Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Mini-Review Article

Remdesivir in Severe Cases of COVID-19 Infection

Author(s): Alberto Boretti*

Volume 11, Issue 4, 2024

Published on: 30 April, 2024

Page: [273 - 278] Pages: 6

DOI: 10.2174/0122133372290992240409084133

Price: $65

Abstract

Background: Assessing the efficacy of remdesivir for COVID-19 infection holds historical significance. Understanding its effectiveness from previous pandemic instances can enable us to gain insights into its efficacy, informing our strategies for responding to future outbreaks or variants.

Objective: Gaining an insight into the historical efficacy of remdesivir can offer valuable data for evaluating the advancement of COVID-19 treatments and the development of medical expertise in handling the disease.

Method: The historical data regarding the effectiveness of remdesivir can enrich the pool of knowledge and evidence accessible for public health planning and decision-making. Understanding whether remdesivir was efficacious in previous instances may aid in comprehending its real-world impact on patient outcomes at those times. Such insights are crucial for evaluating treatment efficacy and refining strategies based on past experiences.

Results: In the late treatment of severe COVID-19 cases, which are particularly challenging, remdesivir has demonstrated a 6% improvement.

Conclusion: The 6% enhanced effect of remdesivir is not substantial, considering that it is an unweighted average of works with varying degrees of importance and reliability. Additionally, there are instances where conflicts of interest may have impacted the results. It is also possible that the observed improvement could be attributed to better patient care in certain environments.

Keywords: Remdesivir, COVID-19, ARDS, severe ARDS, ICU care, virology.

[1]
WHO. WHO recommends against the use of Remdesivir in COVID-19 patients. 2020. Available from: www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-Remdesivir-in-covid-19-patients(Accessed January 28, 2020).
[2]
BMJ.com. WHO guideline development group advises against use of remdesivir for covid-19. 2020. Available from: www.bmj.com/company/newsroom/who-guideline-development-group-advises-against-use-of-Remdesivir-for-covid-19/ (Accessed January 28, 2020).
[3]
Our World in Data. Coronavirus explorer. 2023. Available from: http://www.ourworldindata.org (Accessed March 14, 2023).
[4]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[5]
Choy, K.T.; Wong, A.Y.L.; Kaewpreedee, P.; Sia, S.F.; Chen, D.; Hui, K.P.Y.; Chu, D.K.W.; Chan, M.C.W.; Cheung, P.P.H.; Huang, X.; Peiris, M.; Yen, H.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res., 2020, 178, 104786.
[http://dx.doi.org/10.1016/j.antiviral.2020.104786] [PMID: 32251767]
[6]
Sciencemag.org. WHO launches global megatrial of the four most promising coronavirus treatments. 2020. Available from: www.sciencemag.org/news/2020/03/who-launches-global-megatrial-four-most-promising-coronavirus-treatments (Accessed January 28, 2020).
[7]
Mehra, M.R.; Ruschitzka, F.; Patel, A.N. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: A multinational registry analysis. Lancet, 2020, 395(10240), 1820.
[http://dx.doi.org/10.1016/S0140-6736(20)31324-6] [PMID: 32511943]
[8]
Nuffield department of population health. RECOVERY trial. 2020. Available from: www.recoverytrial.net/ (Accessed January 28, 2020).
[9]
Kingdom of Saudi Arabia ministry of health. 2021. Available from: www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/MOH-therapeutic-protocol-for-COVID-19.pdf(Accessed January 28, 2021).
[10]
United Arab Emirates ministry of health and prevention. 2021. Available from: www.dha.gov.ae/en/HealthRegulation/Documents/National_Guidelines_of_COVID_19_1st_June_2020.pdf (Accessed January 28, 2021).
[11]
Abu Dhabi Public Health Center. COVID-19 guideline for healthcare professionals. 2021. Available from: doh.gov.ae/-/media/7BD7B077D8F846B48A70C5872902DD1C.ashx (Accessed January 28, 2021).
[12]
c19early.org. Global Covid-19 studies. 2023. Available from: c19early.org (Accessed January 28, 2023).
[13]
c19ivm.org. Ivermectin for COVID-19: Real-time meta-analysis of 95 studies. 2023. Available from: c19ivm.org/meta.html (Accessed March 14, 2023).
[14]
Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; Bannister, R.; Park, Y.; Babusis, D.; Clarke, M.O.; Mackman, R.L.; Spahn, J.E.; Palmiotti, C.A.; Siegel, D.; Ray, A.S.; Cihlar, T.; Jordan, R.; Denison, M.R.; Baric, R.S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med., 2017, 9(396), eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[15]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[16]
Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent. Sci., 2020, 6(5), 672-683.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[17]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[18]
Kokic, G.; Hillen, H.S.; Tegunov, D.; Dienemann, C.; Seitz, F.; Schmitzova, J.; Farnung, L.; Siewert, A.; Höbartner, C.; Cramer, P. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat. Commun., 2021, 12(1), 279.
[http://dx.doi.org/10.1038/s41467-020-20542-0] [PMID: 33436624]
[19]
Saha, A.; Sharma, A.R.; Bhattacharya, M.; Sharma, G.; Lee, S.S.; Chakraborty, C. Probable molecular mechanism of Remdesivir for the treatment of COVID-19: Need to know more. Arch. Med. Res., 2020, 51(6), 585-586.
[http://dx.doi.org/10.1016/j.arcmed.2020.05.001] [PMID: 32439198]
[20]
Shen, Y.; Eades, W.; Yan, B. Remdesivir potently inhibits carboxylesterase‐2 through covalent modifications: Signifying strong drug‐drug interactions. Fundam. Clin. Pharmacol., 2021, 35(2), 432-434.
[http://dx.doi.org/10.1111/fcp.12643] [PMID: 33369768]
[21]
Jeffreys, L.N.; Pennington, S.H.; Duggan, J.; Caygill, C.H.; Lopeman, R.C.; Breen, A.F.; Jinks, J.B.; Ardrey, A.; Donnellan, S.; Patterson, E.I.; Hughes, G.L.; Hong, D.W.; O’Neill, P.M.; Aljayyoussi, G.; Owen, A.; Ward, S.A.; Biagini, G.A. Remdesivir–ivermectin combination displays synergistic interaction with improved in vitro activity against SARS-CoV-2. Int. J. Antimicrob. Agents, 2022, 59(3), 106542.
[http://dx.doi.org/10.1016/j.ijantimicag.2022.106542] [PMID: 35093538]
[22]
de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci., 2020, 117(12), 6771-6776.
[http://dx.doi.org/10.1073/pnas.1922083117] [PMID: 32054787]
[23]
Munster, V.J.; Feldmann, F.; Williamson, B.N.; van Doremalen, N.; Pérez-Pérez, L.; Schulz, J.; Meade-White, K.; Okumura, A.; Callison, J.; Brumbaugh, B.; Avanzato, V.A.; Rosenke, R.; Hanley, P.W.; Saturday, G.; Scott, D.; Fischer, E.R.; de Wit, E. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature, 2020, 585(7824), 268-272.
[http://dx.doi.org/10.1038/s41586-020-2324-7] [PMID: 32396922]
[24]
Williamson, B.N.; Feldmann, F.; Schwarz, B.; Meade-White, K.; Porter, D.P.; Schulz, J.; van Doremalen, N.; Leighton, I.; Yinda, C.K.; Pérez-Pérez, L.; Okumura, A.; Lovaglio, J.; Hanley, P.W.; Saturday, G.; Bosio, C.M.; Anzick, S.; Barbian, K.; Cihlar, T.; Martens, C.; Scott, D.P.; Munster, V.J.; de Wit, E. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature, 2020, 585(7824), 273-276.
[http://dx.doi.org/10.1038/s41586-020-2423-5] [PMID: 32516797]
[25]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[26]
Flisiak, R.; Zarębska-Michaluk, D.; Berkan-Kawińska, A.; Tudrujek-Zdunek, M.; Rogalska, M.; Piekarska, A. Remdesivir-based therapy improved recovery of patients with COVID-19 in the SARSTer multicentre, real-world study. medRxiv, 2020.
[27]
El-Solh, A.A.; Meduri, U.G.; Lawson, Y.; Carter, M.; Mergenhagen, K.A. Clinical course and outcome of COVID-19 acute respiratory distress syndrome: Data from a national repository. J. Intensive Care Med., 2021, 36(6), 664-672.
[http://dx.doi.org/10.1177/0885066621994476] [PMID: 33685275]
[28]
Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R.W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T.F.; Paredes, R.; Sweeney, D.A.; Short, W.R.; Touloumi, G.; Lye, D.C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G.M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M.G.; Atmar, R.L.; Creech, C.B.; Lundgren, J.; Babiker, A.G.; Pett, S.; Neaton, J.D.; Burgess, T.H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; Lane, H.C. Remdesivir for the treatment of Covid-19—preliminary report. N. Engl. J. Med., 2020, 383(19), 1813-1826.
[http://dx.doi.org/10.1056/NEJMoa2007764] [PMID: 32445440]
[29]
Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; Chai, L.Y.A.; Roestenberg, M.; Tsang, O.T.Y.; Bernasconi, E.; Le Turnier, P.; Chang, S.C.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wang, H.; Gaggar, A.; Brainard, D.M.; McPhail, M.J.; Bhagani, S.; Ahn, M.Y.; Sanyal, A.J.; Huhn, G.; Marty, F.M. Effect of Remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA, 2020, 324(11), 1048-1057.
[http://dx.doi.org/10.1001/jama.2020.16349] [PMID: 32821939]
[30]
Zhu, Y.; Teng, Z.; Yang, L.; Xu, S.; Liu, J.; Teng, Y. Efficacy and safety of Remdesivir for covid-19 treatment: An analysis of randomized, double-blind, placebo-controlled trials. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.22.20136531]
[31]
Garibaldi, B.T.; Wang, K.; Robinson, M.L.; Zeger, S.L.; Roche, K.B.; Wang, M.C. Effectiveness of Remdesivir with and without dexamethasone in hospitalized patients with COVID-19. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.11.19.20234153]
[32]
Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M.Y.; Nahass, R.G.; Chen, Y.S.; SenGupta, D.; Hyland, R.H.; Osinusi, A.O.; Cao, H.; Blair, C.; Wei, X.; Gaggar, A.; Brainard, D.M.; Towner, W.J.; Muñoz, J.; Mullane, K.M.; Marty, F.M.; Tashima, K.T.; Diaz, G.; Subramanian, A. Remdesivir for 5 or 10 days in patients with severe Covid-19. N. Engl. J. Med., 2020, 383(19), 1827-1837.
[http://dx.doi.org/10.1056/NEJMoa2015301] [PMID: 32459919]
[33]
Lin, H.X.J.; Cho, S.; Meyyur Aravamudan, V.; Sanda, H.Y.; Palraj, R.; Molton, J.S.; Venkatachalam, I. Remdesivir in coronavirus disease 2019 (COVID-19) treatment: A review of evidence. Infection, 2021, 49(3), 401-410.
[http://dx.doi.org/10.1007/s15010-020-01557-7] [PMID: 33389708]
[34]
Rosenberg, K. Remdesivir in the treatment of COVID-19. Am. J. Nurs., 2021, 121(1), 55-55.
[PMID: 33350698]
[35]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A.O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate use of Remdesivir for patients with severe Covid-19. N. Engl. J. Med., 2020, 382(24), 2327-2336.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[36]
Ullah, N.; Ahmad Khan, K.; Iqbal, J.; Rana, A.; Bin Younis, B.; Asif, M.; Zeeshan Khan Chachar, A. shan, F. Efficacy of remdesivir in covid-19 patients; multicenter study in Lahore. Int. J. Sci., 2020, 9(11), 31-34.
[http://dx.doi.org/10.18483/ijSci.2417]
[37]
Dubert, M.; Visseaux, B.; Isernia, V.; Bouadma, L.; Deconinck, L.; Patrier, J.; Wicky, P.H.; Le Pluart, D.; Kramer, L.; Rioux, C.; Le Hingrat, Q.; Houhou-Fidouh, N.; Yazdanpanah, Y.; Ghosn, J.; Lescure, F.X. Case report study of the first five COVID-19 patients treated with remdesivir in France. Int. J. Infect. Dis., 2020, 98, 290-293.
[http://dx.doi.org/10.1016/j.ijid.2020.06.093] [PMID: 32619764]
[38]
Levien, T.L.; Baker, D.E. Remdesivir. Hosp. Pharm., 2023, 58(5), 420-430.
[http://dx.doi.org/10.1177/0018578721999804] [PMID: 37711410]
[39]
García, P.J. Corruption in global health: The open secret. Lancet, 2019, 394(10214), 2119-2124.
[http://dx.doi.org/10.1016/S0140-6736(19)32527-9] [PMID: 31785827]
[40]
c19early.org. Remdesivir for COVID-19 47 studies from 788 scientists 134,563 patients in 18 countries. 2023. Available from: c19early.org/s (accessed March 14, 2023).
[41]
c19early.org. Remdesivir for COVID-19 66 studies from 1,024 scientists 184,108 patients in 22 countries. 2024. Available from: c19early.org/s (accessed February 16, 2024).
[42]
Gérard, A.O.; Laurain, A.; Fresse, A.; Parassol, N.; Muzzone, M.; Rocher, F.; Esnault, V.L.M.; Drici, M.D. Remdesivir and acute renal failure: A potential safety signal from disproportionality analysis of the WHO safety database. Clin. Pharmacol. Ther., 2021, 109(4), 1021-1024.
[http://dx.doi.org/10.1002/cpt.2145] [PMID: 33340409]
[43]
Zhou, Y.; Li, J.; Wang, L.; Zhu, X.; Zhang, M.; Zheng, J. Acute kidney injury and drugs prescribed for COVID-19 in diabetes patients: A real-world disproportionality analysis. Front. Pharmacol., 2022, 13, 833679.
[http://dx.doi.org/10.3389/fphar.2022.833679] [PMID: 35370750]
[44]
Bakheit, A.H.; Darwish, H.; Darwish, I.A.; Al-Ghusn, A.I. Remdesivir. Profiles Drug Subst. Excip. Relat. Methodol., 2023, 48, 71-108.
[http://dx.doi.org/10.1016/bs.podrm.2022.11.003] [PMID: 37061276]
[45]
Deb, S.; Reeves, A.A.; Hopefl, R.; Bejusca, R. ADME and pharmacokinetic properties of remdesivir: Its drug interaction potential. Pharmaceuticals, 2021, 14(7), 655.
[http://dx.doi.org/10.3390/ph14070655] [PMID: 34358081]
[46]
Cardoza, S.; Shrivash, M.K.; Riva, L.; Chatterjee, A.K.; Mandal, A.; Tandon, V. Multistep synthesis of analogues of remdesivir: Incorporating heterocycles at the C-1′ position. J. Org. Chem., 2023, 88(13), 9105-9122.
[http://dx.doi.org/10.1021/acs.joc.3c00754] [PMID: 37276453]
[47]
Götte, M. Remdesivir for the treatment of Covid-19: the value of biochemical studies. Curr. Opin. Virol., 2021, 49, 81-85.
[http://dx.doi.org/10.1016/j.coviro.2021.04.014] [PMID: 34052732]
[48]
Jemth, A.S.; Scaletti, E.R.; Homan, E.; Stenmark, P.; Helleday, T.; Michel, M. Nudix hydrolase 18 catalyzes the hydrolysis of active triphosphate metabolites of the antivirals remdesivir, ribavirin, and molnupiravir. J. Biol. Chem., 2022, 298(8), 102169.
[http://dx.doi.org/10.1016/j.jbc.2022.102169] [PMID: 35732208]
[49]
Al Zoubi, W.; Putri, R.A.K.; Abukhadra, M.R.; Ko, Y.G. Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles. Nano Energy, 2023, 110, 108362.
[http://dx.doi.org/10.1016/j.nanoen.2023.108362]
[50]
Putri, R.A.K.; Nashrah, N.; Han, D.I.; Al Zoubi, W.; Ko, Y.G. Chemical incorporation of Mn3O4 into TiO2 coating by benzotriazole working as electron donor: Electrochemical and catalytic performance. Compos., Part B Eng., 2022, 232, 109609.
[http://dx.doi.org/10.1016/j.compositesb.2021.109609]
[51]
Kareem, M.J.; Al-Hamdani, A.A.S.; Jirjees, V.Y.; Khan, M.E.; Allaf, A.W.; Al Zoubi, W. Preparation, spectroscopic study of Schiff base derived from dopamine and metal Ni(II), Pd(II), and Pt(IV) complexes, and activity determination as antioxidants. J. Phys. Org. Chem., 2021, 34(3), e4156.
[http://dx.doi.org/10.1002/poc.4156]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy