Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Personalized Approaches to Cardiovascular Disease: Insights into FDA-Approved Interventions and Clinical Pharmacogenetics

Author(s): Ramin Raoufinia, Hamid Reza Rahimi, Mahla Abbaszadeh, Aida Gholoobi, Ehsan Saburi, Farhad Fakoor, Hawraa Ibrahim Alshakarchi, Ibrahim Saeed Gataa, Seyed Mahdi Hassanian, Gordon A. Ferns, Majid Khazaei and Amir Avan*

Volume 30, Issue 21, 2024

Published on: 10 May, 2024

Page: [1667 - 1680] Pages: 14

DOI: 10.2174/0113816128309440240427102903

Price: $65

conference banner
Abstract

Cardiovascular diseases place a considerable burden on global health systems, contributing to high rates of morbidity and mortality. Current approaches to detecting and treating Cardiovascular Diseases (CVD) often focus on symptomatic management and are initiated after the disease has progressed. Personalized medicine, which tailors medical interventions to individual characteristics, has emerged as a promising strategy for improving cardiovascular health outcomes. This article provides an overview of personalized medicine in the context of CVD, with a specific emphasis on FDA-approved interventions. It explores the potential benefits, challenges, and future directions of personalized medicine in cardiovascular disorders. By reviewing the advancements in this field, this article underscores the importance of early detection, intervention, and innovative treatment options in reducing the impact of CVD on individuals and society.

Keywords: Personalized medicine, cardiovascular diseases, FDA-approved interventions, clinical pharmacognetics, quality of life, heart conditions.

[1]
Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health 2021; 21(1): 401.
[http://dx.doi.org/10.1186/s12889-021-10429-0] [PMID: 33632204]
[2]
Coronado F, Melvin SC, Bell RA, Zhao G. Global responses to prevent, manage, and control cardiovascular diseases. Prev Chronic Dis 2022; 19: 220347.
[http://dx.doi.org/10.5888/pcd19.220347] [PMID: 36480801]
[3]
Taverne YJ, Bogers AJ, Duncker DJ, Merkus D. Reactive oxygen species and the cardiovascular system. Oxidative medicine and cellular longevity 2013; 2013.
[http://dx.doi.org/10.1155/2013/862423]
[4]
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease. Biomedicines 2022; 10(8): 1938.
[http://dx.doi.org/10.3390/biomedicines10081938] [PMID: 36009488]
[5]
Roberts JA, Rainbow RD, Sharma P. Mitigation of cardiovascular disease and toxicity through NRF2 signalling. Int J Mol Sci 2023; 24(7): 6723.
[http://dx.doi.org/10.3390/ijms24076723] [PMID: 37047696]
[6]
Zaiou M, Amri EH. Cardiovascular pharmacogenetics: A promise for genomically-guided therapy and personalized medicine. Clin Genet 2017; 91(3): 355-70.
[http://dx.doi.org/10.1111/cge.12881] [PMID: 27714756]
[7]
Hayıroğlu Mİ. Telemedicine: Current concepts and future perceptions. Anatol J Cardiol 2019; 22(S2): 21-2.
[PMID: 31670712]
[8]
Krishnan A, Fuska M, Dixon R, Sable CA. The evolution of pediatric tele-echocardiography: 15-year experience of over 10,000 transmissions. Telemed J E Health 2014; 20(8): 681-6.
[http://dx.doi.org/10.1089/tmj.2013.0279] [PMID: 24841367]
[9]
Marcolino MS, Maia LM, Oliveira JAQ, et al. Impact of telemedicine interventions on mortality in patients with acute myocardial infarction: A systematic review and meta-analysis. Heart 2019; 105(19): 1479-86.
[http://dx.doi.org/10.1136/heartjnl-2018-314539] [PMID: 31253696]
[10]
Marcolino MS, Santos TMM, Stefanelli FC, et al. Cardiovascular emergencies in primary care: An observational retrospective study of a large-scale telecardiology service. Sao Paulo Med J 2017; 135(5): 481-7.
[http://dx.doi.org/10.1590/1516-3180.2017.0090110617] [PMID: 29116311]
[11]
Klersy C, De Silvestri A, Gabutti G, Regoli F, Auricchio A. A meta-analysis of remote monitoring of heart failure patients. J Am Coll Cardiol 2009; 54(18): 1683-94.
[http://dx.doi.org/10.1016/j.jacc.2009.08.017] [PMID: 19850208]
[12]
Colet CJ, Enjuanes C, Rotellar VJM, et al. Impact on clinical events and healthcare costs of adding telemedicine to multidisciplinary disease management programmes for heart failure: Results of a randomized controlled trial. J Telemed Telecare 2016; 22(5): 282-95.
[http://dx.doi.org/10.1177/1357633X15600583] [PMID: 26350543]
[13]
Moyano FA, Maroto VI, Jimeno LW. Telehealth. N Engl J Med 2018; 378(4): 401-2.
[http://dx.doi.org/10.1056/NEJMc1715239] [PMID: 29365293]
[14]
Brunetti ND, De Gennaro L, Correale M, et al. Pre-hospital electrocardiogram triage with telemedicine near halves time to treatment in STEMI: A meta-analysis and meta-regression analysis of non-randomized studies. Int J Cardiol 2017; 232: 5-11.
[http://dx.doi.org/10.1016/j.ijcard.2017.01.055] [PMID: 28089154]
[15]
Clemmensen P, Schoos MM, Lindholm MG, et al. Pre-hospital diagnosis and transfer of patients with acute myocardial infarction-a decade long experience from one of Europe’s largest STEMI networks. J Electrocardiol 2013; 46(6): 546-52.
[http://dx.doi.org/10.1016/j.jelectrocard.2013.07.004] [PMID: 23938107]
[16]
Melholt C, Joensson K, Spindler H, et al. Cardiac patients’ experiences with a telerehabilitation web portal: Implications for eHealth literacy. Patient Educ Couns 2018; 101(5): 854-61.
[http://dx.doi.org/10.1016/j.pec.2017.12.017] [PMID: 29305064]
[17]
Hwang R, Mandrusiak A, Morris NR, Peters R, Korczyk D, Russell T. Assessing functional exercise capacity using telehealth: Is it valid and reliable in patients with chronic heart failure? J Telemed Telecare 2017; 23(2): 225-32.
[http://dx.doi.org/10.1177/1357633X16634258] [PMID: 26915366]
[18]
Wood DA, Kotseva K, Connolly S, et al. Nurse-coordinated multidisciplinary, family-based cardiovascular disease prevention programme (EUROACTION) for patients with coronary heart disease and asymptomatic individuals at high risk of cardiovascular disease: A paired, cluster-randomised controlled trial. Lancet 2008; 371(9629): 1999-2012.
[http://dx.doi.org/10.1016/S0140-6736(08)60868-5] [PMID: 18555911]
[19]
Patel A, Praveen D, Maharani A, et al. Association of multifaceted mobile technology-enabled primary care intervention with cardiovascular disease risk management in rural indonesia. JAMA Cardiol 2019; 4(10): 978-86.
[http://dx.doi.org/10.1001/jamacardio.2019.2974] [PMID: 31461123]
[20]
Tang YH, Chong MC, Chua YP, Chui PL, Tang LY, Rahmat N. The effect of mobile messaging apps on cardiac patient knowledge of coronary artery disease risk factors and adherence to a healthy lifestyle. J Clin Nurs 2018; 27(23-24): 4311-20.
[http://dx.doi.org/10.1111/jocn.14538] [PMID: 29777560]
[21]
Koole MAC, Kauw D, Winter MM, et al. First real-world experience with mobile health telemonitoring in adult patients with congenital heart disease. Neth Heart J 2019; 27(1): 30-7.
[http://dx.doi.org/10.1007/s12471-018-1201-6] [PMID: 30488380]
[22]
Wongvibulsin S, Martin SS, Steinhubl SR, Muse ED. Connected health technology for cardiovascular disease prevention and management. Curr Treat Options Cardiovasc Med 2019; 21(6): 29.
[http://dx.doi.org/10.1007/s11936-019-0729-0] [PMID: 31104157]
[23]
Tekkeşin Aİ, Hayıroğlu Mİ, Çinier G, et al. Lifestyle intervention using mobile technology and smart devices in patients with high cardiovascular risk: A pragmatic randomised clinical trial. Atherosclerosis 2021; 319: 21-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.12.020] [PMID: 33465658]
[24]
Hayıroğlu Mİ, Çınar T, Çinier G, et al. The effect of 1-year mean step count on the change in the atherosclerotic cardiovascular disease risk calculation in patients with high cardiovascular risk: A sub-study of the LIGHT randomized clinical trial. Kardiol Pol 2021; 79(10): 1140-2.
[http://dx.doi.org/10.33963/KP.a2021.0108] [PMID: 34506630]
[25]
Gala D, Behl H, Shah M, Makaryus AN. The role of artificial intelligence in improving patient outcomes and future of healthcare delivery in cardiology: A narrative review of the literature. Healthcare 2024; 12(4): 481.
[http://dx.doi.org/10.3390/healthcare12040481] [PMID: 38391856]
[26]
Poalelungi DG, Musat CL, Fulga A, et al. Advancing patient care: How artificial intelligence is transforming healthcare. J Pers Med 2023; 13(8): 1214.
[http://dx.doi.org/10.3390/jpm13081214] [PMID: 37623465]
[27]
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18(8): 500-10.
[http://dx.doi.org/10.1038/s41568-018-0016-5] [PMID: 29777175]
[28]
Hossain E, Rana R, Higgins N, et al. Natural language processing in electronic health records in relation to healthcare decision-making: A systematic review. Comput Biol Med 2023; 155: 106649.
[http://dx.doi.org/10.1016/j.compbiomed.2023.106649] [PMID: 36805219]
[29]
Nadkarni PM, Machado OL, Chapman WW. Natural language processing: An introduction. J Am Med Inform Assoc 2011; 18(5): 544-51.
[http://dx.doi.org/10.1136/amiajnl-2011-000464] [PMID: 21846786]
[30]
Nedadur R, Wang B, Yanagawa B. The cardiac surgeon’s guide to artificial intelligence. Curr Opin Cardiol 2021; 36(5): 637-43.
[http://dx.doi.org/10.1097/HCO.0000000000000888] [PMID: 34397469]
[31]
Doulamis IP, Spartalis E, Machairas N, et al. The role of robotics in cardiac surgery: A systematic review. J Robot Surg 2019; 13(1): 41-52.
[http://dx.doi.org/10.1007/s11701-018-0875-5] [PMID: 30255360]
[32]
Kwan AC, Salto G, Cheng S, Ouyang D. Artificial intelligence in computer vision: Cardiac MRI and multimodality imaging segmentation. Curr Cardiovasc Risk Rep 2021; 15(9): 18.
[http://dx.doi.org/10.1007/s12170-021-00678-4] [PMID: 35693045]
[33]
Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging. J Am Coll Cardiol 2019; 73(11): 1317-35.
[http://dx.doi.org/10.1016/j.jacc.2018.12.054] [PMID: 30898208]
[34]
Luneski A, Konstantinidis E, Bamidis PD. Affective medicine. Methods Inf Med 2010; 49(3): 207-18.
[http://dx.doi.org/10.3414/ME0617] [PMID: 20411209]
[35]
Dinari F, Bahaadinbeigy K, Bassiri S, Mashouf E, Bastaminejad S, Moulaei K. Benefits, barriers, and facilitators of using speech recognition technology in nursing documentation and reporting: A cross-sectional study. Health Sci Rep 2023; 6(6): e1330.
[http://dx.doi.org/10.1002/hsr2.1330] [PMID: 37313530]
[36]
Sotirakos S, Fouda B, Razif MNA, et al. Harnessing artificial intelligence in cardiac rehabilitation, a systematic review. Future Cardiol 2022; 18(2): 154-64.
[http://dx.doi.org/10.2217/fca-2021-0010] [PMID: 33860679]
[37]
Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ 2023; 23(1): 689.
[http://dx.doi.org/10.1186/s12909-023-04698-z] [PMID: 37740191]
[38]
Jeyaraman M, Balaji S, Jeyaraman N, Yadav S. Unraveling the ethical enigma: Artificial intelligence in healthcare. Cureus 2023; 15(8): e43262.
[http://dx.doi.org/10.7759/cureus.43262] [PMID: 37692617]
[39]
Shetty MK, Kunal S, Girish MP, et al. Machine learning based model for risk prediction after ST-Elevation myocardial infarction: Insights from the North India ST elevation myocardial infarction (NORIN-STEMI) registry. Int J Cardiol 2022; 362: 6-13.
[http://dx.doi.org/10.1016/j.ijcard.2022.05.023] [PMID: 35577162]
[40]
Bai Z, Lu J, Li T, et al. Clinical feature-based machine learning model for 1-year mortality risk prediction of ST-segment elevation myocardial infarction in patients with hyperuricemia: A retrospective study. Comput Math Methods Med 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/7252280] [PMID: 34285708]
[41]
Backhaus SJ, Aldehayat H, Kowallick JT, et al. Artificial intelligence fully automated myocardial strain quantification for risk stratification following acute myocardial infarction. Sci Rep 2022; 12(1): 12220.
[http://dx.doi.org/10.1038/s41598-022-16228-w] [PMID: 35851282]
[42]
Wolterink JM, Leiner T, de Vos BD, et al. An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orCaScore framework. Med Phys 2016; 43(5): 2361-73.
[http://dx.doi.org/10.1118/1.4945696] [PMID: 27147348]
[43]
Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 2016; 34: 123-36.
[http://dx.doi.org/10.1016/j.media.2016.04.004] [PMID: 27138584]
[44]
Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837-47.
[http://dx.doi.org/10.1161/01.CIR.97.18.1837] [PMID: 9603539]
[45]
Chang SN, Tseng YH, Chen JJ, et al. An artificial intelligence-enabled ECG algorithm for identifying ventricular premature contraction during sinus rhythm. Eur J Med Res 2022; 27(1): 289.
[http://dx.doi.org/10.1186/s40001-022-00929-z] [PMID: 36517841]
[46]
Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J 2021; 42(38): 3904-16.
[http://dx.doi.org/10.1093/eurheartj/ehab544] [PMID: 34392353]
[47]
Javaid A, Zghyer F, Kim C, et al. Medicine 2032: The future of cardiovascular disease prevention with machine learning and digital health technology. American J Preventive Cardiology 2022; 12: 100379.
[http://dx.doi.org/10.1016/j.ajpc.2022.100379] [PMID: 36090536]
[48]
Van Mens K, Lokkerbol J, Wijnen B, Janssen R, de Lange R, Tiemens B. Predicting undesired treatment outcomes with machine learning in mental health care: Multisite study. JMIR Med Inform 2023; 11: v11i1e44322.
[http://dx.doi.org/10.2196/44322] [PMID: 37623374]
[49]
Ahmed MU, Saaem I, Wu PC, Brown AS. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit Rev Biotechnol 2014; 34(2): 180-96.
[http://dx.doi.org/10.3109/07388551.2013.778228] [PMID: 23607309]
[50]
Ho D, Quake SR, McCabe ERB, et al. Enabling technologies for personalized and precision medicine. Trends Biotechnol 2020; 38(5): 497-518.
[http://dx.doi.org/10.1016/j.tibtech.2019.12.021] [PMID: 31980301]
[51]
Chen CB, Hsu JS, Chen PL, et al. Combining panel-based next- generation sequencing and exome sequencing for genetic liver diseases. J Pediatr 2023; 258: 113408.
[http://dx.doi.org/10.1016/j.jpeds.2023.113408] [PMID: 37019333]
[52]
Goetz LH, Schork NJ. Personalized medicine: Motivation, challenges, and progress. Fertil Steril 2018; 109(6): 952-63.
[http://dx.doi.org/10.1016/j.fertnstert.2018.05.006] [PMID: 29935653]
[53]
Jørgensen JT. A challenging drug development process in the era of personalized medicine. Drug Discov Today 2011; 16(19-20): 891-7.
[http://dx.doi.org/10.1016/j.drudis.2011.09.010] [PMID: 21945860]
[54]
Aquilante C. Pharmacogenomics: The promise of personalized medicine. Denver, CO: University of Colorado 2007.
[55]
Braig ZV. Personalized medicine: From diagnostic to adaptive. Biomedical J 2022; 45(1): 132-42.
[56]
Chan IS, Ginsburg GS. Personalized medicine: Progress and promise. Annu Rev Genomics Hum Genet 2011; 12(1): 217-44.
[http://dx.doi.org/10.1146/annurev-genom-082410-101446] [PMID: 21721939]
[57]
Smith WD. Hippocrates. Harvard University Press 1994.
[58]
Aspinall MG, Hamermesh RG. Realizing the promise of personalized medicine. Harv Bus Rev 2007; 85(10): 108-117, 165.
[PMID: 17972499]
[59]
Miller PM, Grant D. The art and science of personalized medicine. Clin Pharmacol Ther 2007; 81(1): 311-5.
[60]
Spear BB, Chiozzi HM, Huff J. Clinical application of pharmacogenetics. Trends Mol Med 2001; 7(5): 201-4.
[http://dx.doi.org/10.1016/S1471-4914(01)01986-4] [PMID: 11325631]
[61]
Lunshof JE, Pirmohamed M, Gurwitz D. Personalized medicine: Decades away? Pharmacogenomics 2006; 7(2): 237-41.
[http://dx.doi.org/10.2217/14622416.7.2.237]
[62]
Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association studies. Nat Rev Methods Prim 2021; 1(1): 59.
[http://dx.doi.org/10.1038/s43586-021-00056-9]
[63]
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet 2019; 20(8): 467-84.
[http://dx.doi.org/10.1038/s41576-019-0127-1] [PMID: 31068683]
[64]
Lee MS, Flammer AJ, Lerman LO, Lerman A. Personalized medicine in cardiovascular diseases. Korean Circ J 2012; 42(9): 583-91.
[http://dx.doi.org/10.4070/kcj.2012.42.9.583] [PMID: 23091501]
[65]
Pun J. Personalized medicine in Canada: A survey of adoption and practice in oncology, cardiology and family medicine. BMJ Open 2011; 1(1): e000110.
[66]
Bates S. Progress towards personalized medicine. Drug Discov Today 2010; 15(3-4): 115-20.
[http://dx.doi.org/10.1016/j.drudis.2009.11.001] [PMID: 19914397]
[67]
Wright CF, Kroese M. Evaluation of genetic tests for susceptibility to common complex diseases: Why, when and how? Hum Genet 2010; 127(2): 125-34.
[http://dx.doi.org/10.1007/s00439-009-0767-x] [PMID: 19936793]
[68]
Prasugrel.LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases 2012.
[69]
Bonney PA, Yim B, Brinjikji W, Walcott BP. Pharmacogenomic considerations for antiplatelet agents: The era of precision medicine in stroke prevention and neurointerventional practice. Mol Case Stud 2019; 5(2): a003731.
[http://dx.doi.org/10.1101/mcs.a003731] [PMID: 30936195]
[70]
Dogan Z, Yurtdas M, Bektasoglu G. Prasugrel-related hepatotoxicity. J Pak Med Assoc 2022; 72(11): 2295-7.
[PMID: 37013306]
[71]
Shah RP, Shafiq A, Hamza M, et al. Ticagrelor versus prasugrel in patients with acute coronary syndrome: A systematic review and meta-analysis. Am J Cardiol 2023; 207: 206-14.
[http://dx.doi.org/10.1016/j.amjcard.2023.08.117] [PMID: 37751668]
[72]
Xia P, He C, Chen L, et al. Efficacy and safety of prasugrel therapy for intracranial aneurysms with endovascular treatment: A meta-analysis. J Neurol Sci 2019; 397: 174-8.
[http://dx.doi.org/10.1016/j.jns.2019.01.005] [PMID: 30641247]
[73]
Nuding S, Schröder J, Presek P, et al. Reducing elevated heart rates in patients with multiple organ dysfunction syndrome with the if (funny channel current) inhibitor ivabradine. Shock 2018; 49(4): 402-11.
[http://dx.doi.org/10.1097/SHK.0000000000000992] [PMID: 28930912]
[74]
Reed M, Kerndt CC, Nicolas D. Ivabradine, in StatPearls. Treasure Island (FL).: StatPearls Publishing LLC. 2024.
[75]
DiFrancesco D, Camm JA. Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: A new therapeutic perspective in cardiovascular disease. Drugs 2004; 64(16): 1757-65.
[http://dx.doi.org/10.2165/00003495-200464160-00003] [PMID: 15301560]
[76]
Fox K, Ford I, Steg PG, Tendera M, Ferrari R. Ivabradine for patients with stable coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): A randomised, double-blind, placebo-controlled trial. Lancet 2008; 372(9641): 807-16.
[http://dx.doi.org/10.1016/S0140-6736(08)61170-8] [PMID: 18757088]
[77]
Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo- controlled study. Lancet 2010; 376(9744): 875-85.
[http://dx.doi.org/10.1016/S0140-6736(10)61198-1] [PMID: 20801500]
[78]
Volterrani M, Cice G, Caminiti G, et al. Effect of Carvedilol, Ivabradine or their combination on exercise capacity in patients with heart failure (the CARVIVA HF trial). Int J Cardiol 2011; 151(2): 218-24.
[http://dx.doi.org/10.1016/j.ijcard.2011.06.098] [PMID: 21764469]
[79]
Ekman I, Chassany O, Komajda M, et al. Heart rate reduction with ivabradine and health related quality of life in patients with chronic heart failure: Results from the SHIFT study. Eur Heart J 2011; 32(19): 2395-404.
[http://dx.doi.org/10.1093/eurheartj/ehr343] [PMID: 21875859]
[80]
Reil JC, Tardif JC, Ford I, et al. Selective heart rate reduction with ivabradine unloads the left ventricle in heart failure patients. J Am Coll Cardiol 2013; 62(21): 1977-85.
[http://dx.doi.org/10.1016/j.jacc.2013.07.027] [PMID: 23933545]
[81]
Fox K, Ford I, Steg PG, Tardif JC, Tendera M, Ferrari R. Ivabradine in stable coronary artery disease without clinical heart failure. N Engl J Med 2014; 371(12): 1091-9.
[http://dx.doi.org/10.1056/NEJMoa1406430] [PMID: 25176136]
[82]
Legault MA, Sandoval J, Provost S, et al. A genetic model of ivabradine recapitulates results from randomized clinical trials. PLoS One 2020; 15(7): e0236193.
[http://dx.doi.org/10.1371/journal.pone.0236193] [PMID: 32692755]
[83]
Ponikowski P, Voors AA, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail 2016; 18(8): 891-975.
[http://dx.doi.org/10.1002/ejhf.592] [PMID: 27207191]
[84]
Brugada J, Katritsis D, Arbelo E. The task force for the management of patients with supraventricular tachycardia of the European society of cardiology (ESC). 2019 ESC guidelines for the management of patients with supraventricular tachycardia. Eur Heart J 2020; 41: 655-720.
[http://dx.doi.org/10.1093/eurheartj/ehz467] [PMID: 31504425]
[85]
Krishna MR, Kunde MF, Kumar RK, Balaji S. Ivabradine in post- operative junctional ectopic tachycardia (JET): Breaking new ground. Pediatr Cardiol 2019; 40(6): 1284-8.
[http://dx.doi.org/10.1007/s00246-019-02149-5] [PMID: 31317219]
[86]
Custodis F, Baumhäkel M, Schlimmer N, et al. Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 2008; 117(18): 2377-87.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.746537] [PMID: 18443241]
[87]
Rodriguez DA, Fard SS, Gonzalez AP, et al. Randomised, double-blind, placebo-controlled trial of ivabradine in patients with acute coronary syndrome: Effects of the If current inhibitor ivabradine on reduction of inflammation markers in patients with acute coronary syndrome-RIVIERA trial study design and rationale. Cardiovasc Drugs Ther 2009; 23(3): 243-7.
[http://dx.doi.org/10.1007/s10557-009-6164-9] [PMID: 19229603]
[88]
Cacciapuoti F, Magro V, Caturano M, Lama D, Cacciapuoti F. The role of ivabradine in diastolic heart failure with preserved ejection fraction. A doppler-echocardiographic study. J Cardiovasc Echogr 2017; 27(4): 126-31.
[http://dx.doi.org/10.4103/jcecho.jcecho_6_17] [PMID: 29142810]
[89]
Gammone MA, Riccioni G, Massari F, D’Orazio N. Beneficial effect of ivabradine against cardiovascular diseases. Front Biosci 2020; 12(1): 161-72.
[http://dx.doi.org/10.2741/s545] [PMID: 32114453]
[90]
Dallapellegrina L, Sciatti E, Vizzardi E. Ivabradine and endothelium: An update. Ther Adv Cardiovasc Dis 2020; 14: 1753944720934937.
[http://dx.doi.org/10.1177/1753944720934937] [PMID: 32611276]
[91]
Kabil MF, Abo Dena AS, Sherbiny EIM. Profiles of drug substances, excipients and related methodology. Ticagrelor, Chapter 3, 2022; 47: 91-111.
[http://dx.doi.org/10.1016/bs.podrm.2021.10.003] [PMID: 35396017]
[92]
Ticagrelor.LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases 2012.
[93]
Knuuti J, Wijns W, Brentano FC. Anti-ischaemic medication must be adapted to each patient’s characteristics and preferences in patients with chronic coronary syndromes. Eur Heart J 2020; 41(3): 480-1.
[http://dx.doi.org/10.1093/eurheartj/ehz901] [PMID: 31883326]
[94]
Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost 2015; 114(3): 449-58.
[PMID: 26293514]
[95]
Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest 2004; 113(3): 340-5.
[http://dx.doi.org/10.1172/JCI20986] [PMID: 14755328]
[96]
Kim S, Kunapuli SP. P2Y12 receptor in platelet activation. Platelets 2011; 22(1): 54-8.
[http://dx.doi.org/10.3109/09537104.2010.497231] [PMID: 21231822]
[97]
Léon C, Hechler B, Freund M, et al. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 1999; 104(12): 1731-7.
[http://dx.doi.org/10.1172/JCI8399] [PMID: 10606627]
[98]
Jin J, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 1998; 95(14): 8070-4.
[http://dx.doi.org/10.1073/pnas.95.14.8070] [PMID: 9653141]
[99]
Sanderson NC, Parker WAE, Storey RF. Ticagrelor: Clinical development and future potential. Rev Cardiovasc Med 2021; 22(2): 373-94.
[http://dx.doi.org/10.31083/j.rcm2202044] [PMID: 34258905]
[100]
Ahmad S, Storey RF. Development and clinical use of prasugrel and ticagrelor. Curr Pharm Des 2012; 18(33): 5240-60.
[http://dx.doi.org/10.2174/138161212803251989] [PMID: 22724412]
[101]
Teng R, Oliver S, Hayes MA, Butler K. Absorption, distribution, metabolism, and excretion of ticagrelor in healthy subjects. Drug Metab Dispos 2010; 38(9): 1514-21.
[http://dx.doi.org/10.1124/dmd.110.032250] [PMID: 20551239]
[102]
Van Giezen JJJ, Nilsson L, Berntsson P, et al. Ticagrelor binds to human P2Y12 independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J Thromb Haemost 2009; 7(9): 1556-65.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03527.x] [PMID: 19552634]
[103]
Parker WAE, Storey RF. Ticagrelor: Agonising over its mechanisms of action. Blood 2016; 128(23): 2595-7.
[http://dx.doi.org/10.1182/blood-2016-10-743930] [PMID: 27932327]
[104]
Nylander S, Femia EA, Scavone M, et al. Ticagrelor inhibits human platelet aggregation via adenosine in addition to P2Y12 antagonism. J Thromb Haemost 2013; 11(10): 1867-76.
[http://dx.doi.org/10.1111/jth.12360] [PMID: 23890048]
[105]
Wittfeldt A, Emanuelsson H, Wognsen BG, et al. Ticagrelor enhances adenosine-induced coronary vasodilatory responses in humans. J Am Coll Cardiol 2013; 61(7): 723-7.
[http://dx.doi.org/10.1016/j.jacc.2012.11.032] [PMID: 23312702]
[106]
Alsharif KF, Thomas MR, Judge HM, et al. Ticagrelor potentiates adenosine-induced stimulation of neutrophil chemotaxis and phagocytosis. Vascul Pharmacol 2015; 71: 201-7.
[http://dx.doi.org/10.1016/j.vph.2015.02.006] [PMID: 25869515]
[107]
Nanhwan MK, Ling S, Kodakandla M, Nylander S, Ye Y, Birnbaum Y. Chronic treatment with ticagrelor limits myocardial infarct size: An adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol 2014; 34(9): 2078-85.
[http://dx.doi.org/10.1161/ATVBAHA.114.304002] [PMID: 25012137]
[108]
Alexopoulos D, Moulias A, Koutsogiannis N, et al. Differential effect of ticagrelor versus prasugrel on coronary blood flow velocity in patients with non-ST-elevation acute coronary syndrome undergoing percutaneous coronary intervention: An exploratory study. Circ Cardiovasc Interv 2013; 6(3): 277-83.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.113.000293] [PMID: 23735473]
[109]
Yang XM, Gadde S, Audia JP, Alvarez DF, Downey JM, Cohen MV. Ticagrelor does not protect isolated rat hearts, thus clouding its proposed cardioprotective role through ENT 1 in heart tissue. J Cardiovasc Pharmacol Ther 2019; 24(4): 371-6.
[http://dx.doi.org/10.1177/1074248419829169] [PMID: 30744423]
[110]
Thomas MR, Outteridge SN, Ajjan RA, et al. Platelet P2Y12 inhibitors reduce systemic inflammation and its prothrombotic effects in an experimental human model. Arterioscler Thromb Vasc Biol 2015; 35(12): 2562-70.
[http://dx.doi.org/10.1161/ATVBAHA.115.306528] [PMID: 26515417]
[111]
Rahman M, Gustafsson D, Wang Y, Thorlacius H, Braun OÖ. Ticagrelor reduces neutrophil recruitment and lung damage in abdominal sepsis. Platelets 2014; 25(4): 257-63.
[http://dx.doi.org/10.3109/09537104.2013.809520] [PMID: 23855479]
[112]
van der Ven AJ, Riksen N, Rongen G, et al. Differential effects of platelets and platelet inhibition by ticagrelor on TLR2- and TLR4- mediated inflammatory responses. Thromb Haemost 2015; 113(5): 1035-45.
[http://dx.doi.org/10.1160/TH14-07-0579] [PMID: 25716539]
[113]
Sexton TR, Zhang G, Macaulay TE, et al. Ticagrelor reduces thromboinflammatory markers in patients with pneumonia. JACC Basic Transl Sci 2018; 3(4): 435-49.
[http://dx.doi.org/10.1016/j.jacbts.2018.05.005] [PMID: 30175268]
[114]
Storey RF, James SK, Siegbahn A, et al. Lower mortality following pulmonary adverse events and sepsis with ticagrelor compared to clopidogrel in the PLATO study. Platelets 2014; 25(7): 517-25.
[http://dx.doi.org/10.3109/09537104.2013.842965] [PMID: 24127651]
[115]
Reiner M, Stivala S, Akhmedov A, et al. Cell-specific off-target effects of ticagrelor but not clopidogrel-active metabolite in endothelial dysfunction. European Heart J. ENGLAND: OXFORD UNIV PRESS GREAT CLARENDON ST, OXFORD OX2 6DP 2014; 35: p. 199.
[116]
Edoxaban.LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases 2012.
[117]
Yeh CH, Hogg K, Weitz JI. Overview of the new oral anticoagulants: Opportunities and challenges. Arterioscler Thromb Vasc Biol 2015; 35(5): 1056-65.
[http://dx.doi.org/10.1161/ATVBAHA.115.303397] [PMID: 25792448]
[118]
Ogata K, Harary MJ, Tachibana M, et al. Clinical safety, tolerability, pharmacokinetics, and pharmacodynamics of the novel factor Xa inhibitor edoxaban in healthy volunteers. J Clin Pharmacol 2010; 50(7): 743-53.
[http://dx.doi.org/10.1177/0091270009351883] [PMID: 20081065]
[119]
Zhu W, Ye Z, Chen S, et al. Comparative effectiveness and safety of non-vitamin k antagonist oral anticoagulants in atrial fibrillation patients. Stroke 2021; 52(4): 1225-33.
[http://dx.doi.org/10.1161/STROKEAHA.120.031007] [PMID: 33596677]
[120]
Chan L, Pisano M. Edoxaban (Savaysa): A factor Xa inhibitor. P&T 2015; 40(10): 651-95.
[PMID: 26535021]
[121]
Raymond J, Imbert L, Cousin T, et al. Pharmacogenetics of direct oral anticoagulants: A systematic review. J Pers Med 2021; 11(1): 37.
[http://dx.doi.org/10.3390/jpm11010037] [PMID: 33440670]
[122]
Ašić A, Marjanović D, Mirat J, Primorac D. Pharmacogenetics of novel oral anticoagulants: A review of identified gene variants & future perspectives. Per Med 2018; 15(3): 209-21.
[http://dx.doi.org/10.2217/pme-2017-0092] [PMID: 29767545]
[123]
Sherry ST, Ward MH, Kholodov M, et al. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res 2001; 29(1): 308-11.
[http://dx.doi.org/10.1093/nar/29.1.308] [PMID: 11125122]
[124]
Albertsen IE, Rasmussen LH, Overvad TF, Graungaard T, Larsen TB, Lip GYH. Risk of stroke or systemic embolism in atrial fibrillation patients treated with warfarin: A systematic review and meta-analysis. Stroke 2013; 44(5): 1329-36.
[http://dx.doi.org/10.1161/STROKEAHA.113.000883] [PMID: 23482597]
[125]
Turpie AGG. New oral anticoagulants in atrial fibrillation. Eur Heart J 2007; 29(2): 155-65.
[http://dx.doi.org/10.1093/eurheartj/ehm575] [PMID: 18096568]
[126]
Parasrampuria DA, Truitt KE. Pharmacokinetics and pharmacodynamics of edoxaban, a non-vitamin k antagonist oral anticoagulant that inhibits clotting factor Xa. Clin Pharmacokinet 2016; 55(6): 641-55.
[http://dx.doi.org/10.1007/s40262-015-0342-7] [PMID: 26620048]
[127]
Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013; 369(22): 2093-104.
[http://dx.doi.org/10.1056/NEJMoa1310907] [PMID: 24251359]
[128]
Vilain K, Li H, Kwong WJ, et al. Cardiovascular-and bleeding-related hospitalization rates with edoxaban versus warfarin in patients with atrial fibrillation based on results of the ENGAGE AF- TIMI 48 trial. Circ Cardiovasc Qual Outcomes 2020; 13(11): e006511.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.120.006511] [PMID: 33148013]
[129]
Goette A, Merino JL, Ezekowitz MD, et al. Edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation (ENSURE-AF): A randomised, open-label, phase 3b trial. Lancet 2016; 388(10055): 1995-2003.
[http://dx.doi.org/10.1016/S0140-6736(16)31474-X] [PMID: 27590218]
[130]
Hohnloser SH, Camm J, Cappato R, et al. Uninterrupted edoxaban vs. vitamin K antagonists for ablation of atrial fibrillation: The ELIMINATE-AF trial. Eur Heart J 2019; 40(36): 3013-21.
[http://dx.doi.org/10.1093/eurheartj/ehz190] [PMID: 30976787]
[131]
Lee SR, Choi EK, Han KD, Jung JH, Oh S, Lip GYH. Comparison of once-daily administration of edoxaban and rivaroxaban in Asian patients with atrial fibrillation. Sci Rep 2019; 9(1): 6690.
[http://dx.doi.org/10.1038/s41598-019-43224-4] [PMID: 31040359]
[132]
Marston XL, Wang R, Yeh YC, et al. Comparison of clinical outcomes with edoxaban versus apixaban, dabigatran, rivaroxaban, and vitamin K antagonist in patients with atrial fibrillation in Germany: A real-world cohort study. Eur Heart J 2020; 41: ehaa946-0401.
[http://dx.doi.org/10.1093/ehjci/ehaa946.0401]
[133]
Srinivasan S, Ajmal M, Pecci C, Lassar T. Edoxaban in cardiovascular disease management: Review. Br J Clin Pharmacol 2022; 88(2): 535-40.
[http://dx.doi.org/10.1111/bcp.15026] [PMID: 34365675]
[134]
Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 2016; 149(2): 315-52.
[http://dx.doi.org/10.1016/j.chest.2015.11.026] [PMID: 26867832]
[135]
Moll F, Baumgartner I, Jaff M, et al. Edoxaban plus aspirin vs. dual antiplatelet therapy in endovascular treatment of patients with peripheral artery disease: Results of the ePAD trial. J Endovasc Ther 2018; 25(2): 158-68.
[http://dx.doi.org/10.1177/1526602818760488] [PMID: 29552984]
[136]
Mega JL, Walker JR, Ruff CT, et al. Genetics and the clinical response to warfarin and edoxaban: Findings from the randomised, double-blind ENGAGE AF-TIMI 48 trial. Lancet 2015; 385(9984): 2280-7.
[http://dx.doi.org/10.1016/S0140-6736(14)61994-2] [PMID: 25769357]
[137]
Piccini JP, Patel MR, Mahaffey KW, Fox KAA, Califf RM. Rivaroxaban, an oral direct factor Xa inhibitor. Expert Opin Investig Drugs 2008; 17(6): 925-37.
[http://dx.doi.org/10.1517/13543784.17.6.925] [PMID: 18491993]
[138]
Rivaroxaban. Drugs and Lactation Database (LactMed®). Bethesda, MD: National Institute of Child Health and Human Development 2006.
[139]
Singh R, Emmady PD. Rivaroxaban, in StatPearls. Treasure Island (FL): StatPearls Publishing LLC. 2024.
[140]
Imberti D, Dall’Asta C, Pierfranceschi MG. Oral factor Xa inhibitors for thromboprophylaxis in major orthopedic surgery: A review. Intern Emerg Med 2009; 4(6): 471-7.
[http://dx.doi.org/10.1007/s11739-009-0293-9] [PMID: 19696978]
[141]
Alban S. Pharmacological strategies for inhibition of thrombin activity. Curr Pharm Des 2008; 14(12): 1152-75.
[http://dx.doi.org/10.2174/138161208784246135] [PMID: 18473863]
[142]
Stevenson M, Scope A, Holmes M, Rees A, Kaltenthaler E. Rivaroxaban for the prevention of venous thromboembolism: A single technology appraisal. Health Technol Assess 2009; 13(S3): 43-8.
[http://dx.doi.org/10.3310/hta13suppl3-07] [PMID: 19846028]
[143]
Sychev DA, Vardanyan A, Rozhkov A, et al. CYP3A activity and rivaroxaban serum concentrations in russian patients with deep vein thrombosis. Genet Test Mol Biomarkers 2018; 22(1): 51-4.
[http://dx.doi.org/10.1089/gtmb.2017.0152] [PMID: 29345985]
[144]
Sychev D, Minnigulov R, Bochkov P, et al. Effect of CYP3A4, CYP3A5, ABCB1 gene polymorphisms on rivaroxaban pharmacokinetics in patients undergoing total hip and knee replacement surgery. High Blood Press Cardiovasc Prev 2019; 26(5): 413-20.
[http://dx.doi.org/10.1007/s40292-019-00342-4] [PMID: 31617197]
[145]
Alexander D, Jeremias A. Rivaroxaban in the contemporary treatment of acute coronary syndromes. Expert Opin Investig Drugs 2011; 20(6): 849-57.
[http://dx.doi.org/10.1517/13543784.2011.580274] [PMID: 21554163]
[146]
Sanmartín M, Bellmunt S, Sales CJ, et al. Role of rivaroxaban in the prevention of atherosclerotic events. Expert Rev Clin Pharmacol 2019; 12(8): 771-80.
[http://dx.doi.org/10.1080/17512433.2019.1637732] [PMID: 31269825]
[147]
Gao Y, Jin H. Rivaroxaban for treatment of livedoid vasculopathy: A systematic review. Dermatol Ther 2021; 34(5): e15051.
[http://dx.doi.org/10.1111/dth.15051] [PMID: 34197012]
[148]
Shah GL, Majhail N, Khera N, Giralt S. Value-based care in hematopoietic cell transplantation and cellular therapy: Challenges and opportunities. Curr Hematol Malig Rep 2018; 13(2): 125-34.
[http://dx.doi.org/10.1007/s11899-018-0444-z] [PMID: 29484578]
[149]
Davis PB, Yasothan U, Kirkpatrick P. Ivacaftor. Nat Rev Drug Discov 2012; 11(5): 349-50.
[http://dx.doi.org/10.1038/nrd3723] [PMID: 22543461]
[150]
Gulland A. Cystic fibrosis drug is not cost effective, says NICE. British Medical Journal Publishing Group 2016.
[http://dx.doi.org/10.1136/bmj.i3409]
[151]
Check Hayden E. Promising gene therapies pose million-dollar conundrum. Nature 2016; 534(7607): 305-6.
[http://dx.doi.org/10.1038/534305a] [PMID: 27306167]
[152]
Mooney SJ, Pejaver V. Big data in public health: Terminology, machine learning, and privacy. Annu Rev Public Health 2018; 39(1): 95-112.
[http://dx.doi.org/10.1146/annurev-publhealth-040617-014208] [PMID: 29261408]
[153]
Shen H, Ma J. Privacy challenges of genomic big data. Healthcare and Big Data Management 2017; pp. 139-48.
[154]
Vayena E, Blasimme A. Biomedical big data: New models of control over access, use and governance. J Bioeth Inq 2017; 14(4): 501-13.
[http://dx.doi.org/10.1007/s11673-017-9809-6] [PMID: 28983835]
[155]
Hughes DA. Economics of pharmacogenetic-guided treatments: Underwhelming or overstated? Clin Pharmacol Ther 2018; 103(5): 749-51.
[http://dx.doi.org/10.1002/cpt.1030] [PMID: 29435984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy