Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Computational Investigation of Novel Compounds as Dual Inhibitors of AChE and GSK-3β for the Treatment of Alzheimer's Disease

Author(s): Saurabh G. Londhe, Mangala Shenoy, Suvarna G. Kini, Vinayak Walhekar and Dileep Kumar*

Volume 24, Issue 19, 2024

Published on: 07 June, 2024

Page: [1738 - 1753] Pages: 16

DOI: 10.2174/0115680266295740240602122613

Price: $65

Abstract

Background: Alzheimer's disease (AD) stands out as one of the most devastating and prevalent neurodegenerative disorders known today. Researchers have identified several enzymatic targets associated with AD among which Glycogen synthase kinase-3β (GSK-3β) and Acetylcholinesterase (AChE) are prominent ones. Unfortunately, the market offers very few drugs for treating or managing AD, and none have shown significant efficacy against it.

Objectives: To address this critical issue, the design and discovery of dual inhibitors will represent a potential breakthrough in the fight against AD. In the pursuit of designing novel dual inhibitors, we explored molecular docking and dynamics analyses of tacrine and amantadine uredio-linked amide analogs such as GSK-3β and AChE dual inhibitors for curtailing AD. Tacrine and adamantine are the FDA-approved drugs that were structurally modified to design and develop novel drug candidates that may demonstrate concurrently dual selectivity towards GSK-3β and AChE.

Methods: In the following study, molecular docking was executed by employing AutoDock Vina, and molecular dynamics and ADMET predictions were made using Desmond, Qikprop modules of Schrödinger.

Results: Our findings revealed that compounds DST2 and DST11 exhibited remarkable molecular interactions with active sites of GSK-3β and AChE, respectively. These compounds effectively interacted with key amino acids, namely Lys85, Val135, Asp200, and Phe295, resulting in highly favourable docking energies of -9.7 and -12.7 kcal/mol. Furthermore, through molecular dynamics simulations spanning a trajectory of 100 ns, we confirmed the stability of ligands DST2 and DST11 within the active cavities of GSK-3β and AChE. The compounds exhibiting the most promising docking results also demonstrated excellent ADMET profiles. Notably, DST21 displayed an outstanding human oral absorption rate of 76.358%, surpassing the absorption rates of other molecules.

Conclusion: Overall, our in-silico studies revealed that the designed molecules showed potential as novel anti-Alzheimer agents capable of inhibiting both GSK-3β and AChE simultaneously. So, in the future, the designing and development of dual inhibitors will harbinger a new era of drug design in AD treatment.

Keywords: Alzheimer’s disease, Molecular docking, Molecular dynamics, GSK-3β, AChE, Donepezil.

« Previous
Graphical Abstract
[1]
Breijyeh, Z.; Karaman, R. Comprehensive review on alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[2]
Kumar, A.; Singh, A.; Ekavali A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[3]
Atilla-Gokcumen, G.E.; Di Costanzo, L.; Meggers, E. Structure of anticancer ruthenium half-sandwich complex bound to glycogen synthase kinase 3β. J. Biol. Inorg. Chem., 2011, 16(1), 45-50.
[http://dx.doi.org/10.1007/s00775-010-0699-x] [PMID: 20821241]
[4]
Balasubramaniam, M.; Mainali, N.; Bowroju, S.K.; Atluri, P.; Penthala, N.R.; Ayyadevera, S.; Crooks, P.A.; Shmookler Reis, R.J. Structural modeling of GSK3β implicates the inactive (DFG-out) conformation as the target bound by TDZD analogs. Sci. Rep., 2020, 10(1), 18326.
[http://dx.doi.org/10.1038/s41598-020-75020-w] [PMID: 33110096]
[5]
Toral-Rios, D.; Pichardo-Rojas, P.S.; Alonso-Vanegas, M.; Campos-Peña, V. GSK3β and tau protein in alzheimer’s disease and epilepsy. Front. Cell. Neurosci., 2020, 14, 19.
[http://dx.doi.org/10.3389/fncel.2020.00019] [PMID: 32256316]
[6]
Jiang, X.Y.; Chen, T.K.; Zhou, J.T.; He, S.Y.; Yang, H.Y.; Chen, Y.; Qu, W.; Feng, F.; Sun, H.P. Dual GSK-3β/AChE inhibitors as a new strategy for multitargeting anti-alzheimer’s disease drug discovery. ACS Med. Chem. Lett., 2018, 9(3), 171-176.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00463] [PMID: 29541355]
[7]
Jiang, X.; Wang, Y.; Liu, C.; Xing, C.; Wang, Y.; Lyu, W.; Wang, S.; Li, Q.; Chen, T.; Chen, Y.; Feng, F.; Liu, W.; Sun, H. Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer’s disease. Bioorg. Med. Chem., 2021, 30, 115940.
[http://dx.doi.org/10.1016/j.bmc.2020.115940] [PMID: 33340937]
[8]
Wu, W.Y.; Dai, Y.C.; Li, N.G.; Dong, Z.X.; Gu, T.; Shi, Z.H.; Xue, X.; Tang, Y.P.; Duan, J.A. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 572-587.
[http://dx.doi.org/10.1080/14756366.2016.1210139] [PMID: 28133981]
[9]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[10]
Sivaprakasam, P.; Han, X.; Civiello, R.L.; Jacutin-Porte, S.; Kish, K.; Pokross, M.; Lewis, H.A.; Ahmed, N.; Szapiel, N.; Newitt, J.A.; Baldwin, E.T.; Xiao, H.; Krause, C.M.; Park, H.; Nophsker, M.; Lippy, J.S.; Burton, C.R.; Langley, D.R.; Macor, J.E.; Dubowchik, G.M. Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg. Med. Chem. Lett., 2015, 25(9), 1856-1863.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.046] [PMID: 25845281]
[11]
Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem., 2012, 55(22), 10282-10286.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[12]
Guda, R.; Kumar, G.; Korra, R.; Balaji, S.; Dayakar, G.; Palabindela, R.; Myadaraveni, P.; Yellu, N.R.; Kasula, M. EGFR, HER2 target based molecular docking analysis, in vitro screening of 2, 4, 5-trisubstituted imidazole derivatives as potential anti-oxidant and cytotoxic agents. J. Photochem. Photobiol. B, 2017, 176, 69-80.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.09.010] [PMID: 28964888]
[13]
Prabhavathi, H.; Dasegowda, K.R.; Renukananda, K.H.; Karunakar, P.; Lingaraju, K.; Raja Naika, H. Molecular docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents. J. Biomol. Struct. Dyn., 2022, 40(10), 4713-4724.
[http://dx.doi.org/10.1080/07391102.2020.1861982] [PMID: 33345701]
[14]
Anantram, A.; Kundaikar, H.; Degani, M.; Prabhu, A. Molecular dynamic simulations on an inhibitor of anti-apoptotic Bcl-2 proteins for insights into its interaction mechanism for anti-cancer activity. J. Biomol. Struct. Dyn., 2019, 37(12), 3109-3121.
[http://dx.doi.org/10.1080/07391102.2018.1508371] [PMID: 30526410]
[15]
Ivanova, L.; Tammiku-Taul, J.; García-Sosa, A.T.; Sidorova, Y.; Saarma, M.; Karelson, M. Molecular dynamics simulations of the interactions between glial cell line-derived neurotrophic factor family receptor gfrα1 and small-molecule ligands. ACS Omega, 2018, 3(9), 11407-11414.
[http://dx.doi.org/10.1021/acsomega.8b01524] [PMID: 30320260]
[16]
Kundaikar, H.S.; Degani, M.S. Insights into the interaction mechanism of ligands with A β 42 based on molecular dynamics simulations and mechanics: Implications of role of common binding site in drug design for alzheimer’s disease. Chem. Biol. Drug Des., 2015, 86(4), 805-812.
[http://dx.doi.org/10.1111/cbdd.12555] [PMID: 25763767]
[17]
Alandijany, T.A.; El-Daly, M.M.; Tolah, A.M.; Bajrai, L.H.; Khateb, A.M.; Alsaady, I.M.; Altwaim, S.A.; Dubey, A.; Dwivedi, V.D.; Azhar, E.I. Investigating the mechanism of action of anti-dengue compounds as potential binders of zika virus RNA-dependent RNA polymerase. Viruses, 2023, 15(7), 1501.
[http://dx.doi.org/10.3390/v15071501] [PMID: 37515188]
[18]
Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 2013, 2(1), 353.
[http://dx.doi.org/10.1186/2193-1801-2-353] [PMID: 23961417]
[19]
Dajani, R.; Fraser, E.; Roe, S.M.; Young, N.; Good, V.; Dale, T.C.; Pearl, L.H. Crystal structure of glycogen synthase kinase 3 β: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell, 2001, 105(6), 721-732.
[http://dx.doi.org/10.1016/S0092-8674(01)00374-9] [PMID: 11440715]
[20]
Krishnankutty, A.; Kimura, T.; Saito, T.; Aoyagi, K.; Asada, A.; Takahashi, S.I.; Ando, K.; Ohara-Imaizumi, M.; Ishiguro, K.; Hisanaga, S. in vivo regulation of glycogen synthase kinase 3β activity in neurons and brains. Sci. Rep., 2017, 7(1), 8602.
[http://dx.doi.org/10.1038/s41598-017-09239-5] [PMID: 28819213]
[21]
Xu, Y.; Cheng, S.; Sussman, J.; Silman, I.; Jiang, H. Computational studies on acetylcholinesterases. Molecules, 2017, 22(8), 1324.
[http://dx.doi.org/10.3390/molecules22081324] [PMID: 28796192]
[22]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[http://dx.doi.org/10.1016/j.cbi.2010.01.042] [PMID: 20138030]
[23]
Gerlits, O.; Ho, K.Y.; Cheng, X.; Blumenthal, D.; Taylor, P.; Kovalevsky, A.; Radić, Z. A new crystal form of human acetylcholinesterase for exploratory room-temperature crystallography studies. Chem. Biol. Interact., 2019, 309, 108698.
[http://dx.doi.org/10.1016/j.cbi.2019.06.011] [PMID: 31176713]
[24]
Silman, I.; Sussman, J.L. Recent developments in structural studies on acetylcholinesterase. J. Neurochem., 2017, 142(S2)(Suppl. 2), 19-25.
[http://dx.doi.org/10.1111/jnc.13992] [PMID: 28503857]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy