Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Development and Evaluation of PEG-gelatin-based Microparticles to Enhance the Oral Delivery of Insulin

Author(s): John Alfa, Amadi Ben, Eduardo Buxaderas, Paul Akpa, Abdulmumin Hanifah, Okolo Martin-Luther Oseni, Franklin C. Kenechukwu, Momoh A. Mumuni* and David Diaz Diaz*

Volume 30, Issue 24, 2024

Published on: 05 June, 2024

Page: [1939 - 1948] Pages: 10

DOI: 10.2174/0113816128309449240527053640

conference banner
Abstract

Background: Diabetes mellitus is a global disease identified by hyperglycemia due to defects in insulin secretion, insulin action, or both.

Objective: The main objective of this research was to evaluate the ability of gelatinized Poly(ethylene glycol) (PEG) microparticles to be used as carriers for oral insulin delivery via double emulsion preparation.

Methods: Five different batches of the formulation consisting of gelatin:PEG were prepared as follows: 0:1 (W1), 1:0 (W2), 1:1 (W3), 1:3 (W4), and 3:1 (W5). The prepared microparticles (from insulin-loaded batches) had particle sizes ranging from 19.5 ± 0.32-23.9 ± 0.22 μm and encapsulation and loading capacities ranging from 78.8 ± 0.24-88.9 ± 0.95 and 22.2 ± 0.96-29.7 ± 0.86%, respectively. The minimum and maximum in vitro release rates were 8.0 and 66.0%, respectively, for batches W1 and W2 at 8 h.

Results: Insulin-loaded MPs induced a significant decrease in glucose levels, with a reduction from 100 to 33.35% in batch W5 at 9 h compared to that of subcutaneous insulin (100 to 22.63%). A liver function study showed that the formulation caused no obvious toxicity to the experimental rats.

Conclusion: Gelatinized PEG-based microparticles as insulin delivery systems may open a new window into the development of oral insulin for diabetic treatment.

Keywords: Gelatin:PEG, diabetes, toxicity, in vitro release rates, microparticles, oral delivery.

« Previous
[1]
Hong J, Surapaneni A, Daya N, et al. Retinopathy and risk of kidney disease in persons with diabetes. Kidney Med 2021; 3(5): 808-815.e1.
[http://dx.doi.org/10.1016/j.xkme.2021.04.018] [PMID: 34693260]
[2]
Zimmet PZ. Diabetes and its drivers: The largest epidemic in human history? Clin Diabetes Endocrinol 2017; 3(1): 1.
[http://dx.doi.org/10.1186/s40842-016-0039-3] [PMID: 28702255]
[3]
Misra A, Gopalan H, Jayawardena R, et al. Diabetes in developing countries. J Diabetes 2019; 11(7): 522-39.
[http://dx.doi.org/10.1111/1753-0407.12913] [PMID: 30864190]
[4]
a) Todd JA. Etiology of type 1 diabetes. Immunity 2010; 32(4): 457-67.
[http://dx.doi.org/10.1016/j.immuni.2010.04.001] [PMID: 20412756];
b) Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464(7293): 1293-300.
[http://dx.doi.org/10.1038/nature08933] [PMID: 20432533]
[5]
DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1(1): 15019.
[http://dx.doi.org/10.1038/nrdp.2015.19] [PMID: 27189025]
[6]
Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12(4): 556-69.
[http://dx.doi.org/10.1016/j.jpha.2022.04.001] [PMID: 36105173]
[7]
Frokjaer S, Otzen DE. Protein drug stability: A formulation challenge. Nat Rev Drug Discov 2005; 4(4): 298-306.
[http://dx.doi.org/10.1038/nrd1695] [PMID: 15803194]
[8]
Meneguin AB, Silvestre ALP, Sposito L, et al. The role of polysaccharides from natural resources to design oral insulin micro and nanoparticles intended for the treatment of Diabetes mellitus: A review. Carbohydr Polym 2021; 256: 117504.
[http://dx.doi.org/10.1016/j.carbpol.2020.117504] [PMID: 33483027]
[9]
Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov 2020; 19(4): 277-89.
[http://dx.doi.org/10.1038/s41573-019-0053-0] [PMID: 31848464]
[10]
Ji K, Yao Y, Wei X, et al. Material design for oral insulin delivery. Med-X 2023; 1(1): 7.
[http://dx.doi.org/10.1007/s44258-023-00006-y] [PMID: 37485249]
[11]
Krauland AH, Guggi D, Bernkop-Schnürch A. Oral insulin delivery: The potential of thiolated chitosan-insulin tablets on non-diabetic rats. J Control Release 2004; 95(3): 547-55.
[http://dx.doi.org/10.1016/j.jconrel.2003.12.017] [PMID: 15023465]
[12]
Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm 2010; 76(1): 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2010.04.008] [PMID: 20420904]
[13]
Momoh MA, Emmanuel OC, Onyeto AC, et al. Preparation of snail cyst and PEG-4000 composite carriers via PEGylation for oral delivery of insulin: An in vitro and in vivo evaluation. Trop J Pharm Res 2021; 18(5): 919-26.
[http://dx.doi.org/10.4314/tjpr.v18i5.2]
[14]
Momoh MA, Adedokun MO, Adikwu MU, Kenechukwu FC, Ibezim EC, Ugwoke EE. Design, characterization and evaluation of PEGylated-mucin for oral delivery of metformin hydrochloride. Afr J Pharm Pharmacol 2013; 7(7): 347-55.
[http://dx.doi.org/10.5897/AJPP12.488]
[15]
Mumuni MA, Kenechukwu FC, Ernest OC, et al. Surface-modified mucoadhesive microparticles as a controlled release system for oral delivery of insulin. Heliyon 2019; 5(9): e02366.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02366] [PMID: 31535040]
[16]
Kenechukwu FC, Attama AA, Ibezim EC, et al. Surface-modified mucoadhesive microgels as a controlled release system for miconazole nitrate to improve localized treatment of vulvovaginal candidiasis. Eur J Pharm Sci 2018; 111: 358-75.
[http://dx.doi.org/10.1016/j.ejps.2017.10.002] [PMID: 28986195]
[17]
Erel G, Kotmakçı M, Akbaba H, Sözer Karadağlı S, Kantarcı AG. Nanoencapsulated chitosan nanoparticles in emulsion-based oral delivery system: In vitro and in vivo evaluation of insulin loaded formulation. J Drug Deliv Sci Technol 2016; 36: 161-7.
[http://dx.doi.org/10.1016/j.jddst.2016.10.010]
[18]
Ma Z, Lim TM, Lim LY. Pharmacological activity of peroral chitosan–insulin nanoparticles in diabetic rats. Int J Pharm 2005; 293(1-2): 271-80.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.025] [PMID: 15778065]
[19]
Simon-Giavarotti KA, Giavarotti L, Gomes LF, et al. Enhancement of lindane-induced liver oxidative stress and hepatotoxicity by thyroid hormone is reduced by gadolinium chloride. Free Radic Res 2002; 36(10): 1033-9.
[http://dx.doi.org/10.1080/1071576021000028280] [PMID: 12516873]
[20]
Kasarala G, Tillmann HL. Standard liver tests. Clin Liver Dis 2016; 8(1): 13-8.
[http://dx.doi.org/10.1002/cld.562] [PMID: 31041056]
[21]
Rosas PC, Nagaraja GM, Kaur P, et al. Hsp72 (HSPA1A) prevents human islet amyloid polypeptide aggregation and toxicity: A new approach for type 2 diabetes treatment. PLoS One 2016; 11(3): e0149409.
[http://dx.doi.org/10.1371/journal.pone.0149409] [PMID: 26960140]
[22]
Ibraheem D, Elaissari A, Fessi H. Administration strategies for proteins and peptides. Int J Pharm 2014; 477(1-2): 578-89.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.059] [PMID: 25445533]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy