Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Synthesis and Antibacterial Evaluation of Novel Small-Molecule Antibacterials of a Reduced Acridine Structure in S. aureus Strains Including MRSA

Author(s): Peter Werner, David Kreutzer, Nikoletta Szemeredi, Gabriella Spengler and Andreas Hilgeroth*

Volume 20, Issue 8, 2024

Published on: 09 May, 2024

Page: [831 - 838] Pages: 8

DOI: 10.2174/0115734064302048240424045239

Price: $65

Abstract

Background: The increasing antibacterial drug resistance remains a threat to global health with increasing mortality and morbidity. There is an urgent need to find novel antibacterials and develop alternative strategies to combat the increasing antibacterial drug resistance.

Objective: We aimed to synthesize novel small-molecule antibacterials to evaluate the structuredependent antibacterial compound activities against S. aureus and MRSA.

Methods: Compounds were synthesized by primary N-alkylation to form alkyl acridinium salts that were further functionalized with substituted phenyl residues and finally purified by column chromatography. The antibacterial growth inhibition activity was determined as MIC value.

Results: The substituent effects on the determined antibacterial growth inhibitory properties have been discussed.

Conclusion: The best activities have been found for compounds with methoxy functions, exceeding the activities of reported novel antibacterial peptides. The compounds have also shown antibacterial drug-enhancing effects, which have been manifested as a reduction in the MIC values of the used antibiotics.

Keywords: Drug development, small molecules, substituent effects, antibacterial activity, enhancers, MRSA.

« Previous
Graphical Abstract
[1]
Skwarczynski, M.; Bashiri, S.; Yuan, Y.; Ziora, Z.M.; Nabil, O.; Masuda, K.; Khongkow, M.; Rimsueb, N.; Cabral, H.; Ruktanonchai, U.; Blaskovich, M.A.T.; Toth, I. Antimicrobial activity enhancers: Towards smart delivery of antimicrobial agents. Antibiotics, 2022, 11(3), 412.
[http://dx.doi.org/10.3390/antibiotics11030412] [PMID: 35326875]
[2]
Holmes, A.H.; Moore, L.S.P.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, 2016, 387(10014), 176-187.
[http://dx.doi.org/10.1016/S0140-6736(15)00473-0] [PMID: 26603922]
[3]
Woodford, N.; Livermore, D.M. Infections caused by Gram-positive bacteria: A review of the global challenge. J. Infect., 2009, 59(S1), S4-S16.
[http://dx.doi.org/10.1016/S0163-4453(09)60003-7] [PMID: 19766888]
[4]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, R.G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Woodhouse, H.G.; Hamadani, K.B.H.; Kumaran, E.A.P.; McManigal, B.; Achalapong, S.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Babin, F-X.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Berkley, J.A.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Orjuela, C.C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Donatien, C.R.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Mora, C.E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Duong Bich, T.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Pearson, F.N.; Forrest, K.; Garcia, C.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Hsia, Y.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Jenney, A.W.J.; Khorana, M.; Khusuwan, S.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Lim, K.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Manoharan, A.; Marks, F.; May, J.; Mayxay, M.; Mturi, N.; Huertas, M.T.; Musicha, P.; Musila, L.A.; Pinhata, M.M.M.; Naidu, R.N.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Ochoa, T.J.; Martinez, O.A.; Olliaro, P.; Ooko, E.; Brizuela, O.E.; Ounchanum, P.; Pak, G.D.; Paredes, J.L.; Peleg, A.Y.; Perrone, C.; Phe, T.; Phommasone, K.; Plakkal, N.; de-Leon, P.A.; Raad, M.; Ramdin, T.; Rattanavong, S.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rosenthal, V.D.; Rudd, K.E.; Russell, N.; Sader, H.S.; Saengchan, W.; Schnall, J.; Scott, J.A.G.; Seekaew, S.; Sharland, M.; Shivamallappa, M.; Osornio, S.J.; Simpson, A.J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Tigoi, C.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vongsouvath, M.; Vu, H.; Walsh, T.; Walson, J.L.; Waner, S.; Wangrangsimakul, T.; Wannapinij, P.; Wozniak, T.; Young Sharma, T.E.M.W.; Yu, K.C.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[5]
US Center for Disease Control and Prevention In: Antibiotic resistance threats in the United States; US Department of Health and Human Services: Atlanta, GA; , 2019.
[6]
Coates, A.R.M.; Halls, G.; Hu, Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol., 2011, 163(1), 184-194.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01250.x] [PMID: 21323894]
[7]
Ali, J.; Rafiq, Q.A.; Ratcliffe, E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci. OA, 2018, 4(4), FSO290.
[http://dx.doi.org/10.4155/fsoa-2017-0109] [PMID: 29682325]
[8]
Giacomini, E.; Perrone, V.; Alessandrini, D.; Paoli, D.; Nappi, C.; Esposti, D.L. Evidence of antibiotic resistance from population-based studies.: A narrative review. Infect. Drug Resist., 2021, 14, 849-858.
[http://dx.doi.org/10.2147/IDR.S289741] [PMID: 33688220]
[9]
Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant‐associated orthopedic infections. J. Orthop. Res., 2018, 36(1), 22-32.
[http://dx.doi.org/10.1002/jor.23656] [PMID: 28722231]
[10]
Nainu, F.; Permana, A.D.; Djide, N.J.N.; Anjani, Q.K.; Utami, R.N.; Rumata, N.R.; Zhang, J.; Emran, T.B.; Gandara, S.J. Pharmaceutical approaches on antimicrobial resistance: Prospects and challenges. Antibiotics, 2021, 10(8), 981.
[http://dx.doi.org/10.3390/antibiotics10080981] [PMID: 34439031]
[11]
Adekoya, I.; Maraj, D.; Steiner, L.; Yaphe, H.; Moja, L.; Magrini, N.; Cooke, G.; Loeb, M.; Persaud, N. Comparison of antibiotics included in national essential medicines lists of 138 countries using the WHO Access, Watch, Reserve (AWaRe) classification: A cross-sectional study. Lancet Infect. Dis., 2021, 21(10), 1429-1440.
[http://dx.doi.org/10.1016/S1473-3099(20)30854-9] [PMID: 34332706]
[12]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[13]
Larsson, D.G.J.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol., 2022, 20(5), 257-269.
[http://dx.doi.org/10.1038/s41579-021-00649-x] [PMID: 34737424]
[14]
Laws, M.; Shaaban, A.; Rahman, K.M. Antibiotic resistance breakers: Current approaches and future directions. FEMS Microbiol. Rev., 2019, 43(5), 490-516.
[http://dx.doi.org/10.1093/femsre/fuz014] [PMID: 31150547]
[15]
Usui, M.; Yoshii, Y.; Rupert, T.S.; Ghigo, J.M.; Beloin, C. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance. Commun. Biol., 2023, 6(1), 275.
[http://dx.doi.org/10.1038/s42003-023-04601-y] [PMID: 36928386]
[16]
Hemez, C.; Clarelli, F.; Palmer, A.C.; Bleis, C.; Abel, S.; Chindelevitch, L.; Cohen, T.; zur Wiesch, A.P. Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. Comput. Struct. Biotechnol. J., 2022, 20, 4688-4703.
[http://dx.doi.org/10.1016/j.csbj.2022.08.030] [PMID: 36147681]
[17]
Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[18]
Touchon, M.; de Sousa, M.J.A.; Rocha, E.P.C. Embracing the enemy: The diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol., 2017, 38, 66-73.
[http://dx.doi.org/10.1016/j.mib.2017.04.010] [PMID: 28527384]
[19]
Strachan, C.R.; Davies, J. The whys and wherefores of antibiotic resistance. Cold Spring Harb. Perspect. Med., 2017, 7(2)a025171
[http://dx.doi.org/10.1101/cshperspect.a025171] [PMID: 27793964]
[20]
Breijyeh, Z.; Karaman, R. Design and synthesis of novel antimicrobial agents. Antibiotics, 2023, 12(3), 628.
[http://dx.doi.org/10.3390/antibiotics12030628] [PMID: 36978495]
[21]
Burki, T.K. Development of new antibacterial agents: A sense of urgency needed. Lancet Respir. Med., 2021, 9(6)e54
[http://dx.doi.org/10.1016/S2213-2600(21)00230-7] [PMID: 34000239]
[22]
Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; Moreira, R.; Li, Y.; Luzhetskyy, A.; Medema, M.H.; Pernodet, J-L.; Stadler, M.; Tormo, J.R.; Genilloud, O.; Truman, A.W.; Weissman, K.J.; Takano, E.; Sabatini, S.; Stegmann, E.; Oesterhelt, B.H.; Wohlleben, W.; Seemann, M.; Empting, M.; Hirsch, A.K.H.; Loretz, B.; Lehr, C-M.; Titz, A.; Herrmann, J.; Jaeger, T.; Alt, S.; Hesterkamp, T.; Winterhalter, M.; Schiefer, A.; Pfarr, K.; Hoerauf, A.; Graz, H.; Graz, M.; Lindvall, M.; Ramurthy, S.; Karlén, A.; van Dongen, M.; Petkovic, H.; Keller, A.; Peyrane, F.; Donadio, S.; Fraisse, L.; Piddock, L.J.V.; Gilbert, I.H.; Moser, H.E.; Müller, R. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem., 2021, 5(10), 726-749.
[http://dx.doi.org/10.1038/s41570-021-00313-1]
[23]
Kreutzer, D.; Gehrmann, R.; Kincses, A.; Szemerédi, N.; Spengler, G.; Molnár, J.; Hilgeroth, A. Discovery of a novel class of small-molecule antibacterial agents against Staphylococcus aureus. Future Med. Chem., 2021, 14(5), 299-305.
[24]
Chen, R.; Huo, L.; Jaiswal, Y.; Huang, J.; Zhong, Z.; Zhong, J.; Williams, L.; Xia, X.; Liang, Y.; Yan, Z. Design, synthesis, antimicrobial, and anticancer activities of acridine thiosemicarbazides derivatives. Molecules, 2019, 24(11), 2065.
[http://dx.doi.org/10.3390/molecules24112065] [PMID: 31151235]
[25]
Varakumar, P.; Rajagopal, K.; Aparna, B.; Raman, K.; Byran, G.; Lima, G.C.M.; Rashid, S.; Nafady, M.H.; Emran, T.B.; Wybraniec, S. Acridine as an anti-tumour agent: A critical review. Molecules, 2022, 28(1), 193.
[http://dx.doi.org/10.3390/molecules28010193] [PMID: 36615391]
[26]
Goni, L.K.M.O.; Jafar Mazumder, M.A.; Tripathy, D.B.; Quraishi, M.A. Acridine and its derivatives: Synthesis, biological, and anticorrosion properties. Materials, 2022, 15(21), 7560.
[http://dx.doi.org/10.3390/ma15217560] [PMID: 36363152]
[27]
Arunachalam, K.; Pandurangan, P.; Shi, C.; Lagoa, R. Regulation of Staphylococcus aureus virulence and application of nanotherapeutics to eradicate S. aureus infection. Pharmaceutics, 2023, 15(2), 310.
[http://dx.doi.org/10.3390/pharmaceutics15020310] [PMID: 36839634]
[28]
Alonso, B.; Granda, P.M.J.; Latorre, M.C.; Carrillo, S.C.; Bouza, E.; Muñoz, P.; Guembe, M. Production of biofilm by Staphylococcus aureus: Association with infective endocarditis? Enferm. Infecc. Microbiol. Clin., 2022, 40(8), 418-422.
[http://dx.doi.org/10.1016/j.eimce.2021.03.009] [PMID: 36195405]
[29]
Yasir, M.; Dutta, D.; Willcox, M.D.P. Enhancement of antibiofilm activity of ciprofloxacin against Staphylococcus aureus by administration of antimicrobial peptides. Antibiotics, 2021, 10, 1159.
[http://dx.doi.org/10.20944/preprints202108.0451.v1]
[30]
Annunziato, G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. Int. J. Mol. Sci., 2019, 20(23), 5844.
[http://dx.doi.org/10.3390/ijms20235844] [PMID: 31766441]
[31]
Fadaka, A.O.; Sibuyi, N.R.S.; Madiehe, A.M.; Meyer, M. Nanotechnology-based delivery systems for antimicrobial peptides. Pharmaceutics, 2021, 13(11), 1795.
[http://dx.doi.org/10.3390/pharmaceutics13111795] [PMID: 34834210]
[32]
Jaumaux, F.; de Cadiñanos, P.G.L.; Gabant, P. In the cage of synthetic biology, will antimicrobial peptides be the next generation of antibiotics? Antibiotics, 2020, 9(8), 484.
[http://dx.doi.org/10.3390/antibiotics9080484] [PMID: 32781540]
[33]
Biswaro, L.S.; da Sousa, C.M.G.; Rezende, T.M.B.; Dias, S.C.; Franco, O.L. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front. Microbiol., 2018, 9, 855.
[http://dx.doi.org/10.3389/fmicb.2018.00855] [PMID: 29867793]
[34]
Yang, L.; Gordon, V.D.; Mishra, A.; Som, A.; Purdy, K.R.; Davis, M.A.; Tew, G.N.; Wong, G.C.L. Synthetic antimicrobial oligomers induce a composition-dependent topological transition in membranes. J. Am. Chem. Soc., 2007, 129(40), 12141-12147.
[http://dx.doi.org/10.1021/ja072310o] [PMID: 17880067]
[35]
Chaudhary, S.; Mahfouz, M.M. Molecular farming of antimicrobial peptides. Nat. Rev. Bioeng., 2023, 2(1), 3-5.
[http://dx.doi.org/10.1038/s44222-023-00149-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy