Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Lipid-based Drug Delivery Systems: A Promising Approach for Overcoming Bioavailability and Solubility Challenges in Drug Development

Author(s): Akash Gupta, Vishnu Mittal, Anjali Sharma*, Aashima Barak and Deepshi Arora

Volume 15, Issue 2, 2025

Published on: 29 April, 2024

Page: [180 - 196] Pages: 17

DOI: 10.2174/0124681873290199240424062503

Price: $65

Abstract

For an extended period, lipid-based drugs have been employed to enhance the effectiveness of medications. Nevertheless, the notion of using lipids as carriers for drugs remains a fascinating concept. Lipid-based drug delivery systems (LBDDS) represent a cutting-edge technology aimed at tackling the challenges associated with bioavailability and solubility of drugs that are not readily soluble in water.

The primary objective of lipid-based medicine formulation is to increase its bioavailability. The use of lipids in medicine administration is a feasible concept even if it is no longer new. LBDDS is one of the newest techniques for resolving problems with low water-soluble medication solubility and bioavailability. Pharmaceuticals may be marketed successfully formulated using these formulations for parenteral, pulmonary, topical, or oral administration.

This article functions as a comprehensive review of existing literature on LBDDS. It involves a thorough investigation across various databases, including PubMed, Scopus, and Web of Science, with the aim of identifying relevant research studies.

LBDDS are an effective method for making poorly soluble medications (BCS Classes II & IV) more soluble and more bioavailable. This review article aims to draw attention to the importance of distinguishing between SMEDDS and SNEDDS, as well as the roles played by the many components that are needed for creating LBDDS. It also provides motivation and guts to expand the use of LBDDS on a pilot and industrial scale.

Medication delivery systems based on lipids provide a wide range of possible applications by improving the bioavailability of some poorly soluble medicines and enabling the creation of physiologically well-tolerated medication formulations. Comprehending the physicochemical properties of molecules, fatty excipients, and gastrointestinal digestion is crucial for the creation of these systems. In conclusion, these delivery methods seem to have a bright future.

Keywords: Lipid-based drug delivery systems (LBDDS), lipid-based nanoparticles, drug release, drug resistance, clinical trials, bioavailability, solubility, physiochemical properties.

Graphical Abstract
[1]
Zishan M, Zeeshan A, Faisal S, et al. Vesicular drug delivery system used for liver diseases. World J PharmSci 2017; 5(4): 28-35.
[2]
Thakur A, Roy A, Chatterjee S, Chakraborty P, Bhattacharya K, Mahata PP. Recent trends in targeted drug delivery. Naskar S. USA: SM Group 2015; p. 29.
[http://dx.doi.org/10.13140/RG.2.1.2443.9762]
[3]
Kumar A, Nautiyal U, Kaur C, Goel V, Piarchand N. Targeted drug delivery system: current and novel approach. Int J Pharm Res 2017; 5(2): 448-54.
[4]
Akhtar M, Jamshaid M, Zaman M, Mirza AZ. Bilayer tablets: A developing novel drug delivery system. J Drug Deliv Sci Technol 2020; 60: 102079.
[http://dx.doi.org/10.1016/j.jddst.2020.102079]
[5]
Kwon IK, Lee SC, Han B, Park K. Analysis on the current status of targeted drug delivery to tumors. J Control Release 2012; 164(2): 108-14.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.010] [PMID: 22800574]
[6]
Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 2019; 11(5): 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[7]
Ali Y, Alqudah A, Ahmad S, Abd Hamid S, Farooq U. Macromolecules as targeted drugs delivery vehicles: an overview. Des Monomers Polym 2019; 22(1): 91-7.
[http://dx.doi.org/10.1080/15685551.2019.1591681] [PMID: 31007637]
[8]
Mishra N, Pant P, Porwal A, Jaiswal J, Samad MA, Tiwari S. Targeted drug delivery: a review. Am J PharmTech Res 2016; 6(1)
[PMID: 19447208]
[9]
Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Mater Today 2005; 8(8): 18-26.
[http://dx.doi.org/10.1016/S1369-7021(05)71033-6]
[10]
Benyettou F, Motte L. Nanomedicine: towards the “magic bullet” science. J Bioanal Biomed 2016; 8: 2.
[11]
Valent P, Groner B, Paul Ehrlich SU. Paul ehrlich (1854-1915) and his contributions to the foundation and birth of translational medicine J Innate Immun 2016; 8(2): 111-20.
[http://dx.doi.org/10.1159/000443526] [PMID: 26845587]
[12]
Gradmann C. Magic bullets and moving targets: antibiotic resistance and experimental chemotherapy, 1900-1940. Dynamis 2011; 31(2): 305-21.
[http://dx.doi.org/10.4321/S0211-95362011000200003] [PMID: 22332461]
[13]
Barz M. Complexity and simplification in the development of nanomedicines. Nanomedicine 2015; 10(20): 3093-7.
[http://dx.doi.org/10.2217/nnm.15.146] [PMID: 26446374]
[14]
Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. J Control Relea 2011; 153(3): 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[15]
Rani K, Paliwal SA. Review on targeted drug delivery: its entire focus on advanced therapeutics and diagnostics. Sch J App Sci 2014; 2(1C): 328-31.
[16]
Gujral S, Khatri S. A review on basic concept of drug targeting and drug carrier system. Int J Adv Pharm Biol Chem 2013; 2(1): 130-6.
[17]
Mahajan HS, Patil SB, Gattani SG, Kuchekar BS. Targeted drug delivery systems. Pharma Times 2007; 39(2): 19-21.
[18]
Vyas SP, Khar RK. Targeted & controlled drug delivery: novel carrier systems. New Delhi, India: CBS publishers & distributors 2004; p. 594.
[19]
Manish G, Vimukta S. Targeted drug delivery system: a review. Res J Chem Sci 2011; 1(2): 135-8.
[20]
Bhargav E, Madhuri N, Ramesh K, Manne A, Ravi V. Targeted drug delivery – a review. World J Pharm Pharm Sci 2013; 3(1): 150-69.
[21]
Afzal O, Altamimi ASA, Nadeem MS, et al. Nanoparticles in drug delivery: from history to therapeutic applications. Nanomaterials 2022; 12(24): 4494.
[http://dx.doi.org/10.3390/nano12244494] [PMID: 36558344]
[22]
Jacob S, Nair AB, Shah J, et al. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy-an overview on recent. Pharmaceutics 2022; 14(3): 533.
[http://dx.doi.org/10.3390/pharmaceutics14030533] [PMID: 35335909]
[23]
Mohammadi-Samani S, Ghasemiyeh P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci 2018; 13(4): 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[24]
Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 2006; 61(5): 375-86.
[PMID: 16724531]
[25]
Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002; 54 (Suppl. 1): S131-55.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[26]
Kim BYS, Rutka JT, Chan WCW. Nanomedicine. N Engl J Med 2010; 363(25): 2434-43.
[http://dx.doi.org/10.1056/NEJMra0912273] [PMID: 21158659]
[27]
Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004; 303(5665): 1818-22.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[28]
Khater D, Nsairat H, Odeh F, et al. Design, preparation, and characterization of effective dermal and transdermal lipid nanoparticles: a review. Cosmetics 2021; 8(2): 39.
[http://dx.doi.org/10.3390/cosmetics8020039]
[29]
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 2006; 7(8): 657-67.
[http://dx.doi.org/10.1016/S1470-2045(06)70793-8] [PMID: 16887483]
[30]
Nsairat H, Khater D, Odeh F, et al. Lipid nanostructures for targeting brain cancer. Heliyon 2021; 7(9): e07994.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07994] [PMID: 34632135]
[31]
Celia C, Paolino D, Santos HA. Advanced nanosystems for clinical translation. Adv Ther 2021; 4(1): 2000215.
[http://dx.doi.org/10.1002/adtp.202000215]
[32]
Haley B, Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol Oncol 2008; 26(1): 57-64.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.015] [PMID: 18190833]
[33]
Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012; 41(7): 2885-911.
[http://dx.doi.org/10.1039/c2cs15260f] [PMID: 22286540]
[34]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[35]
Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Adv Drug Deliv Rev 2018; 134: 122-37.
[http://dx.doi.org/10.1016/j.addr.2018.09.011] [PMID: 30267743]
[36]
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 2014; 53(46): 12320-64.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[37]
Jha S, Sharma PK, Malviya R. Liposomal drug delivery system for cancer therapy: advancement and patents. Recent Pat Drug Deliv Formul 2016; 10(3): 177-83.
[http://dx.doi.org/10.2174/1872211310666161004155757] [PMID: 27712569]
[38]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[39]
Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol 2014; 32(1): 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[40]
Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 2014; 9: 1005-23.
[PMID: 24600222]
[41]
McClements DJ, Rao J. Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 2011; 51(4): 285-330.
[http://dx.doi.org/10.1080/10408398.2011.559558] [PMID: 21432697]
[42]
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[43]
Chen T, Gong T, Zhao T, Fu Y, Zhang Z, Gong T. A comparison study between lycobetaine-loaded nanoemulsion and liposome using nRGD as therapeutic adjuvant for lung cancer therapy. Eur J Pharm Sci 2018; 111: 293-302.
[http://dx.doi.org/10.1016/j.ejps.2017.09.041] [PMID: 28966099]
[44]
Fathi S, Oyelere AK. Liposomal drug delivery systems for targeted cancer therapy: Is active targeting the best choice? Future Med Chem 2016; 8(17): 2091-112.
[http://dx.doi.org/10.4155/fmc-2016-0135] [PMID: 27774793]
[45]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017; 9(4): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[46]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[47]
Ebrahim S, Peyman GA, Lee PJ. Applications of liposomes in ophthalmology. Surv Ophthalmol 2005; 50(2): 167-82.
[http://dx.doi.org/10.1016/j.survophthal.2004.12.006] [PMID: 15749307]
[48]
He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B 2019; 9(1): 36-48.
[http://dx.doi.org/10.1016/j.apsb.2018.06.005] [PMID: 30766776]
[49]
Mehta PP, Ghoshal D, Pawar AP, Kadam SS, Dhapte-Pawar VS. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. J Drug Deliv Sci Technol 2020; 56: 101509.
[http://dx.doi.org/10.1016/j.jddst.2020.101509]
[50]
Pierre MBR, dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res 2011; 303(9): 607-21.
[http://dx.doi.org/10.1007/s00403-011-1166-4] [PMID: 21805180]
[51]
Barenholz YC. Doxil® - The first FDA-approved nano-drug: Lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[52]
Cevenini A, Celia C, Orrù S, et al. Liposomeembedding silicon microparticle for oxaliplatin delivery in tumor chemotherapy. Pharmaceutics 2020; 12(6): 559.
[http://dx.doi.org/10.3390/pharmaceutics12060559] [PMID: 32560359]
[53]
Kirui DK, Celia C, Molinaro R, et al. Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response. Adv Healthc Mater 2015; 4(7): 1092-103.
[http://dx.doi.org/10.1002/adhm.201400738] [PMID: 25721343]
[54]
Kuentz M. Drug absorption modeling as a tool to define the strategy in clinical formulation development. AAPS J 2008; 10(3): 473-9.
[http://dx.doi.org/10.1208/s12248-008-9054-3] [PMID: 18751901]
[55]
Kuentz M, Nick S, Parrott N, Röthlisberger D. A strategy for preclinical formulation development using GastroPlus™ as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. Eur J Pharm Sci 2006; 27(1): 91-9.
[http://dx.doi.org/10.1016/j.ejps.2005.08.011] [PMID: 16219449]
[56]
Gibson L. Lipid-based excipients for oral drug delivery. Drug Pharmaceut Sci 2007; 170: 33.
[57]
Michaelsen MH, Wasan KM, Sivak O, Müllertz A, Rades T. The effect of digestion and drug load on halofantrine absorption from self-nanoemulsifying drug delivery system (SNEDDS). AAPS J 2016; 18(1): 180-6.
[http://dx.doi.org/10.1208/s12248-015-9832-7] [PMID: 26486790]
[58]
Thomas N, Holm R, Garmer M, Karlsson JJ, Müllertz A, Rades T. Supersaturated self-nanoemulsifying drug delivery systems (Super-SNEDDS) enhance the bioavailability of the poorly water-soluble drug simvastatin in dogs. AAPS J 2013; 15(1): 219-27.
[http://dx.doi.org/10.1208/s12248-012-9433-7] [PMID: 23180162]
[59]
Holm R. Bridging the gaps between academic research and industrial product developments of lipid-based formulations. Adv Dru Deliv Revi 2019; 142: 118-27.
[60]
Tarr BD, Yalkowsky SH. Enhanced intestinal absorption of cyclosporine in rats through the reduction of emulsion droplet size. Pharm Res 1989; 6(1): 40-3.
[http://dx.doi.org/10.1023/A:1015843517762] [PMID: 2717516]
[61]
Singh B, Bandopadhyay S, Kapil R, Singh R, Katare O. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst 2009; 26(5): 427-521.
[http://dx.doi.org/10.1615/critrevtherdrugcarriersyst.v26.i5.10] [PMID: 20136631]
[62]
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003; 8(24): 1112-20.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[63]
Hattori Y, Hu S, Onishi H. Effects of cationic lipids in cationic liposomes and disaccharides in the freeze-drying of siRNA lipoplexes on gene silencing in cells by reverse transfection. J Liposome Res 2020; 30(3): 235-45.
[http://dx.doi.org/10.1080/08982104.2019.1630643] [PMID: 31185779]
[64]
Scheffel U, Rhodes BA, Natarajan TK, Wagner HN Jr. Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 1972; 13(7): 498-503.
[PMID: 5033902]
[65]
Jumaa M, Müller BW. Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: Mechanism of the protective effect. Eur J Pharm Sci 2000; 9(3): 285-90.
[http://dx.doi.org/10.1016/S0928-0987(99)00071-8] [PMID: 10594386]
[66]
Cavalli R, Caputo O, Gasco MR. Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 1993; 89(1): R9-R12.
[http://dx.doi.org/10.1016/0378-5173(93)90313-5]
[67]
Gasco MR. Method for producing solid lipid microspheres having a narrow size distribution. US5250236A, 1993.
[68]
Muller RH, Runge SA. Solid lipid nanoparticles (SLN) for controlled drug delivery. In: Benita S, Ed. Submicron emulsions in drug targeting and delivery. Amsterdam: Harwood Academic Publishers 1998; pp. 219-34.
[69]
Jenning V, Gysler A, Schäfer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 2000; 49(3): 211-8.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2] [PMID: 10799811]
[70]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[71]
Radtke M, Muller RH. Comparison of structural properties of solid lipid nanoparticles (SLN) versus other lipid particles. Proceedings of the int symp control rel bioact mater. 309-10.
[72]
Custodio JM, Wu CY, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev 2008; 60(6): 717-33.
[http://dx.doi.org/10.1016/j.addr.2007.08.043] [PMID: 18199522]
[73]
Chaudhary U, Nagaich N, Gulati V, Sharma K, Khosa RL. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J Adv Pharm Educ Res 2012; 2: 32-67.
[74]
Kohli K, Chopra S, Dhar D, Arora S, Khar RK. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov Today 2010; 15(21-22): 958-65.
[http://dx.doi.org/10.1016/j.drudis.2010.08.007] [PMID: 20727418]
[75]
Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm 2011; 420(1): 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.032] [PMID: 21884771]
[76]
Loftsson T, Brewster ME, Masson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Deliv 2004; 2(4): 261-75.
[http://dx.doi.org/10.2165/00137696-200402040-00006]
[77]
Murdandea SB, Gumkowskia MJ. Development of a self-emulsifying formulation that reduces the food effect for torcetrapib: an overview. Int J Pharm 2008; 51: 15-22.
[78]
Parul J, Geeta A, Amanpreet K. Bioavailability enhancement of poorly soluble drugs by SMEDDS: A review. J Drug Deliv Ther 2013; 3: 98-109.
[79]
Saroy S, Baby DA, Sabitha M. Current trends in lipid based delivery systems and its applications in drug delivery. Asian J Pharm Clin Res 2012; 5: 4-9.
[80]
Nanjwade BK, Patel DJ, Udhani RA, Manvi FV. Functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci Pharm 2011; 79(4): 705-27.
[http://dx.doi.org/10.3797/scipharm.1105-09] [PMID: 22145101]
[81]
Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv Drug Deliv Rev 2008; 60(6): 625-37.
[http://dx.doi.org/10.1016/j.addr.2007.10.010] [PMID: 18068260]
[82]
Pouton CW. Formulation of poorly water-soluble drugs for oral administration: Physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 2006; 29(3-4): 278-87.
[http://dx.doi.org/10.1016/j.ejps.2006.04.016] [PMID: 16815001]
[83]
Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev 2008; 60(6): 734-46.
[http://dx.doi.org/10.1016/j.addr.2007.09.006] [PMID: 18045728]
[84]
Rajesh BV, Reddy TK, Srikanth G, Mallikarjun V, Nivethithai P. Lipid based self-emulsifying drug delivery system (SEDDS) for poorly water-soluble drugs: a review. J Glob Pharma Technol 2010; 2: 47-55.
[85]
Gupta RN, Gupta R, Singh RG. Enhancement of oral bioavailability of lipophilic drugs from self-microemulsifying drug delivery systems (SMEDDS). Int J Drug Dev Res 2009; 1: 10-8.
[86]
Mohsin K, Shahba AA, Alanazi FK. Lipid based self-emulsifying formulations for poorly water soluble drugs- an excellent opportunity. Ind J Pharm Educ Res 2012; 46: 88-96.
[87]
Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv 2006; 3(1): 97-110.
[http://dx.doi.org/10.1517/17425247.3.1.97] [PMID: 16370943]
[88]
Lin JH, Chen W, King J. The effect of dosage form on oral absorption of L-365, 260, a potent CCK receptor antagonist in dogs. Pharm Res 1991; 8: 272.
[89]
Siekmann B, Westesen K. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur J Pharm Biopharm 1996; 43: 104-9.
[90]
Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Cont Rel 1997; 48(2-3): 223-36.
[91]
Schwarz C, Freitas C, Mehnert W, MuÈller RH. Sterilisation and physical stability of drug-free and etomidate-loaded solid lipid nanoparticles. Proc Int Sympo Cont Rel Bioact Mater 1995; 22: 766-7.
[92]
Schwarz C, Lipidnanopartikel F. Herstellung, Charakterisierung, Arzneistof®nkorporation und freisetzung, Sterilisation und lyophilisation. Free University of Berlin 1995.
[93]
Jenning V, Schäfer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: Drug release properties. J Cont Rel 2000; 66(2-3): 115-26.
[http://dx.doi.org/10.1016/S0168-3659(99)00223-0] [PMID: 10742573]
[94]
Jenning V. als TraÈgersystem FLN fuÈr die dermale Applikation von retinol. Free University of Berlin 1999.
[95]
Dingler A. Feste Lipid-Nanopartikel als kolloidale WirkstofftraÈgersysteme zur dermalen Applikation. Free University of Berlin 1998.
[96]
Runge SA, Lipid-Nanopartikel F. Lipid-Nanopartikel F (SLN) als kolloidaler ArzneistofftraÈger fuÈr Cyclosporin A. Free University of Berlin 1998.
[97]
Penkler L. Pharmaceutical cyclosporin formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation WO 99/56733, 1999.
[98]
Westesen K, Siekmann B, Koch MHJ. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int J Pharm 1993; 93(1-3): 189-99.
[99]
Bunjes H, Westesen K, Koch MHJ. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm 1996; 129(1-2): 159-73.
[http://dx.doi.org/10.1016/0378-5173(95)04286-5]
[100]
Jenning V, Mäder K, Gohla SH. Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: a 1H-NMR study. Int J Pharm 2000; 205(1-2): 15-21.
[http://dx.doi.org/10.1016/S0378-5173(00)00462-2] [PMID: 11000538]
[101]
Cavalli R, Peira E, Caputo O, Gasco MR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with b- cyclodextrins. Int J Pharm 1999; 182(1): 59-69.
[http://dx.doi.org/10.1016/S0378-5173(99)00066-6]
[102]
zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery ± drug release and release mechanism. Eur J Pharm Biopharm 1998; 45(2): 149-55.
[103]
Garti N, Sato K. Crystallization and polymorphism of fats and fatty acids. New York, Basel: Marcel Dekker 1998; pp. 1-4.
[104]
Anselmo AC, Zhang M, Kumar S, et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 2015; 9(3): 3169-77.
[http://dx.doi.org/10.1021/acsnano.5b00147] [PMID: 25715979]
[105]
Sykes EA, Dai Q, Sarsons CD, et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc Natl Acad Sci 2016; 113(9): E1142-51.
[http://dx.doi.org/10.1073/pnas.1521265113] [PMID: 26884153]
[106]
Theek B, Gremse F, Kunjachan S, et al. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J Cont Rel 2014; 182: 83-9.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.007] [PMID: 24631862]
[107]
Hansen AE, Petersen AL, Henriksen JR, et al. Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 2015; 9(7): 6985-95.
[http://dx.doi.org/10.1021/acsnano.5b01324] [PMID: 26022907]
[108]
Miller MA, Gadde S, Pfirschke C, et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med 2015; 7(314): 314ra183.
[http://dx.doi.org/10.1126/scitranslmed.aac6522] [PMID: 26582898]
[109]
Lee H, Shields AF, Siegel BA, et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res 2017; 23(15): 4190-202.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3193] [PMID: 28298546]
[110]
van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM. Biodistribution and pharmacokinetic analysis of Paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol Pharm 2008; 5(4): 516-26.
[http://dx.doi.org/10.1021/mp800030k] [PMID: 18616278]
[111]
Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces 2016; 8(47): 32159-69.
[http://dx.doi.org/10.1021/acsami.6b10175] [PMID: 27808492]
[112]
Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 2004; 6(4): 343-53.
[http://dx.doi.org/10.1593/neo.03460] [PMID: 15256056]
[113]
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 2011; 44(10): 1123-34.
[http://dx.doi.org/10.1021/ar200054n] [PMID: 21692448]
[114]
Xu R, Zhang G, Mai J, et al. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol 2016; 34(4): 414-8.
[http://dx.doi.org/10.1038/nbt.3506] [PMID: 26974511]
[115]
Levy O, Brennen WN, Han E, et al. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials 2016; 91: 140-50.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.023] [PMID: 27019026]
[116]
Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med 2015; 7(291): 291ra94.
[http://dx.doi.org/10.1126/scitranslmed.aaa5447] [PMID: 26062846]
[117]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[118]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[119]
Kirpotin DB, Drummond DC, Shao Y, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 2006; 66(13): 6732-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199] [PMID: 16818648]
[120]
Schmidt MM, Wittrup KD. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol Cancer Ther 2009; 8(10): 2861-71.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0195] [PMID: 19825804]
[121]
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010; 145(3): 182-95.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036] [PMID: 20226220]
[122]
Sahay G, Querbes W, Alabi C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 2013; 31(7): 653-8.
[http://dx.doi.org/10.1038/nbt.2614] [PMID: 23792629]
[123]
Gilleron J, Querbes W, Zeigerer A, et al. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 2013; 31(7): 638-46.
[http://dx.doi.org/10.1038/nbt.2612] [PMID: 23792630]
[124]
Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature 2013; 501(7467): 328-37.
[http://dx.doi.org/10.1038/nature12624] [PMID: 24048065]
[125]
Stuchbery R, Kurganovs N, McCoy P, et al. Target acquired: progress and promise of targeted therapeutics in the treatment of prostate cancer. Curr Cancer Drug Targ 2015; 15(5): 394-405.
[http://dx.doi.org/10.2174/1568009615666150416113453] [PMID: 25882061]
[126]
Kedmi R, Veiga N, Ramishetti S, et al. A modular platform for targeted RNAi therapeutics. Nat Nanotechnol 2018; 13(3): 214-9.
[http://dx.doi.org/10.1038/s41565-017-0043-5] [PMID: 29379205]
[127]
Bertrand N, Leroux JC. The journey of a drug-carrier in the body: An anatomo-physiological perspective. J Control Release 2012; 161(2): 152-63.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.098] [PMID: 22001607]
[128]
Mahmoudi M, Bertrand N, Zope H, Farokhzad OC. Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today 2016; 11(6): 817-32.
[http://dx.doi.org/10.1016/j.nantod.2016.10.005]
[129]
Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: Clinical implications of the protein corona. Trends Biotechnol 2017; 35(3): 257-64.
[http://dx.doi.org/10.1016/j.tibtech.2016.08.011] [PMID: 27663778]
[130]
Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013; 8(2): 137-43.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[131]
Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 2010; 31(26): 6867-75.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.027] [PMID: 20541799]
[132]
Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 2012; 134(4): 2139-47.
[http://dx.doi.org/10.1021/ja2084338] [PMID: 22191645]
[133]
Schöttler S, Becker G, Winzen S, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol 2016; 11(4): 372-7.
[http://dx.doi.org/10.1038/nnano.2015.330] [PMID: 26878141]
[134]
Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007; 2(8): 469-78.
[http://dx.doi.org/10.1038/nnano.2007.223] [PMID: 18654343]
[135]
Szebeni J, Muggia F, Gabizon A, Barenholz Y. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: Prediction and prevention. Adv Drug Deliv Rev 2011; 63(12): 1020-30.
[http://dx.doi.org/10.1016/j.addr.2011.06.017] [PMID: 21787819]
[136]
Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013; 339(6122): 971-5.
[http://dx.doi.org/10.1126/science.1229568] [PMID: 23430657]
[137]
Parodi A, Quattrocchi N, van de Ven AL, et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 2013; 8(1): 61-8.
[http://dx.doi.org/10.1038/nnano.2012.212] [PMID: 23241654]
[138]
Farokhzad OC. Platelet mimicry. Nature 2015; 526(7571): 47-8.
[http://dx.doi.org/10.1038/nature15218] [PMID: 26375011]
[139]
Hu Q, Sun W, Qian C, Wang C, Bomba HN, Gu Z. Anticancer platelet-mimicking nanovehicles. Adv Mater 2015; 27(44): 7043-50.
[http://dx.doi.org/10.1002/adma.201503323] [PMID: 26416431]
[140]
Erkoc P, Cinay GE, Kizilel S. Targeted drug delivery: overcoming barriers through the design of novel delivery vehicles. Rec Tren Targ Dru Deliv. (SM GroupChapter.), Sagar Naskar 2015.
[141]
Jin KT, Lu ZB, Chen JY, et al. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J Nanomater 2020; 2020: 1-14.
[http://dx.doi.org/10.1155/2020/9184284]
[142]
Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours. Nat Mater 2020; 19(5): 566-75.
[http://dx.doi.org/10.1038/s41563-019-0566-2] [PMID: 31932672]
[143]
He B, Sui X, Yu B, Wang S, Shen Y, Cong H. Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Deliv 2020; 27(1): 1474-90.
[http://dx.doi.org/10.1080/10717544.2020.1831106] [PMID: 33100061]
[144]
Mills JK, Needham D. Targeted drug delivery. Exp Opin Ther Pat 1999; 9(11): 1499-513.
[http://dx.doi.org/10.1517/13543776.9.11.1499]
[145]
Devarajan PV, Jain S, Eds. Targeted drug delivery: concepts and design. New York Dordrecht London. Cham, Heidelberg: Springer 2015.
[http://dx.doi.org/10.1007/978-3-319-11355-5]
[146]
Kıvılcım O, Hakan E, Sema Ç. Novel advances in targeted drug delivery. J Drug Target 2017; 26(8): 633-42.
[http://dx.doi.org/10.1080/1061186X.2017.1401076] [PMID: 29096554]
[147]
Scott RC, Crabbe D, Krynska B, Ansari R, Kiani MF. Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue. Expert Opin Drug Deliv 2008; 5(4): 459-70.
[http://dx.doi.org/10.1517/17425247.5.4.459] [PMID: 18426386]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy