng, L.; Li, Y.; Xie, W.; Cui, D.; Shang, L.; Fan, G.; Xu, J.; Wang, G.; Wang, Y.; Zhong, J.; Wang, C.; Wang, J.; Zhang, D.; Cao, B. RETRACTED: 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, 2021, 397(10270), 220-232.
[http://dx.doi.org/10.1016/S0140-6736(20)32656-8] [PMID: 33428867]
[13]
Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; Ahluwalia, N.; Bikdeli, B.; Dietz, D.; Der-Nigoghossian, C.; Liyanage-Don, N.; Rosner, G.F.; Bernstein, E.J.; Mohan, S.; Beckley, A.A.; Seres, D.S.; Choueiri, T.K.; Uriel, N.; Ausiello, J.C.; Accili, D.; Freedberg, D.E.; Baldwin, M.; Schwartz, A.; Brodie, D.; Garcia, C.K.; Elkind, M.S.V.; Connors, J.M.; Bilezikian, J.P.; Landry, D.W.; Wan, E.Y. Post-acute COVID-19 syndrome. Nat. Med., 2021, 27(4), 601-615.
[http://dx.doi.org/10.1038/s41591-021-01283-z] [PMID: 33753937]
[14]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[15]
de Wilde, A.H.; Snijder, E.J.; Kikkert, M.; van Hemert, M.J. Host Factors in Coronavirus Replication. Curr. Top. Microbiol. Immunol., 2018, 419, 1-42.
[PMID: 28643204]
[16]
Han, Q.; Lin, Q.; Jin, S.; You, L. Coronavirus 2019-nCoV: A brief perspective from the front line. J. Infect., 2020, 80(4), 373-377.
[http://dx.doi.org/10.1016/j.jinf.2020.02.010] [PMID: 32109444]
[17]
Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In: Encyclopedia of Virology; , 2021; pp. 428-440.
[18]
Goyal, R.; Gautam, R.K.; Chopra, H.; Dubey, A.K.; Singla, R.K.; Rayan, R.A.; Kamal, M.A. Comparative highlights on MERS- CoV, SARS-CoV-1, SARS-CoV-2, and NEO-CoV. EXCLI J., 2022, 21, 1245-1272.
[PMID: 36483910]
[19]
Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci., 2020, 6(5), 672-683.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[20]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[21]
Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis., 2020, 20(4), 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[22]
Plebani, M. Antibody responses in mild COVID-19 hospital staff. EBioMedicine, 2020, 59, 102940.
[http://dx.doi.org/10.1016/j.ebiom.2020.102940] [PMID: 32807702]
[23]
Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L.; Wei, J.; Xiao, H.; Yang, Y.; Qu, J.; Qing, L.; Chen, L.; Xu, Z.; Peng, L.; Li, Y.; Zheng, H.; Chen, F.; Huang, K.; Jiang, Y.; Liu, D.; Zhang, Z.; Liu, Y.; Liu, L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA, 2020, 323(16), 1582-1589.
[http://dx.doi.org/10.1001/jama.2020.4783] [PMID: 32219428]
[24]
Belete, T. M. A review on Promising vaccine development progress for COVID-19. Vacunas, 2020, 21(2), 121-128.
[25]
Sachs, J.D.; Karim, S.S.A.; Aknin, L.; Allen, J.; Brosbøl, K.; Colombo, F.; Barron, G.C.; Espinosa, M.F.; Gaspar, V.; Gaviria, A.; Haines, A.; Hotez, P.J.; Koundouri, P.; Bascuñán, F.L.; Lee, J.K.; Pate, M.A.; Ramos, G.; Reddy, K.S.; Serageldin, I.; Thwaites, J.; Vike-Freiberga, V.; Wang, C.; Were, M.K.; Xue, L.; Bahadur, C.; Bottazzi, M.E.; Bullen, C.; Laryea-Adjei, G.; Ben Amor, Y.; Karadag, O.; Lafortune, G.; Torres, E.; Barredo, L.; Bartels, J.G.E.; Joshi, N.; Hellard, M.; Huynh, U.K.; Khandelwal, S.; Lazarus, J.V.; Michie, S. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet, 2022, 400(10359), 1224-1280.
[http://dx.doi.org/10.1016/S0140-6736(22)01585-9] [PMID: 36115368]
[26]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[27]
Cyranoski, D. Mystery deepens over animal source of coronavirus. Nature, 2020, 579(7797), 18-19.
[http://dx.doi.org/10.1038/d41586-020-00548-w] [PMID: 32127703]
[28]
Ge, H.; Wang, X.; Yuan, X.; Xiao, G.; Wang, C.; Deng, T.; Yuan, Q.; Xiao, X. The epidemiology and clinical information about COVID-19. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(6), 1011-1019.
[http://dx.doi.org/10.1007/s10096-020-03874-z] [PMID: 32291542]
[29]
Lam, T.T.Y.; Jia, N.; Zhang, Y.W.; Shum, M.H.H.; Jiang, J.F.; Zhu, H.C.; Tong, Y.G.; Shi, Y.X.; Ni, X.B.; Liao, Y.S.; Li, W.J.; Jiang, B.G.; Wei, W.; Yuan, T.T.; Zheng, K.; Cui, X.M.; Li, J.; Pei, G.Q.; Qiang, X.; Cheung, W.Y.M.; Li, L.F.; Sun, F.F.; Qin, S.; Huang, J.C.; Leung, G.M.; Holmes, E.C.; Hu, Y.L.; Guan, Y.; Cao, W.C. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 2020, 583(7815), 282-285.
[http://dx.doi.org/10.1038/s41586-020-2169-0] [PMID: 32218527]
[30]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[31]
Cohen, C.; Kleynhans, J.; von Gottberg, A.; McMorrow, M.L.; Wolter, N.; Bhiman, J.N.; Moyes, J.; du Plessis, M.; Carrim, M.; Buys, A.; Martinson, N.A.; Kahn, K.; Tollman, S.; Lebina, L.; Wafawanaka, F.; du Toit, J.D.; Gómez-Olivé, F.X.; Dawood, F.S.; Mkhencele, T.; Sun, K.; Viboud, C.; Tempia, S.; Bhiman, J.N.; Buys, A.; Carrim, M.; Cohen, C.; de Gouveia, L.; du Plessis, M.; du Toit, J.; Gómez-Olivé, F.X.; Kahn, K.; Kgasago, K.P.; Kleynhans, J.; Kotane, R.; Lebina, L.; Martinson, N.A.; McMorrow, M.L.; Moloantoa, T.; Moyes, J.; Tempia, S.; Tollman, S.; von Gottberg, A.; Wafawanaka, F.; Wolter, N. SARS-CoV-2 incidence, transmission, and reinfection in a rural and an urban setting: results of the PHIRST-C cohort study, South Africa, 2020–21. Lancet Infect. Dis., 2022, 22(6), 821-834.
[http://dx.doi.org/10.1016/S1473-3099(22)00069-X] [PMID: 35298900]
[32]
Tsang, H.F.; Chan, L.W.C.; Cho, W.C.S.; Yu, A.C.S.; Yim, A.K.Y.; Chan, A.K.C.; Ng, L.P.W.; Wong, Y.K.E.; Pei, X.M.; Li, M.J.W.; Wong, S.C.C. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev. Anti Infect. Ther., 2021, 19(7), 877-888.
[http://dx.doi.org/10.1080/14787210.2021.1863146] [PMID: 33306423]
[33]
Zhu, F.C.; Li, Y.H.; Guan, X.H.; Hou, L.H.; Wang, W.J.; Li, J.X.; Wu, S.P.; Wang, B.S.; Wang, Z.; Wang, L.; Jia, S.Y.; Jiang, H.D.; Wang, L.; Jiang, T.; Hu, Y.; Gou, J.B.; Xu, S.B.; Xu, J.J.; Wang, X.W.; Wang, W.; Chen, W. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 2020, 395(10240), 1845-1854.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[34]
Weiss, S.R.; Leibowitz, J.L. Coronavirus Pathogenesis. Adv. Virus Res., 2011, 81, 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[35]
Zheng, J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[36]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0]
[37]
Munster, V.J.; Koopmans, M.; van Doremalen, N.; van Riel, D.; de Wit, E. A novel coronavirus emerging in China—key questions for impact assessment. N. Engl. J. Med., 2020, 382(8), 692-694.
[http://dx.doi.org/10.1056/NEJMp2000929] [PMID: 31978293]
[38]
Reuben, R.C.; Danladi, M.M.A.; Saleh, D.A.; Ejembi, P.E. Knowledge, attitudes and practices towards COVID-19: An epidemiological survey in North-Central Nigeria. J. Community Health, 2021, 46(3), 457-470.
[http://dx.doi.org/10.1007/s10900-020-00881-1] [PMID: 32638198]
[39]
van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; Lloyd-Smith, J.O.; de Wit, E.; Munster, V.J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[40]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[41]
Sawicki, S.G. Coronavirus genome replication. In: Viral Genome Replication; Springer: Boston, MA, 2009; pp. 25-39.
[http://dx.doi.org/10.1007/b135974_2]
[42]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H-R.; Zhu, Y.; Li, B.; Huang, C-L. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv, , 2020.2001.2022
[43]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[44]
Li, B.; Si, H.R.; Zhu, Y.; Yang, X.L.; Anderson, D.E.; Shi, Z.L.; Wang, L.F.; Zhou, P. Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing. MSphere, 2020, 5(1), e00807-19.
[http://dx.doi.org/10.1128/mSphere.00807-19] [PMID: 31996413]
[45]
Riker, A.I.; Zea, N.; Trinh, T. The epidemiology, prevention, and detection of melanoma. Ochsner J., 2010, 10(2), 56-65.
[PMID: 21603359]
[46]
Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human- pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[47]
Cheng, Z.J.; Shan, J. 2019 Novel coronavirus: Where we are and what we know. Infection, 2020, 48(2), 155-163.
[http://dx.doi.org/10.1007/s15010-020-01401-y] [PMID: 32072569]
[48]
Savarino, A.; Buonavoglia, C.; Norelli, S.; Trani, L.D.; Cassone, A. Potential therapies for coronaviruses. Expert Opin. Ther. Pat., 2006, 16(9), 1269-1288.
[http://dx.doi.org/10.1517/13543776.16.9.1269]
[49]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol., 2020, 94(7), e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[50]
Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; Wang, T.T.; Schwartz, R.E.; Lim, J.K.; Albrecht, R.A.; tenOever, B.R. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell, 2020, 181(5), 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[51]
Foresta, C.; Rocca, M.S.; Di Nisio, A. Gender susceptibility to COVID-19: A review of the putative role of sex hormones and X chromosome. J. Endocrinol. Invest., 2021, 44(5), 951-956.
[http://dx.doi.org/10.1007/s40618-020-01383-6] [PMID: 32936429]
[52]
Mascola, J.R.; Graham, B.S.; Fauci, A.S. SARS-CoV-2 viral variants—tackling a moving target. JAMA, 2021, 325(13), 1261-1262.
[http://dx.doi.org/10.1001/jama.2021.2088] [PMID: 33571363]
[53]
dos Santos, W.G. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed. Pharmacother., 2021, 136, 111272.
[http://dx.doi.org/10.1016/j.biopha.2021.111272] [PMID: 33486212]
[54]
Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; Hastie, K.M.; Parker, M.D.; Partridge, D.G.; Evans, C.M.; Freeman, T.M.; de Silva, T.I.; McDanal, C.; Perez, L.G.; Tang, H.; Moon-Walker, A.; Whelan, S.P.; LaBranche, C.C.; Saphire, E.O.; Montefiori, D.C.; Angyal, A.; Brown, R.L.; Carrilero, L.; Green, L.R.; Groves, D.C.; Johnson, K.J.; Keeley, A.J.; Lindsey, B.B.; Parsons, P.J.; Raza, M.; Rowland-Jones, S.; Smith, N.; Tucker, R.M.; Wang, D.; Wyles, M.D. Tracking Changes in SARS- CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 2020, 182(4), 812-827.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.043] [PMID: 32697968]
[55]
Hou, Y.J.; Chiba, S.; Halfmann, P.; Ehre, C.; Kuroda, M.; Dinnon, K.H., III; Leist, S.R.; Schäfer, A.; Nakajima, N.; Takahashi, K.; Lee, R.E.; Mascenik, T.M.; Graham, R.; Edwards, C.E.; Tse, L.V.; Okuda, K.; Markmann, A.J.; Bartelt, L.; de Silva, A.; Margolis, D.M.; Boucher, R.C.; Randell, S.H.; Suzuki, T.; Gralinski, L.E.; Kawaoka, Y.; Baric, R.S. SARS-CoV-2 D614G variant exhibits efficient replication ex-vivo and transmission in vivo. Science, 2020, 370(6523), 1464-1468.
[http://dx.doi.org/10.1126/science.abe8499] [PMID: 33184236]
[56]
Yurkovetskiy, L.; Wang, X.; Pascal, K.E.; Tomkins-Tinch, C.; Nyalile, T.P.; Wang, Y.; Baum, A.; Diehl, W.E.; Dauphin, A.; Carbone, C.; Veinotte, K.; Egri, S.B.; Schaffner, S.F.; Lemieux, J.E.; Munro, J.B.; Rafique, A.; Barve, A.; Sabeti, P.C.; Kyratsous, C.A.; Dudkina, N.V.; Shen, K.; Luban, J. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 2020, 183(3), 739-751.e8.
[http://dx.doi.org/10.1016/j.cell.2020.09.032] [PMID: 32991842]
[57]
Lauring, A.S.; Hodcroft, E.B. Genetic Variants of SARS-CoV-2—What Do They Mean? JAMA, 2021, 325(6), 529-531.
[http://dx.doi.org/10.1001/jama.2020.27124] [PMID: 33404586]
[58]
van Oosterhout, C.; Hall, N.; Ly, H.; Tyler, K.M. COVID-19 evolution during the pandemic – Implications of new SARS-CoV-2 variants on disease control and public health policies. Virulence, 2021, 12(1), 507-508.
[http://dx.doi.org/10.1080/21505594.2021.1877066] [PMID: 33494661]
[59]
Zapatero Gaviria, A.; Barba Martin, R. What do we know about the origin of COVID-19 three years later? Rev. Clin. Esp. (Barc.), 2023, 223(4), 240-243.
[http://dx.doi.org/10.1016/j.rceng.2023.02.010] [PMID: 36933695]
[60]
Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol., 2023, 21(6), 361-379.
[http://dx.doi.org/10.1038/s41579-023-00878-2] [PMID: 37020110]
[61]
Liu, Y.; Liu, J.; Johnson, B.A.; Xia, H.; Ku, Z.; Schindewolf, C.; Widen, S.G.; An, Z.; Weaver, S.C.; Menachery, V.D.; Xie, X.; Shi, P.Y. Delta spike , 681R.bioRxiv, 2021
[62]
Jangra, S.; Ye, C.; Rathnasinghe, R.; Stadlbauer, D.; Krammer, F.; Simon, V.; Martinez-Sobrido, L.; García-Sastre, A.; Schotsaert, M.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Chernet, R.L.; Eaker, L.Q.; Ferreri, E.D.; Floda, D.L.; Gleason, C.R.; Kleiner, G.; Jurczyszak, D.; Matthews, J.C.; Mendez, W.A.; Mulder, L.C.F.; Russo, K.T.; Salimbangon, A-B.T.; Saksena, M.; Shin, A.S.; Sominsky, L.A.; Srivastava, K. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe, 2021, 2(7), e283-e284.
[http://dx.doi.org/10.1016/S2666-5247(21)00068-9] [PMID: 33846703]
[63]
Mlcochova, P.; Kemp, S.; Dhar, M. S.; Papa, G.; Meng, B.; Mishra, S.; Whittaker, C.; Mellan, T.; Ferreira, I.; Datir, R. SARS- CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599(7883), 114-119.
[64]
WHO. Classification of Omicron (B.1.1.529): SARS-CoV-2 Variant of Concern. 2021. Available From :https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
[65]
Parra-Lucares, A.; Segura, P.; Rojas, V.; Pumarino, C.; Saint-Pierre, G.; Toro, L. Emergence of SARS-CoV-2 variants in the world: how could this happen? Life (Basel), 2022, 12(2), 194.
[http://dx.doi.org/10.3390/life12020194] [PMID: 35207482]
[66]
Puhach, O.; Adea, K.; Hulo, N.; Sattonnet, P.; Genecand, C.; Iten, A.; Jacquérioz, F.; Kaiser, L.; Vetter, P.; Eckerle, I.; Meyer, B. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med., 2022, 28(7), 1491-1500.
[http://dx.doi.org/10.1038/s41591-022-01816-0] [PMID: 35395151]
[67]
Suzuki, R.; Yamasoba, D.; Kimura, I.; Wang, L.; Kishimoto, M.; Ito, J.; Morioka, Y.; Nao, N.; Nasser, H.; Uriu, K.; Kosugi, Y.; Tsuda, M.; Orba, Y.; Sasaki, M.; Shimizu, R.; Kawabata, R.; Yoshimatsu, K.; Asakura, H.; Nagashima, M.; Sadamasu, K.; Yoshimura, K.; Suganami, M.; Oide, A.; Chiba, M.; Ito, H.; Tamura, T.; Tsushima, K.; Kubo, H.; Ferdous, Z.; Mouri, H.; Iida, M.; Kasahara, K.; Tabata, K.; Ishizuka, M.; Shigeno, A.; Tokunaga, K.; Ozono, S.; Yoshida, I.; Nakagawa, S.; Wu, J.; Takahashi, M.; Kaneda, A.; Seki, M.; Fujiki, R.; Nawai, B.R.; Suzuki, Y.; Kashima, Y.; Abe, K.; Imamura, K.; Shirakawa, K.; Takaori-Kondo, A.; Kazuma, Y.; Nomura, R.; Horisawa, Y.; Nagata, K.; Kawai, Y.; Yanagida, Y.; Tashiro, Y.; Takahashi, O.; Kitazato, K.; Hasebe, H.; Motozono, C.; Toyoda, M.; Tan, T.S.; Ngare, I.; Ueno, T.; Saito, A.; Butlertanaka, E.P.; Tanaka, Y.L.; Morizako, N.; Sawa, H.; Ikeda, T.; Irie, T.; Matsuno, K.; Tanaka, S.; Fukuhara, T.; Sato, K. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature, 2022, 603(7902), 700-705.
[http://dx.doi.org/10.1038/s41586-022-04462-1] [PMID: 35104835]
[68]
Graham, M.S.; Sudre, C.H.; May, A.; Antonelli, M.; Murray, B.; Varsavsky, T.; Kläser, K.; Canas, L.S.; Molteni, E.; Modat, M.; Drew, D.A.; Nguyen, L.H.; Polidori, L.; Selvachandran, S.; Hu, C.; Capdevila, J.; Hammers, A.; Chan, A.T.; Wolf, J.; Spector, T.D.; Steves, C.J.; Ourselin, S.; Koshy, C.; Ash, A.; Wise, E.; Moore, N.; Mori, M.; Cortes, N.; Lynch, J.; Kidd, S.; Fairley, D.J.; Curran, T.; McKenna, J.P.; Adams, H.; Fraser, C.; Golubchik, T.; Bonsall, D.; Hassan-Ibrahim, M.O.; Malone, C.S.; Cogger, B.J.; Wantoch, M.; Reynolds, N.; Warne, B.; Maksimovic, J.; Spellman, K.; McCluggage, K.; John, M.; Beer, R.; Afifi, S.; Morgan, S.; Marchbank, A.; Price, A.; Kitchen, C.; Gulliver, H.; Merrick, I.; Southgate, J.; Guest, M.; Munn, R.; Workman, T.; Connor, T.R.; Fuller, W.; Bresner, C.; Snell, L.B.; Patel, A.; Charalampous, T.; Nebbia, G.; Batra, R.; Edgeworth, J.; Robson, S.C.; Beckett, A.H.; Aanensen, D.M.; Underwood, A.P.; Yeats, C.A.; Abudahab, K.; Taylor, B.E.W.; Menegazzo, M.; Clark, G.; Smith, W.; Khakh, M.; Fleming, V.M.; Lister, M.M.; Howson-Wells, H.C.; Berry, L.; Boswell, T.; Joseph, A.; Willingham, I.; Jones, C.; Holmes, C.; Bird, P.; Helmer, T.; Fallon, K.; Tang, J.; Raviprakash, V.; Campbell, S.; Sheriff, N.; Blakey, V.; Williams, L-A.; Loose, M.W.; Holmes, N.; Moore, C.; Carlile, M.; Wright, V.; Sang, F.; Debebe, J.; Coll, F.; Signell, A.W.; Betancor, G.; Wilson, H.D.; Eldirdiri, S.; Kenyon, A.; Davis, T.; Pybus, O.G.; du Plessis, L.; Zarebski, A.E.; Raghwani, J.; Kraemer, M.U.G.; Francois, S.; Attwood, S.W.; Vasylyeva, T.I.; Escalera Zamudio, M.; Gutierrez, B.; Torok, M.E.; Hamilton, W.L.; Goodfellow, I.G.; Hall, G.; Jahun, A.S.; Chaudhry, Y.; Hosmillo, M.; Pinckert, M.L.; Georgana, I.; Moses, S.; Lowe, H.; Bedford, L.; Moore, J.; Stonehouse, S.; Fisher, C.L.; Awan, A.R.; BoYes, J.; Breuer, J.; Harris, K.A.; Brown, J.R.; Shah, D.; Atkinson, L.; Lee, J.C.D.; Storey, N.; Flaviani, F.; Alcolea-Medina, A.; Williams, R.; Vernet, G.; Chapman, M.R.; Levett, L.J.; Heaney, J.; Chatterton, W.; Pusok, M.; Xu-McCrae, L.; Smith, D.L.; Bashton, M.; Young, G.R.; Holmes, A.; Randell, P.A.; Cox, A.; Madona, P.; Bolt, F.; Price, J.; Mookerjee, S.; Ragonnet-Cronin, M.; Nascimento, F.F.; Jorgensen, D.; Siveroni, I.; Johnson, R.; Boyd, O.; Geidelberg, L.; Volz, E.M.; Rowan, A.; Taylor, G.P.; Smollett, K.L.; Loman, N.J.; Quick, J.; McMurray, C.; Stockton, J.; Nicholls, S.; Rowe, W.; Poplawski, R.; McNally, A.; Martinez Nunez, R.T.; Mason, J.; Robinson, T.I.; O’Toole, E.; Watts, J.; Breen, C.; Cowell, A.; Sluga, G.; Machin, N.W.; Ahmad, S.S.Y.; George, R.P.; Halstead, F.; Sivaprakasam, V.; Hogsden, W.; Illingworth, C.J.; Jackson, C.; Thomson, E.C.; Shepherd, J.G.; Asamaphan, P.; Niebel, M.O.; Li, K.K.; Shah, R.N.; Jesudason, N.G.; Tong, L.; Broos, A.; Mair, D.; Nichols, J.; Carmichael, S.N.; Nomikou, K.; Aranday-Cortes, E.; Johnson, N.; Starinskij, I.; da Silva Filipe, A.; Robertson, D.L.; Orton, R.J.; Hughes, J.; Vattipally, S.; Singer, J.B.; Nickbakhsh, S.; Hale, A.D.; Macfarlane-Smith, L.R.; Harper, K.L.; Carden, H.; Taha, Y.; Payne, B.A.I.; Burton-Fanning, S.; Waugh, S.; Collins, J.; Eltringham, G.; Rushton, S.; O’Brien, S.; Bradley, A.; Maclean, A.; Mollett, G.; Blacow, R.; Templeton, K.E.; McHugh, M.P.; Dewar, R.; Wastenge, E.; Dervisevic, S.; Stanley, R.; Meader, E.J.; Coupland, L.; Smith, L.; Graham, C.; Barton, E.; Padgett, D.; Scott, G.; Swindells, E.; Greenaway, J.; Nelson, A.; McCann, C.M.; Yew, W.C.; Andersson, M.; Peto, T.; Justice, A.; Eyre, D.; Crook, D.; Sloan, T.J.; Duckworth, N.; Walsh, S.; Chauhan, A.J.; Glaysher, S.; Bicknell, K.; Wyllie, S.; Elliott, S.; Lloyd, A.; Impey, R.; Levene, N.; Monaghan, L.; Bradley, D.T.; Wyatt, T.; Allara, E.; Pearson, C.; Osman, H.; Bosworth, A.; Robinson, E.; Muir, P.; Vipond, I.B.; Hopes, R.; Pymont, H.M.; Hutchings, S.; Curran, M.D.; Parmar, S.; Lackenby, A.; Mbisa, T.; Platt, S.; Miah, S.; Bibby, D.; Manso, C.; Hubb, J.; Chand, M.; Dabrera, G.; Ramsay, M.; Bradshaw, D.; Thornton, A.; Myers, R.; Schaefer, U.; Groves, N.; Gallagher, E.; Lee, D.; Williams, D.; Ellaby, N.; Harrison, I.; Hartman, H.; Manesis, N.; Patel, V.; Bishop, C.; Chalker, V.; Ledesma, J.; Twohig, K.A.; Holden, M.T.G.; Shaaban, S.; Birchley, A.; Adams, A.; Davies, A.; Gaskin, A.; Plimmer, A.; Gatica-Wilcox, B.; McKerr, C.; Moore, C.; Williams, C.; Heyburn, D.; De Lacy, E.; Hilvers, E.; Downing, F.; Shankar, G.; Jones, H.; Asad, H.; Coombes, J.; Watkins, J.; Evans, J.M.; Fina, L.; Gifford, L.; Gilbert, L.; Graham, L.; Perry, M.; Morgan, M.; Bull, M.; Cronin, M.; Pacchiarini, N.; Craine, N.; Jones, R.; Howe, R.; Corden, S.; Rey, S.; Kumziene-SummerhaYes, S.; Taylor, S.; Cottrell, S.; Jones, S.; Edwards, S.; O’Grady, J.; Page, A.J.; Mather, A.E.; Baker, D.J.; Rudder, S.; Aydin, A.; Kay, G.L.; Trotter, A.J.; Alikhan, N-F.; de Oliveira Martins, L.; Le-Viet, T.; Meadows, L.; Casey, A.; Ratcliffe, L.; Simpson, D.A.; Molnar, Z.; Thompson, T.; Acheson, E.; Masoli, J.A.H.; Knight, B.A.; Ellard, S.; Auckland, C.; Jones, C.R.; Mahungu, T.W.; Irish-Tavares, D.; Haque, T.; Hart, J.; Witele, E.; Fenton, M.L.; Dadrah, A.; Symmonds, A.; Saluja, T.; Bourgeois, Y.; Scarlett, G.P.; Loveson, K.F.; Goudarzi, S.; Fearn, C.; Cook, K.; Dent, H.; Paul, H.; Partridge, D.G.; Raza, M.; Evans, C.; Johnson, K.; Liggett, S.; Baker, P.; Bonner, S.; Essex, S.; Lyons, R.A.; Saeed, K.; Mahanama, A.I.K.; Samaraweera, B.; Silveira, S.; Pelosi, E.; Wilson-Davies, E.; Williams, R.J.; Kristiansen, M.; Roy, S.; Williams, C.A.; Cotic, M.; Bayzid, N.; Westhorpe, A.P.; Hartley, J.A.; Jannoo, R.; Lowe, H.L.; Karamani, A.; Ensell, L.; Prieto, J.A.; Jeremiah, S.; Grammatopoulos, D.; Pandey, S.; Berry, L.; Jones, K.; Richter, A.; Beggs, A.; Best, A.; Percival, B.; Mirza, J.; Megram, O.; Mayhew, M.; Crawford, L.; Ashcroft, F.; Moles-Garcia, E.; Cumley, N.; Smith, C.P.; Bucca, G.; Hesketh, A.R.; Blane, B.; Girgis, S.T.; Leek, D.; Sridhar, S.; Forrest, S.; Cormie, C.; Gill, H.K.; Dias, J.; Higginson, E.E.; Maes, M.; Young, J.; Kermack, L.M.; Gupta, R.K.; Ludden, C.; Peacock, S.J.; Palmer, S.; Churcher, C.M.; Hadjirin, N.F.; Carabelli, A.M.; Brooks, E.; Smith, K.S.; Galai, K.; McManus, G.M.; Ruis, C.; Davidson, R.K.; Rambaut, A.; Williams, T.; Balcazar, C.E.; Gallagher, M.D.; O’Toole, Á.; Rooke, S.; Hill, V.; Williamson, K.A.; Stanton, T.D.; Michell, S.L.; Bewshea, C.M.; Temperton, B.; Michelsen, M.L.; Warwick-Dugdale, J.; Manley, R.; Farbos, A.; Harrison, J.W.; Sambles, C.M.; Studholme, D.J.; Jeffries, A.R.; Darby, A.C.; Hiscox, J.A.; Paterson, S.; Iturriza-Gomara, M.; Jackson, K.A.; Lucaci, A.O.; Vamos, E.E.; Hughes, M.; Rainbow, L.; Eccles, R.; Nelson, C.; Whitehead, M.; Turtle, L.; Haldenby, S.T.; Gregory, R.; Gemmell, M.; Wierzbicki, C.; Webster, H.J.; de Silva, T.I.; Smith, N.; Angyal, A.; Lindsey, B.B.; Groves, D.C.; Green, L.R.; Wang, D.; Freeman, T.M.; Parker, M.D.; Keeley, A.J.; Parsons, P.J.; Tucker, R.M.; Brown, R.; Wyles, M.; Whiteley, M.; Zhang, P.; Gallis, M.; Louka, S.F.; Constantinidou, C.; Unnikrishnan, M.; Ott, S.; Cheng, J.K.J.; Bridgewater, H.E.; Frost, L.R.; Taylor-Joyce, G.; Stark, R.; Baxter, L.; Alam, M.T.; Brown, P.E.; Aggarwal, D.; Cerda, A.C.; Merrill, T.V.; Wilson, R.E.; McClure, P.C.; Chappell, J.G.; Tsoleridis, T.; Ball, J.; Buck, D.; Todd, J.A.; Green, A.; Trebes, A.; MacIntyre-Cockett, G.; de Cesare, M.; Alderton, A.; Amato, R.; Ariani, C.V.; Beale, M.A.; Beaver, C.; Bellis, K.L.; Betteridge, E.; Bonfield, J.; Danesh, J.; Dorman, M.J.; Drury, E.; Farr, B.W.; Foulser, L.; Goncalves, S.; Goodwin, S.; Gourtovaia, M.; Harrison, E.M.; Jackson, D.K.; Jamrozy, D.; Johnston, I.; Kane, L.; Kay, S.; Keatley, J-P.; Kwiatkowski, D.; Langford, C.F.; Lawniczak, M.; Letchford, L.; Livett, R.; Lo, S.; Martincorena, I.; McGuigan, S.; Nelson, R.; Palmer, S.; Park, N.R.; Patel, M.; Prestwood, L.; Puethe, C.; Quail, M.A.; Rajatileka, S.; Scott, C.; Shirley, L.; Sillitoe, J.; Spencer Chapman, M.H.; Thurston, S.A.J.; Tonkin-Hill, G.; Weldon, D.; Rajan, D.; Bronner, I.F.; Aigrain, L.; Redshaw, N.M.; Lensing, S.V.; Davies, R.; Whitwham, A.; Liddle, J.; Lewis, K.; Tovar-Corona, J.M.; Leonard, S.; Durham, J.; Bassett, A.R.; McCarthy, S.; Moll, R.J.; James, K.; Oliver, K.; Makunin, A.; Barrett, J.; Gunson, R.N. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: An ecological study. Lancet Public Health, 2021, 6(5), e335-e345.
[http://dx.doi.org/10.1016/S2468-2667(21)00055-4] [PMID: 33857453]
[69]
Kupferschmidt, K. New mutations raise specter of ‘immune escape’. Science, 2021, 371(6527), 329-330.
[http://dx.doi.org/10.1126/science.371.6527.329] [PMID: 33479129]
[70]
Konings, F.; Perkins, M.; Kuhn, J.; Pallen, M.; Alm, E.; Archer, B. SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nat Microbiol, 2021, 6(7), 821-823.
[71]
Krause, P.R.; Fleming, T.R.; Longini, I.M.; Peto, R.; Briand, S.; Heymann, D.L.; Beral, V.; Snape, M.D.; Rees, H.; Ropero, A.M.; Balicer, R.D.; Cramer, J.P.; Muñoz-Fontela, C.; Gruber, M.; Gaspar, R.; Singh, J.A.; Subbarao, K.; Van Kerkhove, M.D.; Swaminathan, S.; Ryan, M.J.; Henao-Restrepo, A.M. SARS-CoV-2 Variants and Vaccines. N. Engl. J. Med., 2021, 385(2), 179-186.
[http://dx.doi.org/10.1056/NEJMsr2105280] [PMID: 34161052]
[72]
Spencer, A.J.; Morris, S.; Ulaszewska, M.; Powers, C.; Kailath, R.; Bissett, C.; Truby, A.; Thakur, N.; Newman, J.; Allen, E.R.; Rudiansyah, I.; Liu, C.; Dejnirattisai, W.; Mongkolsapaya, J.; Davies, H.; Donnellan, F.R.; Pulido, D.; Peacock, T.P.; Barclay, W.S.; Bright, H.; Ren, K.; Screaton, G.; McTamney, P.; Bailey, D.; Gilbert, S.C.; Lambe, T. The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine, 2022, 77, 103902.
[http://dx.doi.org/10.1016/j.ebiom.2022.103902] [PMID: 35228013]
[73]
Resende, P.C.; Naveca, F.G.; Lins, R.D.; Dezordi, F.Z.; Ferraz, M.V.F.; Moreira, e.g.; Coêlho, D.F.; Motta, F.C.; Paixão, A.C.D.; Appolinario, L.; Lopes, R.S.; Mendonça, A.C.F.; da Rocha, A.S.B.; Nascimento, V.; Souza, V.; Silva, G.; Nascimento, F.; Neto, L.G.L.; da Silva, F.V.; Riediger, I.; Debur, M.C.; Leite, A.B.; Mattos, T.; da Costa, C.F.; Pereira, F.M.; dos Santos, C.A.; Rovaris, D.B.; Fernandes, S.B.; Abbud, A.; Sacchi, C.; Khouri, R.; Bernardes, A.F.L.; Delatorre, E.; Gräf, T.; Siqueira, M.M.; Bello, G.; Wallau, G.L. The ongoing evolution of variants of concern and interest of SARS-CoV-2 in Brazil revealed by convergent indels in the amino (N)-terminal domain of the spike protein. Virus Evol., 2021, 7(2), veab069.
[http://dx.doi.org/10.1093/ve/veab069] [PMID: 34532067]
[74]
Chakraborty, C.; Bhattacharya, M.; Sharma, A.R. Present variants of concern and variants of interest of severe acute respiratory syndrome coronavirus 2: Their significant mutations in S-glycoprotein, infectivity, re-infectivity, immune escape and vaccines activity. Rev. Med. Virol., 2022, 32(2), e2270.
[http://dx.doi.org/10.1002/rmv.2270]
[75]
Singh, J.; Rahman, S.A.; Ehtesham, N.Z.; Hira, S.; Hasnain, S.E. SARS-CoV-2 variants of concern are emerging in India. Nat. Med., 2021, 27(7), 1131-1133.
[http://dx.doi.org/10.1038/s41591-021-01397-4] [PMID: 34045737]
[76]
Lippi, G.; Mattiuzzi, C.; Bovo, C.; Plebani, M. Current laboratory diagnostics of coronavirus disease 2019 (COVID-19). Acta Biomed., 2020, 91(2), 137-145.
[PMID: 32420937]
[77]
Bassetti, M.; Vena, A.; Giacobbe, D.R. Wiley Online Library, 2020, 50, e13209.
[78]
Shinu, P.; Morsy, M.A.; Deb, P.K.; Nair, A.B.; Goyal, M.; Shah, J.; Kotta, S. SARS CoV-2 organotropism associated pathogenic relationship of gut-brain axis and illness. Front. Mol. Biosci., 2020, 7, 606779.
[http://dx.doi.org/10.3389/fmolb.2020.606779] [PMID: 33415126]
[79]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[80]
Zali, A.; Khodadoost, M.; Gholamzadeh, S.; Janbazi, S.; Piri, H.; Taraghikhah, N.; Hannani, K.; Looha, M.A.; Mohammadi, G. Mortality among hospitalized COVID-19 patients during surges of SARS-CoV-2 alpha (B.1.1.7) and delta (B.1.617.2) variants. Sci. Rep., 2022, 12(1), 18918.
[http://dx.doi.org/10.1038/s41598-022-23312-8] [PMID: 36344540]
[81]
Elezkurtaj, S.; Greuel, S.; Ihlow, J.; Michaelis, e.g.; Bischoff, P.; Kunze, C.A.; Sinn, B.V.; Gerhold, M.; Hauptmann, K.; Ingold-Heppner, B.; Miller, F.; Herbst, H.; Corman, V.M.; Martin, H.; Radbruch, H.; Heppner, F.L.; Horst, D. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci. Rep., 2021, 11(1), 4263.
[http://dx.doi.org/10.1038/s41598-021-82862-5] [PMID: 33608563]
[82]
Tangos, M.; Jarkas, M.; Akin, I.; El-Battrawy, I.; Hamdani, N. Cardiac damage and tropism of severe acute respiratory syndrome coronavirus 2. Curr. Opin. Microbiol., 2024, 78, 102437.
[http://dx.doi.org/10.1016/j.mib.2024.102437] [PMID: 38394964]
[83]
Kamath, V.; Reddy, D. Omicron: An emerging variant of concern. APIK Journal of Internal Medicine, 2022, 10(2), 69-72.
[http://dx.doi.org/10.4103/ajim.ajim_134_21]
[84]
Ahn, Y.H.; Yoon, S.M.; Lee, J.; Lee, S.M.; Oh, D.K.; Lee, S.Y.; Park, M.H.; Lim, C.M.; Lee, H.Y.; Heo, J.; Lee, J.; Kim, K.C.; Lee, Y.J.; Cho, Y-J.; Lim, S.Y.; Chang, Y.; Jeon, K.; Ko, R-E.; Suh, G.Y.; Hong, S-K.; Hong, S-B.; Cho, W.H.; Kwak, S.H.; Lee, H.B.; Ahn, J-J.; Seong, G.M.; Lee, S-I.; Park, S.; Park, T.S.; Lee, S.H.; Choi, E.Y.; Moon, J.Y.; Kang, H.K. Early Sepsis-Associated Acute Kidney Injury and Obesity. JAMA Netw. Open, 2024, 7(2), e2354923-e2354923.
[http://dx.doi.org/10.1001/jamanetworkopen.2023.54923] [PMID: 38319660]
[85]
Khamidullina, Z.; Avzaletdinova, D.; Gareeva, D.; Morugova, T.; Lakman, I.; Kopp, K.; Fiedler, L.; Motloch, L.J.; Zagidullin, N. Long-Term Outcomes of COVID-19 in Hospitalized Type 2 Diabetes Mellitus Patients. Biomedicines, 2024, 12(2), 467.
[http://dx.doi.org/10.3390/biomedicines12020467] [PMID: 38398069]
[86]
Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[87]
Dzau, V.J.; Hodgkinson, C.P. RNA Therapeutics for the Cardiovascular System. Circulation, 2024, 149(9), 707-716.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.123.067373] [PMID: 38408142]
[88]
Wehbe, Z.; Hammoud, S.; Soudani, N.; Zaraket, H.; El-Yazbi, A.; Eid, A.H. Molecular insights into SARS COV-2 interaction with cardiovascular disease: role of RAAS and MAPK signaling. Front. Pharmacol., 2020, 11, 836.
[http://dx.doi.org/10.3389/fphar.2020.00836] [PMID: 32581799]
[89]
Sadura-Sieklucka, T.; Szczuka, J.; Targowski, T. Emotional and cognitive states of geriatric patients during the COVID-19 pandemic – an observational study. Reumatologia, 2023, 61(3), 169-174.
[http://dx.doi.org/10.5114/reum/168344] [PMID: 37522137]
[90]
Greco, G. I.; Noale, M.; Trevisan, C.; Zatti, G.; Dalla Pozza, M.; Lazzarin, M.; Haxhiaj, L.; Ramon, R.; Imoscopi, A.; Bellon, S. Increase in frailty in nursing home survivors of coronavirus disease 2019: comparison with noninfected residents. J. Am. Med. Dir. Assoc., 2021, 22, 943-947.
[91]
Jiao, B.; Chen, M.; Fan, M.; Luo, X.; Chen, C.; Liu, J. Association of frailty and cognitive function disorders in old patients with COVID-19: A protocol of systematic review and meta-analysis. BMJ Open, 2022, 12(3), e056190.
[http://dx.doi.org/10.1136/bmjopen-2021-056190] [PMID: 35241472]
[92]
Tana, C.; Moffa, L.; Falasca, K.; Vecchiet, J.; Tana, M.; Mantini, C.; Ricci, F.; Ticinesi, A.; Meschi, T.; Cipollone, F.; Giamberardino, M.A. Approach to COVID-19 in older adults and indications for improving the outcomes. Ann. Med., 2023, 55(2), 2265298.
[http://dx.doi.org/10.1080/07853890.2023.2265298] [PMID: 37839411]
[93]
Szklarzewska, S.; Vande Walle, J.; De Breucker, S.; Schoevaerdts, D. A comparison of clinical characteristics between old and oldest-old patients hospitalised for SARS-COV2. Acta Clin. Belg., 2023, 78(3), 192-199.
[http://dx.doi.org/10.1080/17843286.2022.2102115] [PMID: 35894148]
[94]
Zareef, R.O.; Younis, N.K.; Bitar, F.; Eid, A.H.; Arabi, M. COVID-19 in pediatric patients: A focus on CHD patients. Front. Cardiovasc. Med., 2020, 7, 612460.
[http://dx.doi.org/10.3389/fcvm.2020.612460] [PMID: 33330675]
[95]
Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Domen, J.; Tans, A.; Janssens, S.; Wickramasinghe, D.; Lannoy, V.; Horn, S.R.A.; Van den Bruel, A. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst. Rev., 2022, 5(5), CD013665.
[PMID: 35593186]
[96]
Zhou, Y.Q.; Wang, K.; Wang, X.Y.; Cui, H.Y.; Zhao, Y.; Zhu, P.; Chen, Z.N. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg. Microbes Infect., 2022, 11(1), 1135-1144.
[http://dx.doi.org/10.1080/22221751.2022.2059403] [PMID: 35343395]
[97]
Astuti, I.; Ysrafil Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[98]
Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med., 2020, 8(7), 738-742.
[http://dx.doi.org/10.1016/S2213-2600(20)30229-0] [PMID: 32416769]
[99]
Boukhris, M.; Hillani, A.; Moroni, F.; Annabi, M.S.; Addad, F.; Ribeiro, M.H.; Mansour, S.; Zhao, X.; Ybarra, L.F.; Abbate, A.; Vilca, L.M.; Azzalini, L. Cardiovascular implications of the COVID-19 pandemic: A global perspective. Can. J. Cardiol., 2020, 36(7), 1068-1080.
[http://dx.doi.org/10.1016/j.cjca.2020.05.018] [PMID: 32425328]
[100]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[101]
Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev., 2020, 54, 62-75.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.001] [PMID: 32513566]
[102]
Andersson, M.I.; Arancibia-Carcamo, C.V.; Auckland, K.; Baillie, J.K.; Barnes, E.; Beneke, T.; Bibi, S.; Brooks, T.; Carroll, M.; Crook, D.; Dingle, K.; Dold, C.; Downs, L.O.; Dunn, L.; Eyre, D.W.; Gilbert Jaramillo, J.; Harvala, H.; Hoosdally, S.; Ijaz, S.; James, T.; James, W.; Jeffery, K.; Justice, A.; Klenerman, P.; Knight, J.C.; Knight, M.; Liu, X.; Lumley, S.F.; Matthews, P.C.; McNaughton, A.L.; Mentzer, A.J.; Mongkolsapaya, J.; Oakley, S.; Oliveira, M.S.; Peto, T.; Ploeg, R.J.; Ratcliff, J.; Robbins, M.J.; Roberts, D.J.; Rudkin, J.; Russell, R.A.; Screaton, G.; Semple, M.G.; Skelly, D.; Simmonds, P.; Stoesser, N.; Turtle, L.; Wareing, S.; Zambon, M. SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res., 2020, 5, 181.
[http://dx.doi.org/10.12688/wellcomeopenres.16002.2] [PMID: 33283055]
[103]
De Felice, F.G.; Tovar-Moll, F.; Moll, J.; Munoz, D.P.; Ferreira, S.T. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) and the Central Nervous System. Trends Neurosci., 2020, 43(6), 355-357.
[http://dx.doi.org/10.1016/j.tins.2020.04.004]
[104]
Divani, A.A.; Andalib, S.; Di Napoli, M.; Lattanzi, S.; Hussain, M.S.; Biller, J.; McCullough, L.D.; Azarpazhooh, M.R.; Seletska, A.; Mayer, S.A.; Torbey, M. Coronavirus disease 2019 and stroke: Clinical manifestations and pathophysiological insights. J. Stroke Cerebrovasc. Dis., 2020, 29(8), 104941.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941] [PMID: 32689643]
[105]
Corman, V.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill, 2020, 25(3), 2000045.
[106]
Rotondo, J.C.; Martini, F.; Maritati, M.; Caselli, E.; Gallenga, C.E.; Guarino, M.; De Giorgio, R.; Mazziotta, C.; Tramarin, M.L.; Badiale, G.; Tognon, M.; Contini, C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms, 2022, 10(6), 1193.
[http://dx.doi.org/10.3390/microorganisms10061193] [PMID: 35744711]
[107]
Zhang, Y.; Huang, Z.; Zhu, J.; Li, C.; Fang, Z.; Chen, K.; Zhang, Y. An updated review of SARS-COV -2 detection methods in the context of a novel coronavirus pandemic. Bioeng. Transl. Med., 2023, 8(1), e10356.
[http://dx.doi.org/10.1002/btm2.10356] [PMID: 35942232]
[108]
Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223), 470-473.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[109]
Emery, S.L.; Erdman, D.D.; Bowen, M.D.; Newton, B.R.; Winchell, J.M.; Meyer, R.F.; Tong, S.; Cook, B.T.; Holloway, B.P.; McCaustland, K.A.; Rota, P.A.; Bankamp, B.; Lowe, L.E.; Ksiazek, T.G.; Bellini, W.J.; Anderson, L.J. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg. Infect. Dis., 2004, 10(2), 311-316.
[http://dx.doi.org/10.3201/eid1002.030759] [PMID: 15030703]
[110]
Lino, A.; Cardoso, M.A.; Gonçalves, H.M.R.; Martins-Lopes, P. SARS-CoV-2 detection methods. Chemosensors (Basel), 2022, 10(6), 221.
[http://dx.doi.org/10.3390/chemosensors10060221]
[111]
Zhu, Y.; Li, J.; Pang, Z. Recent insights for the emerging COVID-19: Drug discovery, therapeutic options and vaccine development. Asian Journal of Pharmaceutical Sciences, 2021, 16(1), 4-23.
[http://dx.doi.org/10.1016/j.ajps.2020.06.001] [PMID: 32837565]
[112]
Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; Jiang, Y.; Cheng, X.; Zhu, C.; Xia, Y. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect., 2020, 9(1), 1123-1130.
[http://dx.doi.org/10.1080/22221751.2020.1770129] [PMID: 32475230]
[113]
Liu, B.; Li, M.; Zhou, Z.; Guan, X.; Xiang, Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun., 2020, 111, 102452.
[http://dx.doi.org/10.1016/j.jaut.2020.102452] [PMID: 32291137]
[114]
Gubernatorova, E.O.; Gorshkova, E.A.; Polinova, A.I.; Drutskaya, M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev., 2020, 53, 13-24.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.009] [PMID: 32475759]
[115]
Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol., 2020, 58(6), e00512-20.
[http://dx.doi.org/10.1128/JCM.00512-20] [PMID: 32245835]
[116]
Khalid, M.F.; Selvam, K.; Jeffry, A.J.N.; Salmi, M.F.; Najib, M.A.; Norhayati, M.N.; Aziah, I. Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta- Analysis. Diagnostics (Basel), 2022, 12(1), 110.
[http://dx.doi.org/10.3390/diagnostics12010110] [PMID: 35054277]
[117]
Truong, T.T.; Dien Bard, J.; Butler-Wu, S.M. Rapid Antigen Assays for SARS-CoV-2. Clin. Lab. Med., 2022, 42(2), 203-222.
[http://dx.doi.org/10.1016/j.cll.2022.03.001] [PMID: 35636822]
[118]
Wells, C.R.; Pandey, A.; Moghadas, S.M.; Singer, B.H.; Krieger, G.; Heron, R.J.L.; Turner, D.E.; Abshire, J.P.; Phillips, K.M.; Michael Donoghue, A.; Galvani, A.P.; Townsend, J.P. Comparative analyses of eighteen rapid antigen tests and RT-PCR for COVID-19 quarantine and surveillance-based isolation. Commun. Med., 2022, 2(1), 84.
[http://dx.doi.org/10.1038/s43856-022-00147-y] [PMID: 35822105]
[119]
Li, Y.; Xia, L. Coronavirus Disease 2019 (COVID-19): Role of Chest CT in Diagnosis and Management. AJR Am. J. Roentgenol., 2020, 214(6), 1280-1286.
[http://dx.doi.org/10.2214/AJR.20.22954] [PMID: 32130038]
[120]
Carotti, M.; Salaffi, F.; Sarzi-Puttini, P.; Agostini, A.; Borgheresi, A.; Minorati, D.; Galli, M.; Marotto, D.; Giovagnoni, A. Chest CT features of coronavirus disease 2019 (COVID-19) pneumonia: Key points for radiologists. Radiol. Med. (Torino), 2020, 125(7), 636-646.
[http://dx.doi.org/10.1007/s11547-020-01237-4] [PMID: 32500509]
[121]
Dai, W.; Zhang, H.; Yu, J.; Xu, H.; Chen, H.; Luo, S.; Zhang, H.; Liang, L.; Wu, X.; Lei, Y.; Lin, F. CT imaging and differential diagnosis of COVID-19. Can. Assoc. Radiol. J., 2020, 71(2), 195-200.
[http://dx.doi.org/10.1177/0846537120913033] [PMID: 32129670]
[122]
Liu, T.; Luo, S.; Libby, P.; Shi, G.P. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol. Ther., 2020, 213, 107587.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107587] [PMID: 32470470]
[123]
Kotta, S.; Aldawsari, H.M.; Badr-Eldin, S.M.; Alhakamy, N.A.; Md, S.; Nair, A.B.; Deb, P.K. Exploring the potential of carbon dots to combat COVID-19. Front. Mol. Biosci., 2020, 7, 616575.
[http://dx.doi.org/10.3389/fmolb.2020.616575] [PMID: 33425995]
[124]
Chen, C.; Huang, J.; Yin, P.; Zhang, Y.; Cheng, Z.; Wu, J.; Chen, S.; Zhang, Y.; Chen, B.; Lu, M. Favipiravir versus arbidol for COVID-19: A randomized clinical trial. MedRxiv, 2020, 2020.2003.
[http://dx.doi.org/10.1101/2020.03.17.20037432]
[125]
Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; Diaz, G.; Cohn, A.; Fox, L.; Patel, A.; Gerber, S.I.; Kim, L.; Tong, S.; Lu, X.; Lindstrom, S.; Pallansch, M.A.; Weldon, W.C.; Biggs, H.M.; Uyeki, T.M.; Pillai, S.K. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med., 2020, 382(10), 929-936.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[126]
Lim, J.; Jeon, S.; Shin, H.Y.; Kim, M.J.; Seong, Y.M.; Lee, W.J.; Choe, K.W.; Kang, Y.M.; Lee, B.; Park, S.J. In. J. Korean Med. Sci., 2020, 35(6), e79.
[http://dx.doi.org/10.3346/jkms.2020.35.e79] [PMID: 32056407]
[127]
Li, Y.; Liu, X.; Guo, L.; Li, J.; Zhong, D.; Zhang, Y.; Clarke, M.; Jin, R. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: protocol for a systematic review and meta-analysis. Syst. Rev., 2020, 9(1), 75.
[http://dx.doi.org/10.1186/s13643-020-01343-4] [PMID: 32268923]
[128]
Xu, J.; Zhang, Y. Traditional Chinese Medicine treatment of COVID-19. Complement. Ther. Clin. Pract., 2020, 39, 101165.
[http://dx.doi.org/10.1016/j.ctcp.2020.101165] [PMID: 32379692]
[129]
Ottaviani, S.; Stebbing, J. What is the best drug to treat COVID-19? The need for randomized controlled trials. Med, 2020, 1(1), 9-10.
[http://dx.doi.org/10.1016/j.medj.2020.04.002] [PMID: 32838354]
[130]
Sayad, B.; Sobhani, M.; Khodarahmi, R. Sofosbuvir as repurposed antiviral drug against COVID-19: Why were we convinced to evaluate the drug in a registered/approved clinical trial? Arch. Med. Res., 2020, 51(6), 577-581.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.018] [PMID: 32387040]
[131]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[132]
Pokhrel, R.; Chapagain, P.; Siltberg-Liberles, J. Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. J. Med. Microbiol., 2020, 69(6), 864-873.
[http://dx.doi.org/10.1099/jmm.0.001203] [PMID: 32469301]
[133]
Kunz, K.M. A Trial of Lopinavir-Ritonavir in Covid-19. N. Engl. J. Med., 2020, 382(21), e68.
[PMID: 32369282]
[134]
Nile, S.H.; Nile, A.; Qiu, J.; Li, L.; Jia, X.; Kai, G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev., 2020, 53, 66-70.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.002] [PMID: 32418715]
[135]
Fuzimoto, A.D.; Isidoro, C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? J. Tradit. Complement. Med., 2020, 10(4), 405-419.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.003] [PMID: 32691005]
[136]
Schwarz, S.; Wang, K.; Yu, W.; Sun, B.; Schwarz, W. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res., 2011, 90(1), 64-69.
[http://dx.doi.org/10.1016/j.antiviral.2011.02.008] [PMID: 21356245]
[137]
Tanner, J.A.; Zheng, B.J.; Zhou, J.; Watt, R.M.; Jiang, J.Q.; Wong, K.L.; Lin, Y.P.; Lu, L.Y.; He, M.L.; Kung, H.F.; Kesel, A.J.; Huang, J.D. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem. Biol., 2005, 12(3), 303-311.
[http://dx.doi.org/10.1016/j.chembiol.2005.01.006] [PMID: 15797214]
[138]
Kesel, A. J. The Bananins: New Anticorona-RNA-Viral Agents with Unique Structural Signature. Anti-Infective Agents in Medicinal Chemistry, 2006, 5(2), 161-174.
[139]
Bisht, H.; Roberts, A.; Vogel, L.; Subbarao, K.; Moss, B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology, 2005, 334(2), 160-165.
[http://dx.doi.org/10.1016/j.virol.2005.01.042] [PMID: 15780866]
[140]
Zhou, L.; Liu, Y.; Zhang, W.; Wei, P.; Huang, C.; Pei, J.; Yuan, Y.; Lai, L. Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors. J. Med. Chem., 2006, 49(12), 3440-3443.
[http://dx.doi.org/10.1021/jm0602357] [PMID: 16759084]
[141]
Zhu, W.; Xu, M.; Chen, C.Z.; Guo, H.; Shen, M.; Hu, X.; Shinn, P.; Klumpp-Thomas, C.; Michael, S.G.; Zheng, W. Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening. ACS Pharmacol. Transl. Sci., 2020, 3(5), 1008-1016.
[http://dx.doi.org/10.1021/acsptsci.0c00108] [PMID: 33062953]
[142]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S.H. An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[143]
Jo, S.; Kim, S.; Shin, D.H.; Kim, M.S. Inhibition of SARS-CoV 3CL protease by flavonoids. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 145-151.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[144]
Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Res., 2020, 177, 104762.
[http://dx.doi.org/10.1016/j.antiviral.2020.104762] [PMID: 32147496]
[145]
Rodrigo, C.; Fernando, S. D.; Rajapakse, S. Clinical evidence for repurposing chloroquine and hydroxychloroquine as antiviral agents: A systematic review. Clin Microbiol Infect, 2020, 26(8), 979-987.
[146]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[147]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. in vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[148]
Biran, N.; Ip, A.; Ahn, J.; Go, R.C.; Wang, S.; Mathura, S.; Sinclaire, B.A.; Bednarz, U.; Marafelias, M.; Hansen, E.; Siegel, D.S.; Goy, A.H.; Pecora, A.L.; Sawczuk, I.S.; Koniaris, L.S.; Simwenyi, M.; Varga, D.W.; Tank, L.K.; Stein, A.A.; Allusson, V.; Lin, G.S.; Oser, W.F.; Tuma, R.A.; Reichman, J.; Brusco, L., Jr; Carpenter, K.L.; Costanzo, E.J.; Vivona, V.; Goldberg, S.L. Tocilizumab among patients with COVID-19 in the intensive care unit: A multicentre observational study. Lancet Rheumatol., 2020, 2(10), e603-e612.
[http://dx.doi.org/10.1016/S2665-9913(20)30277-0] [PMID: 32838323]
[149]
Lu, C.C.; Chen, M.Y.; Lee, W.S.; Chang, Y.L. Potential therapeutic agents against COVID-19: What we know so far. J. Chin. Med. Assoc., 2020, 83(6), 534-536.
[http://dx.doi.org/10.1097/JCMA.0000000000000318] [PMID: 32243270]
[150]
Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, 2020, 395(10234), 1407-1409.
[http://dx.doi.org/10.1016/S0140-6736(20)30858-8] [PMID: 32278362]
[151]
Prokunina-Olsson, L.; Alphonse, N.; Dickenson, R.E.; Durbin, J.E.; Glenn, J.S.; Hartmann, R.; Kotenko, S.V.; Lazear, H.M.; O’Brien, T.R.; Odendall, C.; Onabajo, O.O.; Piontkivska, H.; Santer, D.M.; Reich, N.C.; Wack, A.; Zanoni, I. COVID-19 and emerging viral infections: The case for interferon lambda. J. Exp. Med., 2020, 217(5), e20200653.
[http://dx.doi.org/10.1084/jem.20200653] [PMID: 32289152]
[152]
Stockman, L.J.; Bellamy, R.; Garner, P. SARS: systematic review of treatment effects. PLoS Med., 2006, 3(9), e343.
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[153]
Zhou, Q.; Chen, V.; Shannon, C.P.; Wei, X.S.; Xiang, X.; Wang, X.; Wang, Z.H.; Tebbutt, S.J.; Kollmann, T.R.; Fish, E.N. Interferon-α2b Treatment for COVID-19. Front. Immunol., 2020, 11, 1061.
[http://dx.doi.org/10.3389/fimmu.2020.01061] [PMID: 32574262]
[154]
Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int. J. Biol. Sci., 2020, 16(10), 1708-1717.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[155]
ter Meulen, J.; van den Brink, E.N.; Poon, L.L.M.; Marissen, W.E.; Leung, C.S.W.; Cox, F.; Cheung, C.Y.; Bakker, A.Q.; Bogaards, J.A.; van Deventer, E.; Preiser, W.; Doerr, H.W.; Chow, V.T.; de Kruif, J.; Peiris, J.S.M.; Goudsmit, J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med., 2006, 3(7), e237.
[http://dx.doi.org/10.1371/journal.pmed.0030237] [PMID: 16796401]
[156]
Marovich, M.; Mascola, J.R.; Cohen, M.S. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA, 2020, 324(2), 131-132.
[http://dx.doi.org/10.1001/jama.2020.10245] [PMID: 32539093]
[157]
Yoo, J.H. Convalescent plasma therapy for corona virus disease 2019: A long way to go but worth trying. J. Korean Med. Sci., 2020, 35(14), e150.
[http://dx.doi.org/10.3346/jkms.2020.35.e150] [PMID: 32281318]
[158]
Im, J.H.; Nahm, C.H.; Baek, J.H.; Kwon, H.Y.; Lee, J.S. Convalescent plasma therapy in coronavirus disease 2019: A case report and suggestions to overcome obstacles. J. Korean Med. Sci., 2020, 35(26), e239.
[http://dx.doi.org/10.3346/jkms.2020.35.e239] [PMID: 32627442]
[159]
Tao, K.; Tzou, P.L.; Nouhin, J.; Bonilla, H.; Jagannathan, P.; Shafer, R.W. SARS-CoV-2 Antiviral Therapy. Clin. Microbiol. Rev., 2021, 34(4), e00109-21.
[http://dx.doi.org/10.1128/CMR.00109-21] [PMID: 34319150]
[160]
Wang, X.; Sacramento, C.Q.; Jockusch, S.; Chaves, O.A.; Tao, C.; Fintelman-Rodrigues, N.; Chien, M.; Temerozo, J.R.; Li, X.; Kumar, S.; Xie, W.; Patel, D.J.; Meyer, C.; Garzia, A.; Tuschl, T.; Bozza, P.T.; Russo, J.J.; Souza, T.M.L.; Ju, J. Combination of antiviral drugs inhibits SARS-CoV-2 polymerase and exonuclease and demonstrates COVID-19 therapeutic potential in viral cell culture. Commun. Biol., 2022, 5(1), 154.
[http://dx.doi.org/10.1038/s42003-022-03101-9] [PMID: 35194144]
[161]
Esposito, R.; Mirra, D.; Sportiello, L.; Spaziano, G.; D’Agostino, B. Overview of Antiviral Drug Therapy for COVID-19: Where Do We Stand? Biomedicines, 2022, 10(11), 2815.
[http://dx.doi.org/10.3390/biomedicines10112815] [PMID: 36359334]
[162]
Wu, Y.; Li, Z.; Zhao, Y.S.; Huang, Y.Y.; Jiang, M.Y.; Luo, H.B. Therapeutic targets and potential agents for the treatment of COVID-19. Med. Res. Rev., 2021, 41(3), 1775-1797.
[http://dx.doi.org/10.1002/med.21776] [PMID: 33393116]
[163]
de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6771-6776.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[164]
Gordon, C.J.; Tchesnokov, E.P.; Feng, J.Y.; Porter, D.P.; Götte, M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J. Biol. Chem., 2020, 295(15), 4773-4779.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[165]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y.C.; Tian, G.; Jiang, H.W.; Tao, S.C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[166]
Hulseberg, C.E.; Fénéant, L.; Szymańska-de Wijs, K.M.; Kessler, N.P.; Nelson, E.A.; Shoemaker, C.J.; Schmaljohn, C.S.; Polyak, S.J.; White, J.M. Arbidol and Other Low-Molecular-Weight Drugs That Inhibit Lassa and Ebola Viruses. J. Virol., 2019, 93(8), e02185-18.
[http://dx.doi.org/10.1128/JVI.02185-18] [PMID: 30700611]
[167]
Madelain, V.; Nguyen, T.H.T.; Olivo, A.; de Lamballerie, X.; Guedj, J.; Taburet, A.M.; Mentré, F. Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin. Pharmacokinet., 2016, 55(8), 907-923.
[http://dx.doi.org/10.1007/s40262-015-0364-1] [PMID: 26798032]
[168]
Hayden, F.G.; Shindo, N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis., 2019, 32(2), 176-186.
[http://dx.doi.org/10.1097/QCO.0000000000000532] [PMID: 30724789]
[169]
Furuta, Y.; Komeno, T.; Nakamura, T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2017, 93(7), 449-463.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[170]
Shi, L.; Xiong, H.; He, J.; Deng, H.; Li, Q.; Zhong, Q.; Hou, W.; Cheng, L.; Xiao, H.; Yang, Z. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo. Arch. Virol., 2007, 152(8), 1447-1455.
[http://dx.doi.org/10.1007/s00705-007-0974-5] [PMID: 17497238]
[171]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[172]
Roustit, M.; Guilhaumou, R.; Molimard, M.; Drici, M.D.; Laporte, S.; Montastruc, J.L. Chloroquine and hydroxychloroquine in the management of COVID-19: Much kerfuffle but little evidence. Therapie, 2020, 75(4), 363-370.
[http://dx.doi.org/10.1016/j.therap.2020.05.010] [PMID: 32473812]
[173]
Chorin, E.; Dai, M.; Shulman, E.; Wadhwani, L.; Bar-Cohen, R.; Barbhaiya, C.; Aizer, A.; Holmes, D.; Bernstein, S.; Spinelli, M.; Park, D.S.; Chinitz, L.A.; Jankelson, L. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat. Med., 2020, 26(6), 808-809.
[http://dx.doi.org/10.1038/s41591-020-0888-2] [PMID: 32488217]
[174]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[175]
Li, C.; Wang, L.; Ren, L. Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS- CoV-2 infection. Virus Res., 2020, 286, 198073.
[http://dx.doi.org/10.1016/j.virusres.2020.198073] [PMID: 32592817]
[176]
Muramatsu, T.; Takemoto, C.; Kim, Y.T.; Wang, H.; Nishii, W.; Terada, T.; Shirouzu, M.; Yokoyama, S. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc. Natl. Acad. Sci. USA, 2016, 113(46), 12997-13002.
[http://dx.doi.org/10.1073/pnas.1601327113] [PMID: 27799534]
[177]
Campochiaro, C.; Dagna, L. The conundrum of interleukin-6 blockade in COVID-19. Lancet Rheumatol., 2020, 2(10), e579-e580.
[http://dx.doi.org/10.1016/S2665-9913(20)30287-3] [PMID: 32838322]
[178]
Shi, R.; Shan, C.; Duan, X.; Chen, Z.; Liu, P.; Song, J.; Song, T.; Bi, X.; Han, C.; Wu, L.; Gao, G.; Hu, X.; Zhang, Y.; Tong, Z.; Huang, W.; Liu, W.J.; Wu, G.; Zhang, B.; Wang, L.; Qi, J.; Feng, H.; Wang, F.S.; Wang, Q.; Gao, G.F.; Yuan, Z.; Yan, J. A human neutralizing antibody targets the receptor-binding site of SARS- CoV-2. Nature, 2020, 584(7819), 120-124.
[http://dx.doi.org/10.1038/s41586-020-2381-y] [PMID: 32454512]
[179]
Soleimanpour, S.; Yaghoubi, A. COVID-19 vaccine: Where are we now and where should we go? Expert Rev. Vaccines, 2021, 20(1), 23-44.
[http://dx.doi.org/10.1080/14760584.2021.1875824] [PMID: 33435774]
[180]
Ye, T.; Zhong, Z.; García-Sastre, A.; Schotsaert, M.; De Geest, B.G. Current status of COVID-19 (pre) clinical vaccine development. Angew. Chem. Int. Ed., 2020, 59(43), 18885-18897.
[http://dx.doi.org/10.1002/anie.202008319] [PMID: 32663348]
[181]
Kraynyak, K.A.; Blackwood, E.; Agnes, J.; Tebas, P.; Giffear, M.; Amante, D.; Reuschel, E.L.; Purwar, M.; Christensen-Quick, A.; Liu, N. et al. SARS-CoV-2 DNA vaccine INO-4800 induces durable immune responses capable of being boosted in a phase 1 open-label trial. J. Infect. Dis., 2021, 225, 1923-1932.
[182]
Chen, W.H.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. The SARS- CoV-2 Vaccine Pipeline: An Overview. Curr. Trop. Med. Rep., 2020, 7(2), 61-64.
[http://dx.doi.org/10.1007/s40475-020-00201-6] [PMID: 32219057]
[183]
Du, L.; He, Y.; Zhou, Y.; Liu, S.; Zheng, B.J.; Jiang, S. The spike protein of SARS-CoV — a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009, 7(3), 226-236.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[184]
Fight COVID-19. HKU joins global partnership to develop COVID-19 vaccine 2020. Available From: https://fightcovid19.hku.hk/hku-state-key-laboratory-for-emerging-infectious-diseases-joins-global-effort-to-develop-covid-19-vaccine/
[185]
Campbell, M. Current Efforts in COVID-19 Vaccine Development. 2020. Available From: https://www.technologynetworks.com/
[186]
Anon. UW–Madison, FluGen, Bharat Biotech to develop CoroFlu, a coronavirus vaccine. 2020. Available From: https://www.businesswire.com
[187]
Anon. COVID-19 Treatment and Vaccine Tracker. 2020. Available From: https://airtable.com/
[188]
Tung Thanh Le, Z.A. Arun Kumar, Raúl Gómez Román, Stig Tollefsen, Melanie Saville, Stephen Mayhew. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19, 305-306.
[189]
Anon. An Open Study of the Safety, Tolerability and Immunogenicity of the Drug "Gam-COVID-Vac" Vaccine Against COVID-19. 2020. Available From: https://classic.clinicaltrials.gov/ct2/show/NCT04436471 (Accessed on June 22, 2020).
[190]
Anon. An Open Study of the Safety, Tolerability and Immunogenicity of "Gam-COVID-Vac Lyo" Vaccine Against COVID-19. 2020. Available From: https://classic.clinicaltrials.gov/ct2/show/NCT04437875 (Accessed on June 22, 2020).
[191]
Anon. Vaxart Announces Positive Pre-Clinical Data for its Oral COVID-19 Vaccine Program. 2020. Available From: https://investors.vaxart.com/news-releases/news-release-details/vaxart-announces-positive-pre-clinical-data-its-oral-covid-19
[192]
Anon. A randomized, double-blind, placebo parallel-controlled phase I/II clinical trial for inactivated Novel Coronavirus Pneumonia vaccine (Vero cells). 2020. Available From: http://www.chictr.org.cn
[193]
Johnson, B.A. Landmark New Partnership with U.S. Department of Health & Human Services; and Commitment to Supply One Billion Vaccines Worldwide for Emergency Pandemic Use. 2020. Available From: https://www.prnewswire.com/
[194]
Applied DNA Sciences Subsidiary, LineaRx, and Takis Biotech Collaborate for Development of a Linear DNA Vaccine Candidate Against Wuhan Coronavirus 2019-nCoV. 2020. Available From: https://adnas.com/
[195]
ClinicalTrials.gov. Evaluating the safety, tolerability and immunogenicity of bacTRL-spike vaccine for prevention of COVID-19; National Library of Medicine: Bethesda, MD, 2020. Internet
[196]
ClinicalTrials.gov. The Safety and Immunogenicity of a DNA-based Vaccine (COVIGEN) in Healthy Volunteers (COVALIA)., 2021. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04742842
[197]
clinicalTrials.gov. A clinical trial of a prophylactic plasmid DNA vaccine for COVID-19 [covigenix VAX-001] in adults. 2021. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04591184
[198]
Andrade, V.M.; Christensen-Quick, A.; Agnes, J.; Tur, J.; Reed, C.; Kalia, R.; Marrero, I.; Elwood, D.; Schultheis, K.; Purwar, M.; Reuschel, E.; McMullan, T.; Pezzoli, P.; Kraynyak, K.; Sylvester, A.; Mammen, M.P.; Tebas, P.; Joseph Kim, J.; Weiner, D.B.; Smith, T.R.F.; Ramos, S.J.; Humeau, L.M.; Boyer, J.D.; Broderick, K.E. INO-4800 DNA vaccine induces neutralizing antibodies and T cell activity against global SARS-CoV-2 variants. NPJ Vaccines, 2021, 6(1), 121.
[http://dx.doi.org/10.1038/s41541-021-00384-7] [PMID: 34650089]
[199]
Conforti, A.; Marra, E.; Palombo, F.; Roscilli, G.; Ravà, M.; Fumagalli, V.; Muzi, A.; Maffei, M.; Luberto, L.; Lione, L.; Salvatori, E.; Compagnone, M.; Pinto, E.; Pavoni, E.; Bucci, F.; Vitagliano, G.; Stoppoloni, D.; Pacello, M.L.; Cappelletti, M.; Ferrara, F.F.; D’Acunto, E.; Chiarini, V.; Arriga, R.; Nyska, A.; Di Lucia, P.; Marotta, D.; Bono, E.; Giustini, L.; Sala, E.; Perucchini, C.; Paterson, J.; Ryan, K.A.; Challis, A.R.; Matusali, G.; Colavita, F.; Caselli, G.; Criscuolo, E.; Clementi, N.; Mancini, N.; Groß, R.; Seidel, A.; Wettstein, L.; Münch, J.; Donnici, L.; Conti, M.; De Francesco, R.; Kuka, M.; Ciliberto, G.; Castilletti, C.; Capobianchi, M.R.; Ippolito, G.; Guidotti, L.G.; Rovati, L.; Iannacone, M.; Aurisicchio, L. COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Mol. Ther., 2022, 30(1), 311-326.
[http://dx.doi.org/10.1016/j.ymthe.2021.09.011] [PMID: 34547465]
[200]
Khobragade, A.; Bhate, S.; Ramaiah, V.; Deshpande, S.; Giri, K.; Phophle, H.; Supe, P.; Godara, I.; Revanna, R.; Nagarkar, R.; Sanmukhani, J.; Dey, A.; Rajanathan, T.M.C.; Kansagra, K.; Koradia, P. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): The interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet, 2022, 399(10332), 1313-1321.
[http://dx.doi.org/10.1016/S0140-6736(22)00151-9] [PMID: 35367003]
[201]
clinicalTrials.gov. GLS-5310 Vaccine for the Prevention of SARS-CoV-2 (COVID-19). 2020. Available From: https://clinicaltrials.gov/ct2/show/NCT04673149
[202]
clinicalTrials.gov. Phase II / III Study of COVID-19 DNA Vaccine (AG0302-COVID19). 2020. Available From: https://clinicaltrials.gov/ct2/show/NCT04655625
[203]
Lu, J.; Lu, G.; Tan, S.; Xia, J.; Xiong, H.; Yu, X.; Qi, Q.; Yu, X.; Li, L.; Yu, H.; Xia, N.; Zhang, T.; Xu, Y.; Lin, J. A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a strong antiviral-like immune response in mice. Cell Res., 2020, 30(10), 936-939.
[http://dx.doi.org/10.1038/s41422-020-00392-7] [PMID: 32801356]
[204]
Liu, C.; Rcheulishvili, N.; Shen, Z.; Papukashvili, D.; Xie, F.; Wang, Z.; Wang, X.; He, Y.; Wang, P.G. Development of an LNP-Encapsulated mRNA-RBD Vaccine against SARS-CoV-2 and Its Variants. Pharmaceutics, 2022, 14(5), 1101.
[http://dx.doi.org/10.3390/pharmaceutics14051101] [PMID: 35631687]
[205]
Szabó, G.T.; Mahiny, A.J.; Vlatkovic, I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther., 2022, 30(5), 1850-1868.
[http://dx.doi.org/10.1016/j.ymthe.2022.02.016] [PMID: 35189345]
[206]
McCafferty, S.; Haque, A.K.M.A.; Vandierendonck, A.; Weidensee, B.; Plovyt, M.; Stuchlíková, M.; François, N.; Valembois, S.; Heyndrickx, L.; Michiels, J.; Ariën, K.K.; Vandekerckhove, L.; Abdelnabi, R.; Foo, C.S.; Neyts, J.; Sahu, I.; Sanders, N.N. A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through T cell-mediated immunity. Mol. Ther., 2022, 30(9), 2968-2983.
[http://dx.doi.org/10.1016/j.ymthe.2022.04.014] [PMID: 35450821]
[207]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[208]
Pollock, K.M.; Cheeseman, H.M.; Szubert, A.J.; Libri, V.; Boffito, M.; Owen, D.; Bern, H.; McFarlane, L.R.; O’Hara, J.; Lemm, N.M.; McKay, P.; Rampling, T.; Yim, Y.T.N.; Milinkovic, A.; Kingsley, C.; Cole, T.; Fagerbrink, S.; Aban, M.; Tanaka, M.; Mehdipour, S.; Robbins, A.; Budd, W.; Faust, S.; Hassanin, H.; Cosgrove, C.A.; Winston, A.; Fidler, S.; Dunn, D.; McCormack, S.; Shattock, R.J.; Adams, K.; Amini, F.; Atako, N.B.; Bakri, A.; Barclay, W.; Brodnicki, E.; Brown, J.C.; Byrne, R.; Chilvers, R.; Coelho, S.; Day, S.; Desai, M.; Dorman, E.; Elliott, T.; Flight, K.E.; Fletcher, J.; Galang, J.; Gohil, J.; Gupta, A.; Harlow, C.; Hu, K.; Kalyan, M.; Lagrue, D.; Liscano, E.; Njenga, C.; Polra, K.; Powlette, D.A.; Randell, P.; Rauchenberger, M.; Redknap, I.; Ricamara, M.; Rogers, P.; Sallah, H.; Samnuan, K.; Schumacher, M.; Shah, Z.; Shaw, R.; Shaw, T.; Sivapatham, S.; Slater, S.; Sorley, K.; Storch, R.; Tan, E.; Tan, T.; Thielemans, L.; Whitely, S.; Valentine, C.; Varghese, J.; Vikraman, A.; Wilkins, M. Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial. EClinicalMedicine, 2022, 44, 101262.
[http://dx.doi.org/10.1016/j.eclinm.2021.101262] [PMID: 35043093]
[209]
Rauch, S.; Roth, N.; Schwendt, K.; Fotin-Mleczek, M.; Mueller, S.O.; Petsch, B. mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. NPJ Vaccines, 2021, 6(1), 57.
[http://dx.doi.org/10.1038/s41541-021-00311-w] [PMID: 33863911]
[210]
Dighriri, I.M.; Alhusayni, K.M.; Mobarki, A.Y.; Aljerary, I.S.; Alqurashi, K.A.; Aljuaid, F.A.; Alamri, K.A.; Mutwalli, A.A.; Maashi, N.A.; Aljohani, A.M.; Alqarni, A.M.; Alfaqih, A.E.; Moazam, S.M.; Almutairi, M.N.; Almutairi, A.N. Pfizer-BioNTech COVID-19 Vaccine (BNT162b2) Side Effects: A Systematic Review. Cureus, 2022, 14(3), e23526.
[http://dx.doi.org/10.7759/cureus.23526] [PMID: 35494952]
[211]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[212]
Tian, S. Vaccine companies versus the retail investor. 2021.
[213]
Hager, K.J.; Pérez Marc, G.; Gobeil, P.; Diaz, R.S.; Heizer, G.; Llapur, C.; Makarkov, A.I.; Vasconcellos, E.; Pillet, S.; Riera, F.; Saxena, P.; Geller Wolff, P.; Bhutada, K.; Wallace, G.; Aazami, H.; Jones, C.E.; Polack, F.P.; Ferrara, L.; Atkins, J.; Boulay, I.; Dhaliwall, J.; Charland, N.; Couture, M.M.J.; Jiang-Wright, J.; Landry, N.; Lapointe, S.; Lorin, A.; Mahmood, A.; Moulton, L.H.; Pahmer, E.; Parent, J.; Séguin, A.; Tran, L.; Breuer, T.; Ceregido, M.A.; Koutsoukos, M.; Roman, F.; Namba, J.; D’Aoust, M.A.; Trepanier, S.; Kimura, Y.; Ward, B.J. Efficacy and Safety of a Recombinant Plant-Based Adjuvanted Covid-19 Vaccine. N. Engl. J. Med., 2022, 386(22), 2084-2096.
[http://dx.doi.org/10.1056/NEJMoa2201300] [PMID: 35507508]
[214]
Pandey, K.; Acharya, A.; Mohan, M.; Ng, C.L.; Reid, S.P.; Byrareddy, S.N. Animal models for SARS-CoV-2 research: A comprehensive literature review. Transbound. Emerg. Dis., 2021, 68(4), 1868-1885.
[http://dx.doi.org/10.1111/tbed.13907] [PMID: 33128861]
[215]
Folegatti, P.M.; Bittaye, M.; Flaxman, A.; Lopez, F.R.; Bellamy, D.; Kupke, A.; Mair, C.; Makinson, R.; Sheridan, J.; Rohde, C.; Halwe, S.; Jeong, Y.; Park, Y.S.; Kim, J.O.; Song, M.; Boyd, A.; Tran, N.; Silman, D.; Poulton, I.; Datoo, M.; Marshall, J.; Themistocleous, Y.; Lawrie, A.; Roberts, R.; Berrie, E.; Becker, S.; Lambe, T.; Hill, A.; Ewer, K.; Gilbert, S. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: A dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect. Dis., 2020, 20(7), 816-826.
[http://dx.doi.org/10.1016/S1473-3099(20)30160-2] [PMID: 32325038]
[216]
Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.; Galloway, J.; Goodman, A.L.; Heer, A.; Higham, A.; Iyengar, S.; Jamal, A.; Jeanes, C.; Kalra, P.A.; Kyriakidou, C.; McAuley, D.F.; Meyrick, A.; Minassian, A.M.; Minton, J.; Moore, P.; Munsoor, I.; Nicholls, H.; Osanlou, O.; Packham, J.; Pretswell, C.H.; San Francisco Ramos, A.; Saralaya, D.; Sheridan, R.P.; Smith, R.; Soiza, R.L.; Swift, P.A.; Thomson, E.C.; Turner, J.; Viljoen, M.E.; Albert, G.; Cho, I.; Dubovsky, F.; Glenn, G.; Rivers, J.; Robertson, A.; Smith, K.; Toback, S. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N. Engl. J. Med., 2021, 385(13), 1172-1183.
[http://dx.doi.org/10.1056/NEJMoa2107659] [PMID: 34192426]
[217]
clinicalTrials.gov. A Phase III Study of COVID-19 Vaccine EuCorVac-19 in Healthy Adults., 2022. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT05572879
[218]
PR Newswire. Voltron Therapeutics, Inc. Enters into Sponsored Research Agreement with The Vaccine & Immunotherapy Center at the Massachusetts General Hospital to Develop Potential COVID-19 Vaccine. 2020. Available From: https://www.prnewswire.com/news-releases/voltron-therapeutics-inc-enters-into-sponsored-research-agreement-with-the-vaccine--immunotherapy-center-at-the-massachusetts-general-hospital-to-develop-potential-covid-19-vaccine-301034225.html
[219]
Mehla, R.; Kokate, P.; Bhosale, S.R.; Vaidya, V.; Narayanan, S.; Shandil, R.K.; Singh, M.; Rudramurthy, G.R.; Naveenkumar, C.N.; Bharathkumar, K.; Coleman, R.; Mueller, S.; Dhere, R.M.; Yeolekar, L.R. A Live Attenuated COVID-19 Candidate Vaccine for Children: Protection against SARS-CoV-2 Challenge in Hamsters. Vaccines (Basel), 2023, 11(2), 255.
[http://dx.doi.org/10.3390/vaccines11020255] [PMID: 36851133]
[220]
Sinovac COVID-19 Vaccine Collaboration with Butantan Receives Approval from Brazilian Regulator for Phase III T. http://www.sinovac.com/?optionid=754&auto_id=907
[221]
Chen, H.; Huang, Z.; Chang, S.; Hu, M.; Lu, Q.; Zhang, Y.; Wang, H.; Xiao, Y.; Wang, H.; Ge, Y.; Zou, Y.; Cui, F.; Han, S.; Zhang, M.; Wang, S.; Zhu, X.; Zhang, B.; Li, Z.; Ren, J.; Chen, X.; Ma, R.; Zhang, L.; Guo, X.; Luo, L.; Sun, X.; Yang, X. Immunogenicity and safety of an inactivated SARS-CoV-2 vaccine (Sinopharm BBIBP-CorV) coadministered with quadrivalent split-virion inactivated influenza vaccine and 23-valent pneumococcal polysaccharide vaccine in China: A multicentre, non-inferiority, open-label, randomised, controlled, phase 4 trial. Vaccine, 2022, 40(36), 5322-5332.
[http://dx.doi.org/10.1016/j.vaccine.2022.07.033] [PMID: 35931636]
[222]
clinicalTrials.gov. Whole-virion inactivated SARS-CoV-2 vaccine (BBV152) for COVID-19 in healthy volunteers (BBV152). 2020. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04471519
[223]
Zakarya, K.; Kutumbetov, L.; Orynbayev, M.; Abduraimov, Y.; Sultankulova, K.; Kassenov, M.; Sarsenbayeva, G.; Kulmagambetov, I.; Davlyatshin, T.; Sergeeva, M.; Stukova, M.; Khairullin, B. Safety and immunogenicity of a QazCovid-in® inactivated whole-virion vaccine against COVID-19 in healthy adults: A single-centre, randomised, single-blind, placebo-controlled phase 1 and an open-label phase 2 clinical trials with a 6 months follow-up in Kazakhstan. EClinicalMedicine, 2021, 39, 101078.
[http://dx.doi.org/10.1016/j.eclinm.2021.101078] [PMID: 34414368]
[224]
Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; Gao, H.; Ge, X.; Kan, B.; Hu, Y.; Liu, J.; Cai, F.; Jiang, D.; Yin, Y.; Qin, C.; Li, J.; Gong, X.; Lou, X.; Shi, W.; Wu, D.; Zhang, H.; Zhu, L.; Deng, W.; Li, Y.; Lu, J.; Li, C.; Wang, X.; Yin, W.; Zhang, Y.; Qin, C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 2020, 369(6499), 77-81.
[http://dx.doi.org/10.1126/science.abc1932] [PMID: 32376603]
[225]
clinicalTrials.gov. OPV as Potential Protection Against COVID-19. 2020. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04445428
[226]
clinicalTrials.gov. Measles Vaccine in HCW (MV-COVID19). 2020. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04445428
[227]
clinicalTrials.gov. Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine (BCG-CORONA)., 2020. Available From :https://classic.clinicaltrials.gov/ct2/show/NCT04328441
[228]
Bhiman, J.N.; Richardson, S.I.; Lambson, B.E.; Kgagudi, P.; Mzindle, N.; Kaldine, H.; Crowther, C.; Gray, G.; Bekker, L.G.; Koen, A.; Fairlie, L.; Fouche, L.; Bhorat, Q.; Dheda, K.; Tameris, M.; Masilela, M.; Hoosain, Z.; Singh, N.; Hanley, S.; Archary, M.; Louw, C.; Grobbelaar, C.; Lalloo, U.; Joseph, N.; Kruger, G.; Shinde, V.; Bennett, C.; Glenn, G.M.; Madhi, S.A.; Moore, P.L. Novavax NVX-COV2373 triggers neutralization of Omicron sub-lineages. Sci. Rep., 2023, 13(1), 1222.
[http://dx.doi.org/10.1038/s41598-023-27698-x] [PMID: 36681693]
[229]
Saha, R.P.; Sharma, A.R.; Singh, M.K.; Samanta, S.; Bhakta, S.; Mandal, S.; Bhattacharya, M.; Lee, S.S.; Chakraborty, C. Repurposing drugs, ongoing vaccine, and new therapeutic development initiatives against COVID-19. Front. Pharmacol., 2020, 11, 1258.
[http://dx.doi.org/10.3389/fphar.2020.01258] [PMID: 32973505]
[230]
Bhatta, M.; Nandi, S.; Dutta, S.; Saha, M.K. Coronavirus (SARS-CoV-2): A systematic review for potential vaccines. Hum. Vaccin. Immunother., 2022, 18(1), 1865774.
[http://dx.doi.org/10.1080/21645515.2020.1865774] [PMID: 33545014]
[231]
Baraniuk, C. Covid-19: What do we know about Sputnik V and other Russian vaccines? BMJ, 2021, 372, n743.
[http://dx.doi.org/10.1136/bmj.n743] [PMID: 33741559]
[232]
Belete, T.M. Review on up-to-date status of candidate vaccines for COVID-19 disease. Infect. Drug Resist., 2021, 14, 151-161.
[http://dx.doi.org/10.2147/IDR.S288877] [PMID: 33500636]
[233]
Jones, I.; Roy, P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet, 2021, 397(10275), 642-643.
[http://dx.doi.org/10.1016/S0140-6736(21)00191-4] [PMID: 33545098]
[234]
Pacheco, T. J. A.; Silva, V. C. M. d.; Souza, D. G. d.; Borges, M. B. S.; Silva, S. A. COVID-19: Do DNA / RNA vaccines integrate into the genome? RSD, 2021, 10(1), e58710112103.
[235]
Pozzi, C.; Vanet, A.; Francesconi, V.; Tagliazucchi, L.; Tassone, G.; Venturelli, A.; Spyrakis, F.; Mazzorana, M.; Costi, M.P.; Tonelli, M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery–Genetics Alliance Perspective. J. Med. Chem., 2023, 66(6), 3664-3702.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01229] [PMID: 36857133]
[236]
Pesce, E.; Manfrini, N.; Cordiglieri, C.; Santi, S.; Bandera, A.; Gobbini, A.; Gruarin, P.; Favalli, A.; Bombaci, M.; Cuomo, A.; Collino, F.; Cricrì, G.; Ungaro, R.; Lombardi, A.; Mangioni, D.; Muscatello, A.; Aliberti, S.; Blasi, F.; Gori, A.; Abrignani, S.; De Francesco, R.; Biffo, S.; Grifantini, R. Exosomes Recovered From the Plasma of COVID-19 Patients Expose SARS-CoV-2 Spike-Derived Fragments and Contribute to the Adaptive Immune Response. Front. Immunol., 2022, 12, 785941.
[http://dx.doi.org/10.3389/fimmu.2021.785941] [PMID: 35111156]
[237]
Bouhaddou, M.; Memon, D.; Meyer, B.; White, K. M.; Rezelj, V. V.; Marrero, M. C.; Polacco, B. J.; Melnyk, J. E.; Ulferts, S.; Kaake, R. M. The global phosphorylation landscape of SARS-CoV-2 infection. Cell, 2020, 182, 685-712.
[http://dx.doi.org/10.1016/j.cell.2020.06.034]
[238]
Su, P.; Wu, Y.; Xie, F.; Zheng, Q.; Chen, L.; Liu, Z.; Meng, X.; Zhou, F.; Zhang, L. A Review of Extracellular Vesicles in COVID-19 Diagnosis, Treatment, and Prevention. Adv Sci, 2023, 10(19), e2206095.
[239]
Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L.W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K.J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R.C. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis., 2020, 11(2), 216-228.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[240]
Deshmukh, R.; Roy, U. A Comprehensive Mini-review on COVID-19 Pathogenesis on Perspectives of Cytokine Storm and Recent Developments in Anti-Covid Nucleotide Analogues. J. Pure Appl. Microbiol., 2023, 17(1), 1-11.
[http://dx.doi.org/10.22207/JPAM.17.1.12]
[241]
Tamanna, S.; Lumbers, E.R.; Morosin, S.K.; Delforce, S.J.; Pringle, K.G. ACE2: A key modulator of the renin-angiotensin system and pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2021, 321(6), R833-R843.
[http://dx.doi.org/10.1152/ajpregu.00211.2021] [PMID: 34668428]
[242]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[243]
Suvarnapathaki, S.; Chauhan, D.; Nguyen, A.; Ramalingam, M.; Camci-Unal, G. Advances in Targeting ACE2 for Developing COVID-19 Therapeutics. Ann. Biomed. Eng., 2022, 50(12), 1734-1749.
[http://dx.doi.org/10.1007/s10439-022-03094-w] [PMID: 36261668]
[244]
Maus, A.; Strait, L.; Zhu, D. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Engineered Regeneration, 2021, 2, 31-46.
[http://dx.doi.org/10.1016/j.engreg.2021.03.001] [PMID: 38620592]
[245]
Hassanzadeh, P. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. J. Control. Release, 2020, 328, 112-126.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.060] [PMID: 32882269]
[246]
Feng, T.; Nie, C.; Peng, P.; Lu, H.; Wang, T.; Li, P.; Huang, W. Nanoagent-based theranostic strategies against human coronaviruses. Nano Res., 2022, 15(4), 3323-3337.
[http://dx.doi.org/10.1007/s12274-021-3949-z] [PMID: 35003529]
[247]
Chattopadhyay, S.; Chen, J.Y.; Chen, H.W.; Hu, C.M.J. Nanoparticle Vaccines Adopting Virus-like Features for Enhanced Immune Potentiation. Nanotheranostics, 2017, 1(3), 244-260.
[http://dx.doi.org/10.7150/ntno.19796] [PMID: 29071191]
[248]
Aljabali, A.A.; Obeid, M.A.; Bashatwah, R.M.; Serrano-Aroca, Á.; Mishra, V.; Mishra, Y.; El-Tanani, M.; Hromić-Jahjefendić, A.; Kapoor, D.N.; Goyal, R.; Naikoo, G.A.; Tambuwala, M.M. Nanomaterials and Their Impact on the Immune System. Int. J. Mol. Sci., 2023, 24(3), 2008.
[http://dx.doi.org/10.3390/ijms24032008] [PMID: 36768330]
[249]
Liu, J.; Liu, Z.; Pang, Y.; Zhou, H. The interaction between nanoparticles and immune system: Application in the treatment of inflammatory diseases. J. Nanobiotechnology, 2022, 20(1), 127.
[http://dx.doi.org/10.1186/s12951-022-01343-7] [PMID: 35279135]
[250]
Aiewsakun, P.; Phumiphanjarphak, W.; Ludowyke, N.; Purwono, P.B.; Manopwisedjaroen, S.; Srisaowakarn, C.; Ekronarongchai, S.; Suksatu, A.; Yuvaniyama, J.; Thitithanyanont, A. Systematic Exploration of SARS-CoV-2 Adaptation to Vero E6, Vero E6/TMPRSS2, and Calu-3 Cells. Genome Biol. Evol., 2023, 15(4), evad035.
[http://dx.doi.org/10.1093/gbe/evad035] [PMID: 36852863]
[251]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[252]
Khorsand, B.; Savadi, A.; Naghibzadeh, M. SARS-CoV-2-human protein-protein interaction network. Informatics in Medicine Unlocked, 2020, 20, 100413.
[http://dx.doi.org/10.1016/j.imu.2020.100413] [PMID: 32838020]
[253]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[254]
Costanzo, M.; VanderSluis, B.; Koch, E.N.; Baryshnikova, A.; Pons, C.; Tan, G.; Wang, W.; Usaj, M.; Hanchard, J.; Lee, S.D.; Pelechano, V.; Styles, E.B.; Billmann, M.; van Leeuwen, J.; van Dyk, N.; Lin, Z.Y.; Kuzmin, E.; Nelson, J.; Piotrowski, J.S.; Srikumar, T.; Bahr, S.; Chen, Y.; Deshpande, R.; Kurat, C.F.; Li, S.C.; Li, Z.; Usaj, M.M.; Okada, H.; Pascoe, N.; San Luis, B.J.; Sharifpoor, S.; Shuteriqi, E.; Simpkins, S.W.; Snider, J.; Suresh, H.G.; Tan, Y.; Zhu, H.; Malod-Dognin, N.; Janjic, V.; Przulj, N.; Troyanskaya, O.G.; Stagljar, I.; Xia, T.; Ohya, Y.; Gingras, A.C.; Raught, B.; Boutros, M.; Steinmetz, L.M.; Moore, C.L.; Rosebrock, A.P.; Caudy, A.A.; Myers, C.L.; Andrews, B.; Boone, C. A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353(6306), aaf1420.
[http://dx.doi.org/10.1126/science.aaf1420] [PMID: 27708008]
[255]
Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Pache, L.; Burgstaller-Muehlbacher, S.; De Jesus, P.D.; Teriete, P.; Hull, M.V.; Chang, M.W.; Chan, J.F.W.; Cao, J.; Poon, V.K.M.; Herbert, K.M.; Cheng, K.; Nguyen, T.T.H.; Rubanov, A.; Pu, Y.; Nguyen, C.; Choi, A.; Rathnasinghe, R.; Schotsaert, M.; Miorin, L.; Dejosez, M.; Zwaka, T.P.; Sit, K.Y.; Martinez-Sobrido, L.; Liu, W.C.; White, K.M.; Chapman, M.E.; Lendy, E.K.; Glynne, R.J.; Albrecht, R.; Ruppin, E.; Mesecar, A.D.; Johnson, J.R.; Benner, C.; Sun, R.; Schultz, P.G.; Su, A.I.; García-Sastre, A.; Chatterjee, A.K.; Yuen, K.Y.; Chanda, S.K. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586(7827), 113-119.
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[256]
Lizana, J.; Reinoso, C.M.D.; Aliaga, N.; Marani, W.; Montemurro, N. Bilateral central retinal artery occlusion: An exceptional complication after frontal parasagittal meningioma resection. Surg. Neurol. Int., 2021, 12, 397.
[http://dx.doi.org/10.25259/SNI_571_2021] [PMID: 34513163]
[257]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[258]
von Delft, A.; Hall, M.D.; Kwong, A.D.; Purcell, L.A.; Saikatendu, K.S.; Schmitz, U.; Tallarico, J.A.; Lee, A.A. Accelerating antiviral drug discovery: Lessons from COVID-19. Nat. Rev. Drug Discov., 2023, 22(7), 585-603.
[http://dx.doi.org/10.1038/s41573-023-00692-8] [PMID: 37173515]
[259]
Liu, X.; Huuskonen, S.; Laitinen, T.; Redchuk, T.; Bogacheva, M.; Salokas, K.; Pöhner, I.; Öhman, T.; Tonduru, A.K.; Hassinen, A.; Gawriyski, L.; Keskitalo, S.; Vartiainen, M.K.; Pietiäinen, V.; Poso, A.; Varjosalo, M. SARS-CoV-2–host proteome interactions for antiviral drug discovery. Mol. Syst. Biol., 2021, 17(11), e10396.
[http://dx.doi.org/10.15252/msb.202110396] [PMID: 34709727]
[260]
Srivastava, K.; Singh, M.K. Drug repurposing in COVID-19: A review with past, present and future. Metabolism Open, 2021, 12, 100121.
[http://dx.doi.org/10.1016/j.metop.2021.100121] [PMID: 34462734]
[261]
Jonsdottir, H.R.; Siegrist, D.; Julien, T.; Padey, B.; Bouveret, M.; Terrier, O.; Pizzorno, A.; Huang, S.; Samby, K.; Wells, T.N.C.; Boda, B.; Rosa-Calatrava, M.; Engler, O.B.; Constant, S. Molnupiravir combined with different repurposed drugs further inhibits SARS-CoV-2 infection in human nasal epithelium in vitro. Biomed. Pharmacother., 2022, 150, 113058.
[http://dx.doi.org/10.1016/j.biopha.2022.113058] [PMID: 35658229]
[262]
Wang, P.; Casner, R.G.; Nair, M.S.; Wang, M.; Yu, J.; Cerutti, G.; Liu, L.; Kwong, P.D.; Huang, Y.; Shapiro, L.; Ho, D.D. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe, 2021, 29(5), 747-751.e4.
[http://dx.doi.org/10.1016/j.chom.2021.04.007] [PMID: 33887205]
[263]
Carlos, W.G.; Dela Cruz, C.S.; Cao, B.; Pasnick, S.; Jamil, S. Novel Wuhan (2019-nCoV) Coronavirus. Am. J. Respir. Crit. Care Med., 2020, 201(4), 7-P8.
[http://dx.doi.org/10.1164/rccm.2014P7] [PMID: 32004066]
[264]
Cruz, M.P.; Santos, E.; Cervantes, M.V.; Juárez, M.L. COVID-19, a worldwide public health emergency. Revista Clínica Española, 2021, 221, 55-61. [English Edition].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy