Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Decades Long Involvement of THP-1 Cells as a Model for Macrophage Research: A Comprehensive Review

Author(s): Prakhar Sharma, Kaliyamurthi Venkatachalam and Ambika Binesh*

Volume 23, Issue 2, 2024

Published on: 26 April, 2024

Page: [85 - 104] Pages: 20

DOI: 10.2174/0118715230294413240415054610

Price: $65

Open Access Journals Promotions 2
Abstract

Over the years, researchers have endeavored to identify dependable and reproducible in vitro models for examining macrophage behavior under controlled conditions. The THP-1 cell line has become a significant and widely employed tool in macrophage research within these models. Originating from the peripheral blood of individuals with acute monocytic leukemia, this human monocytic cell line can undergo transformation into macrophage-like cells, closely mirroring primary human macrophages when exposed to stimulants. Macrophages play a vital role in the innate immune system, actively regulating inflammation, responding to infections, and maintaining tissue homeostasis. A comprehensive understanding of macrophage biology and function is crucial for gaining insights into immunological responses, tissue healing, and the pathogenesis of diseases such as viral infections, autoimmune disorders, and neoplastic conditions. This review aims to thoroughly evaluate and emphasize the extensive history of THP-1 cells as a model for macrophage research. Additionally, it will delve into the significance of THP-1 cells in advancing our comprehension of macrophage biology and their invaluable contributions to diverse scientific domains.

Keywords: THP-1, in vitro models, macrophage research, peripheral blood, acute monocytic leukemia, homeostasis.

Graphical Abstract
[1]
Auffray, C.; Sieweke, M.H.; Geissmann, F. Blood monocytes: Development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol., 2009, 27(1), 669-692.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132557] [PMID: 19132917]
[2]
Swirski, F.K.; Nahrendorf, M.; Etzrodt, M.; Wildgruber, M.; Cortez-Retamozo, V.; Panizzi, P.; Figueiredo, J.L.; Kohler, R.H.; Chudnovskiy, A.; Waterman, P.; Aikawa, E.; Mempel, T.R.; Libby, P.; Weissleder, R.; Pittet, M.J. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 2009, 325(5940), 612-616.
[http://dx.doi.org/10.1126/science.1175202] [PMID: 19644120]
[3]
Serbina, N.V.; Jia, T.; Hohl, T.M.; Pamer, E.G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol., 2008, 26(1), 421-452.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090326] [PMID: 18303997]
[4]
Gordon, S. Do macrophage innate immune receptors enhance atherogenesis? Dev. Cell, 2003, 5(5), 666-668.
[http://dx.doi.org/10.1016/S1534-5807(03)00329-0] [PMID: 14602065]
[5]
Grosjean, A.; Venteclef, N.; Dalmas, E. Understanding the heterogeneity and functions of metabolic tissue macrophages. In:In Seminars in cell & developmental biology; Academic Press, 2021, 119, pp. 130-139.
[http://dx.doi.org/10.1016/j.semcdb.2021.09.002]
[6]
Zhang, Y.; Li, Y.; Fu, X.; Wang, P.; Wang, Q.; Meng, W.; Wang, T.; Yang, J.; Chai, R. The detrimental and beneficial functions of macrophages after cochlear injury. Front. Cell Dev. Biol., 2021, 9, 631904.
[http://dx.doi.org/10.3389/fcell.2021.631904] [PMID: 34458249]
[7]
Woo, Y.D.; Jeong, D.; Chung, D.H. Development and functions of alveolar macrophages. Mol. Cells, 2021, 44(5), 292-300.
[http://dx.doi.org/10.14348/molcells.2021.0058] [PMID: 33972474]
[8]
Binesh, A. Decades‐long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends. Rev. Aquacult., 2021, 13(1), 556-566.
[http://dx.doi.org/10.1111/raq.12486]
[9]
Nasrollahzadeh, E.; Razi, S.; Keshavarz-Fathi, M.; Mazzone, M.; Rezaei, N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol. Immunother., 2020, 69(9), 1673-1697.
[http://dx.doi.org/10.1007/s00262-020-02616-6] [PMID: 32500231]
[10]
Chow, A.; Brown, B.D.; Merad, M. Studying the mononuclear phagocyte system in the molecular age. Nat. Rev. Immunol., 2011, 11(11), 788-798.
[http://dx.doi.org/10.1038/nri3087] [PMID: 22025056]
[11]
Yeung, T.; Terebiznik, M.; Yu, L.; Silvius, J.; Abidi, W.M.; Philips, M.; Levine, T.; Kapus, A.; Grinstein, S. Receptor activation alters inner surface potential during phagocytosis. Science, 2006, 313(5785), 347-351.
[http://dx.doi.org/10.1126/science.1129551] [PMID: 16857939]
[12]
Fairn, G.D.; Ogata, K.; Botelho, R.J.; Stahl, P.D.; Anderson, R.A.; De Camilli, P.; Meyer, T.; Wodak, S.; Grinstein, S. An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. J. Cell Biol., 2009, 187(5), 701-714.
[http://dx.doi.org/10.1083/jcb.200909025] [PMID: 19951917]
[13]
Scott, C.C.; Dobson, W.; Botelho, R.J.; Coady-Osberg, N.; Chavrier, P.; Knecht, D.A.; Heath, C.; Stahl, P.; Grinstein, S. Phosphatidylinositol-4,5- bis phosphate hydrolysis directs actin remodeling during phagocytosis. J. Cell Biol., 2005, 169(1), 139-149.
[http://dx.doi.org/10.1083/jcb.200412162] [PMID: 15809313]
[14]
Desjardins, M.; Huber, L.A.; Parton, R.G.; Griffiths, G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol., 1994, 124(5), 677-688.
[http://dx.doi.org/10.1083/jcb.124.5.677] [PMID: 8120091]
[15]
Flannagan, R.S.; Cosío, G.; Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol., 2009, 7(5), 355-366.
[http://dx.doi.org/10.1038/nrmicro2128] [PMID: 19369951]
[16]
Risso, A. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J. Leukoc. Biol., 2000, 68(6), 785-792.
[http://dx.doi.org/10.1189/jlb.68.6.785] [PMID: 11129645]
[17]
Högger, P.; Dreier, J.; Droste, A.; Buck, F.; Sorg, C. Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteine-rich family (CD163). J. Immunol., 1998, 161(4), 1883-1890.
[http://dx.doi.org/10.4049/jimmunol.161.4.1883] [PMID: 9712057]
[18]
Stein, M.; Keshav, S.; Harris, N.; Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med., 1992, 176(1), 287-292.
[http://dx.doi.org/10.1084/jem.176.1.287] [PMID: 1613462]
[19]
Geng, Y.J.; Hansson, G.K. Interferon-gamma inhibits scavenger receptor expression and foam cell formation in human monocyte-derived macrophages. J. Clin. Invest., 1992, 89(4), 1322-1330.
[http://dx.doi.org/10.1172/JCI115718] [PMID: 1556191]
[20]
Mosser, D.M.; Handman, E. Treatment of murine macrophages with interferon-γ inhibits their ability to bind leishmania promastigotes. J. Leukoc. Biol., 1992, 52(4), 369-376.
[http://dx.doi.org/10.1002/jlb.52.4.369] [PMID: 1402387]
[21]
Cohen, L.; David, B.; Cavaillon, J.M. Interleukin-3 enhances cytokine production by LPS-stimulated macrophages. Immunol. Lett., 1991, 28(2), 121-126.
[http://dx.doi.org/10.1016/0165-2478(91)90109-N] [PMID: 1885210]
[22]
Danis, V.A.; Kulesz, A.J.; Nelson, D.S.; Brooks, P.M. Cytokine regulation of human monocyte interleukin-1 (IL-1) production in vitro. Enhancement of IL-1 production by interferon (IFN) gamma, tumour necrosis factor-alpha, IL-2 and IL-1, and inhibition by IFN-alpha. Clin. Exp. Immunol., 2008, 80(3), 435-443.
[http://dx.doi.org/10.1111/j.1365-2249.1990.tb03306.x] [PMID: 2115419]
[23]
Hart, P.H.; Whitty, G.A.; Piccoli, D.S.; Hamilton, J.A. Synergistic activation of human monocytes by granulocyte-macrophage colony-stimulating factor and IFN-gamma. Increased TNF-alpha but not IL-1 activity. J. Immunol., 1988, 141(5), 1516-1521.
[24]
Lew, W.O.; Oppenheim, J.J.; Matsushima, K. Analysis of the suppression of IL-1 alpha and IL-1 beta production in human peripheral blood mononuclear adherent cells by a glucocorticoid hormone. J. Immunol., 1988, 140(6), 1895-1902.
[25]
Waage, A.; Bakke, O. Glucocorticoids suppress the production of tumour necrosis factor by lipopolysaccharide-stimulated human monocytes. Immunology, 1988, 63(2), 299-302.
[PMID: 3350575]
[26]
Fouqueray, B.; Philippe, C.; Amrani, A.; Perez, J.; Baud, L. Heat shock prevents lipopolysaccharide‐induced tumor necrosis factor‐α synthesis by rat mononuclear phagocytes. Eur. J. Immunol., 1992, 22(11), 2983-2987.
[http://dx.doi.org/10.1002/eji.1830221133] [PMID: 1425922]
[27]
Brown, B.N.; Badylak, S.F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomater., 2013, 9(2), 4948-4955.
[http://dx.doi.org/10.1016/j.actbio.2012.10.025] [PMID: 23099303]
[28]
Park, J.E.; Barbul, A. Understanding the role of immune regulation in wound healing. Am. J. Surg., 2004, 187(5), S11-S16.
[http://dx.doi.org/10.1016/S0002-9610(03)00296-4] [PMID: 15147986]
[29]
Tsuchiya, S.; Yamabe, M.; Yamaguchi, Y.; Kobayashi, Y.; Konno, T.; Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP‐1). Int. J. Cancer, 1980, 26(2), 171-176.
[http://dx.doi.org/10.1002/ijc.2910260208] [PMID: 6970727]
[30]
Tsuchiya, S.; Kobayashi, Y.; Goto, Y.; Okumura, H.; Nakae, S.; Konno, T.; Tada, K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res., 1982, 42(4), 1530-1536.
[PMID: 6949641]
[31]
Qin, Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis, 2012, 221(1), 2-11.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.09.003] [PMID: 21978918]
[32]
Brück, W.; Porada, P.; Poser, S.; Rieckmann, P.; Hanefeld, F.; Kretzschmarch, H.A.; Lassmann, H. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann. Neurol., 1995, 38(5), 788-796.
[http://dx.doi.org/10.1002/ana.410380514] [PMID: 7486871]
[33]
Berges, C.; Naujokat, C.; Tinapp, S.; Wieczorek, H.; Höh, A.; Sadeghi, M.; Opelz, G.; Daniel, V. A cell line model for the differentiation of human dendritic cells. Biochem. Biophys. Res. Commun., 2005, 333(3), 896-907.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.171] [PMID: 15963458]
[34]
Bremner, T.A.; Chatterjee, D.; Han, Z.; Tsan, M.F.; Wyche, J.H. THP-1 monocytic leukemia cells express Fas ligand constitutively and kill Fas-positive Jurkat cells. Leuk. Res., 1999, 23(10), 865-870.
[http://dx.doi.org/10.1016/S0145-2126(99)00101-0] [PMID: 10573130]
[35]
Abrahams, V.M.; Kim, Y.M.; Straszewski, S.L.; Romero, R.; Mor, G. Macrophages and apoptotic cell clearance during pregnancy. Am. J. Reprod. Immunol., 2004, 51(4), 275-282.
[http://dx.doi.org/10.1111/j.1600-0897.2004.00156.x] [PMID: 15212680]
[36]
Schwende, H.; Fitzke, E.; Ambs, P.; Dieter, P. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J. Leukoc. Biol., 1996, 59(4), 555-561.
[http://dx.doi.org/10.1002/jlb.59.4.555] [PMID: 8613704]
[37]
Dobrovolskaia, M.A.; Vogel, S.N. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect., 2002, 4(9), 903-914.
[http://dx.doi.org/10.1016/S1286-4579(02)01613-1] [PMID: 12106783]
[38]
Gersuk, G.M.; Razai, L.W.; Marr, K.A. Methods of in vitro macrophage maturation confer variable inflammatory responses in association with altered expression of cell surface dectin-1. J. Immunol. Methods, 2008, 329(1-2), 157-166.
[http://dx.doi.org/10.1016/j.jim.2007.10.003] [PMID: 17997408]
[39]
Reyes, L.; Davidson, M.K.; Thomas, L.C.; Davis, J.K. Effects of Mycoplasma fermentans incognitus on differentiation of THP-1 cells. Infect. Immun., 1999, 67(7), 3188-3192.
[http://dx.doi.org/10.1128/IAI.67.7.3188-3192.1999] [PMID: 10377089]
[40]
Taylor, P.R.; Martinez-Pomares, L.; Stacey, M.; Lin, H-H.; Brown, G.D.; Gordon, S. Macrophage receptors and immune recognition. Annu. Rev. Immunol., 2005, 23(1), 901-944.
[http://dx.doi.org/10.1146/annurev.immunol.23.021704.115816] [PMID: 15771589]
[41]
Martinez-Pomares, L.; Platt, N.; Mcknight, A.J.; da Silva, R.P.; Gordon, S. Macrophage membrane molecules: markers of tissue differentiation and heterogeneity. Immunobiology, 1996, 195(4-5), 407-416.
[http://dx.doi.org/10.1016/S0171-2985(96)80012-X] [PMID: 8933147]
[42]
Devitt, A.; Moffatt, O.D.; Raykundalia, C.; Capra, J.D.; Simmons, D.L.; Gregory, C.D. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature, 1998, 392(6675), 505-509.
[http://dx.doi.org/10.1038/33169] [PMID: 9548256]
[43]
Triantafilou, M.; Triantafilou, K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol., 2002, 23(6), 301-304.
[http://dx.doi.org/10.1016/S1471-4906(02)02233-0] [PMID: 12072369]
[44]
Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest., 2003, 112(12), 1796-1808.
[http://dx.doi.org/10.1172/JCI200319246] [PMID: 14679176]
[45]
Curat, C.A.; Miranville, A.; Sengenès, C.; Diehl, M.; Tonus, C.; Busse, R.; Bouloumié, A. From blood monocytes to adipose tissue-resident macrophages: Induction of diapedesis by human mature adipocytes. Diabetes, 2004, 53(5), 1285-1292.
[http://dx.doi.org/10.2337/diabetes.53.5.1285] [PMID: 15111498]
[46]
Aldo, P.B.; Craveiro, V.; Guller, S.; Mor, G. Effect of culture conditions on the phenotype of THP‐1 monocyte cell line. Am. J. Reprod. Immunol., 2013, 70(1), 80-86.
[http://dx.doi.org/10.1111/aji.12129]
[47]
Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J., 1992, 6(12), 3051-3064.
[http://dx.doi.org/10.1096/fasebj.6.12.1381691] [PMID: 1381691]
[48]
Nussler, A.K.; Billiar, T.R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol., 1993, 54(2), 171-178.
[http://dx.doi.org/10.1002/jlb.54.2.171] [PMID: 7689630]
[49]
Spencer, M.; Yao-Borengasser, A.; Unal, R.; Rasouli, N.; Gurley, C.M.; Zhu, B.; Peterson, C.A.; Kern, P.A. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab., 2010, 299(6), E1016-E1027.
[http://dx.doi.org/10.1152/ajpendo.00329.2010] [PMID: 20841504]
[50]
Chanput, W.; Mes, J.J.; Savelkoul, H.F.J.; Wichers, H.J. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds. Food Funct., 2013, 4(2), 266-276.
[http://dx.doi.org/10.1039/C2FO30156C] [PMID: 23135314]
[51]
Caras, I.; Tucureanu, C.; Lerescu, L.; Pitica, R.; Melinceanu, L.; Neagu, S.; Salageanu, A. Influence of tumor cell culture supernatants on macrophage functional polarization: in vitro models of macrophage-tumor environment interaction. Tumori, 2011, 97(5), 647-654.
[http://dx.doi.org/10.1177/030089161109700518] [PMID: 22158498]
[52]
Park, E.K.; Jung, H.S.; Yang, H.I.; Yoo, M.C.; Kim, C.; Kim, K.S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm. Res., 2007, 56(1), 45-50.
[http://dx.doi.org/10.1007/s00011-007-6115-5] [PMID: 17334670]
[53]
Zhou, L.; Shen, L.; Hu, L.; Ge, H.; Pu, J.; Chai, D.; Shao, Q.; Wang, L.; Zeng, J.; He, B. Retinoid X receptor agonists inhibit phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 cells into macrophages. Mol. Cell. Biochem., 2010, 335(1-2), 283-289.
[http://dx.doi.org/10.1007/s11010-009-0278-z] [PMID: 19784811]
[54]
Daigneault, M.; Preston, J.A.; Marriott, H.M.; Whyte, M.K.B.; Dockrell, D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010, 5(1), e8668.
[http://dx.doi.org/10.1371/journal.pone.0008668] [PMID: 20084270]
[55]
Balon, K.; Wiatrak, B. PC12 and THP-1 cell lines as neuronal and microglia model in neurobiological research. Appl. Sci. , 2021, 11(9), 3729.
[http://dx.doi.org/10.3390/app11093729]
[56]
Kawakami, A.; Aikawa, M.; Libby, P.; Alcaide, P.; Luscinskas, F.W.; Sacks, F.M. Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation, 2006, 113(5), 691-700.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.591743] [PMID: 16461842]
[57]
Lomovskaya, Y.V.; Kobyakova, M.I.; Senotov, A.S.; Lomovsky, A.I.; Minaychev, V.V.; Fadeeva, I.S.; Shtatnova, D.Y.; Krasnov, K.S.; Zvyagina, A.I.; Akatov, V.S.; Fadeev, R.S. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5. Biomolecules, 2022, 12(2), 150.
[http://dx.doi.org/10.3390/biom12020150] [PMID: 35204655]
[58]
Wang, L.; Zhu, L.; Duan, C.; Li, L.; Chen, G. Total saponin of Dioscorea collettii attenuates MSU crystal induced inflammation via inhibiting the activation of the NALP3 inflammasome and caspase 1 in THP 1 macrophages. Mol. Med. Rep., 2020, 21(6), 2466-2474.
[http://dx.doi.org/10.3892/mmr.2020.11035] [PMID: 32236574]
[59]
Kritharides, L.; Christian, A.; Stoudt, G.; Morel, D.; Rothblat, G.H. Cholesterol metabolism and efflux in human THP-1 macrophages. Arterioscler. Thromb. Vasc. Biol., 1998, 18(10), 1589-1599.
[http://dx.doi.org/10.1161/01.ATV.18.10.1589] [PMID: 9763531]
[60]
Nakagawa, K.; Zingg, J.M.; Kim, S.H.; Thomas, M.J.; Dolnikowski, G.G.; Azzi, A.; Miyazawa, T.; Meydani, M. Differential cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation. Br. J. Nutr., 2014, 112(1), 8-14.
[http://dx.doi.org/10.1017/S0007114514000567] [PMID: 24725345]
[61]
Noronha, N.; Ehx, G.; Meunier, M.C.; Laverdure, J.P.; Thériault, C.; Perreault, C. Major multilevel molecular divergence between THP‐1 cells from different biorepositories. Int. J. Cancer, 2020, 147(7), 2000-2006.
[http://dx.doi.org/10.1002/ijc.32967] [PMID: 32163592]
[62]
Petin, K.; Weiss, R.; Müller, G.; Garten, A.; Grahnert, A.; Sack, U.; Hauschildt, S. NAD metabolites interfere with proliferation and functional properties of THP-1 cells. Innate Immun., 2019, 25(5), 280-293.
[http://dx.doi.org/10.1177/1753425919844587] [PMID: 31053044]
[63]
Spangenberg, SH; Zavareh, RB; Lairson, LL Protocol for highthroughput compound screening using flow cytometry in THP-1 cells. STAR protocols, 2021, 2(2), 100400.
[64]
Schnoor, M.; Buers, I.; Sietmann, A.; Brodde, M.F.; Hofnagel, O.; Robenek, H.; Lorkowski, S. Efficient non-viral transfection of THP-1 cells. J. Immunol. Methods, 2009, 344(2), 109-115.
[http://dx.doi.org/10.1016/j.jim.2009.03.014] [PMID: 19345690]
[65]
Bosshart, H.; Heinzelmann, M. Lipopolysaccharide-mediated cell activation without rapid mobilization of cytosolic free calcium. Mol. Immunol., 2004, 41(10), 1023-1028.
[http://dx.doi.org/10.1016/j.molimm.2004.05.003] [PMID: 15302164]
[66]
Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.S.; Lee, H.; Lee, J.O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature, 2009, 458(7242), 1191-1195.
[http://dx.doi.org/10.1038/nature07830] [PMID: 19252480]
[67]
Steinbach, F.; Thiele, B. Phenotypic investigation of mononuclear phagocytes by flow cytometry. J. Immunol. Methods, 1994, 174(1-2), 109-122.
[http://dx.doi.org/10.1016/0022-1759(94)90015-9] [PMID: 8083514]
[68]
Maeß, M.B.; Wittig, B.; Cignarella, A.; Lorkowski, S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J. Immunol. Methods, 2014, 402(1-2), 76-81.
[http://dx.doi.org/10.1016/j.jim.2013.11.006] [PMID: 24269601]
[69]
Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell, 2002, 111(7), 927-930.
[http://dx.doi.org/10.1016/S0092-8674(02)01201-1] [PMID: 12507420]
[70]
Meghari, S.; Berruyer, C.; Lepidi, H.; Galland, F.; Naquet, P.; Mege, J.L. Vanin‐1 controls granuloma formation and macrophage polarization in Coxiella burnetii infection. Eur. J. Immunol., 2007, 37(1), 24-32.
[http://dx.doi.org/10.1002/eji.200636054] [PMID: 17163446]
[71]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[72]
Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol., 2005, 5(12), 953-964.
[http://dx.doi.org/10.1038/nri1733] [PMID: 16322748]
[73]
Noël, W.; Raes, G.; Hassanzadeh Ghassabeh, G.; De Baetselier, P.; Beschin, A. Alternatively activated macrophages during parasite infections. Trends Parasitol., 2004, 20(3), 126-133.
[http://dx.doi.org/10.1016/j.pt.2004.01.004] [PMID: 15036034]
[74]
Wynn, T.A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol., 2004, 4(8), 583-594.
[http://dx.doi.org/10.1038/nri1412] [PMID: 15286725]
[75]
Kzhyshkowska, J.; Workman, G.; Cardó-Vila, M.; Arap, W.; Pasqualini, R.; Gratchev, A.; Krusell, L.; Goerdt, S.; Sage, E.H. Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC. J. Immunol., 2006, 176(10), 5825-5832.
[http://dx.doi.org/10.4049/jimmunol.176.10.5825] [PMID: 16670288]
[76]
Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol., 2011, 12(8), 695-708.
[http://dx.doi.org/10.1038/ni.2065] [PMID: 21772278]
[77]
Schonthaler, H.B.; Guinea-Viniegra, J.; Wagner, E.F. Targeting inflammation by modulating the Jun/AP-1 pathway. Ann. Rheum. Dis., 2011, 70(1), i109-i112.
[http://dx.doi.org/10.1136/ard.2010.140533] [PMID: 21339212]
[78]
Krausgruber, T.; Blazek, K.; Smallie, T.; Alzabin, S.; Lockstone, H.; Sahgal, N.; Hussell, T.; Feldmann, M.; Udalova, I.A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol., 2011, 12(3), 231-238.
[http://dx.doi.org/10.1038/ni.1990] [PMID: 21240265]
[79]
Ohmori, Y.; Hamilton, T.A. IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages. J. Immunol., 1997, 159(11), 5474-5482.
[80]
Satoh, T.; Takeuchi, O.; Vandenbon, A.; Yasuda, K.; Tanaka, Y.; Kumagai, Y.; Miyake, T.; Matsushita, K.; Okazaki, T.; Saitoh, T.; Honma, K.; Matsuyama, T.; Yui, K.; Tsujimura, T.; Standley, D.M.; Nakanishi, K.; Nakai, K.; Akira, S. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol., 2010, 11(10), 936-944.
[http://dx.doi.org/10.1038/ni.1920] [PMID: 20729857]
[81]
Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Goforth, M.H.; Morel, C.R.; Subramanian, V.; Mukundan, L.; Eagle, A.R.; Vats, D.; Brombacher, F.; Ferrante, A.W.; Chawla, A. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature, 2007, 447(7148), 1116-1120.
[http://dx.doi.org/10.1038/nature05894] [PMID: 17515919]
[82]
Ruffell, D.; Mourkioti, F.; Gambardella, A.; Kirstetter, P.; Lopez, R.G.; Rosenthal, N.; Nerlov, C.A. CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. , 2009, 106(41), 17475-17480.
[http://dx.doi.org/10.1073/pnas.0908641106] [PMID: 19805133]
[83]
Xu, L.L.; Warren, M.K.; Rose, W.L.; Gong, W.; Wang, J.M. Human recombinant monocyte chemotactic protein and other c-c chemokines bind and induce directional migration of dendritic cells in vitro. J. Leukoc. Biol., 1996, 60(3), 365-371.
[http://dx.doi.org/10.1002/jlb.60.3.365] [PMID: 8830793]
[84]
Cotton, M.; Claing, A. G protein-coupled receptors stimulation and the control of cell migration. Cell. Signal., 2009, 21(7), 1045-1053.
[http://dx.doi.org/10.1016/j.cellsig.2009.02.008] [PMID: 19249352]
[85]
Elomaa, O.; Kangas, M.; Sahlberg, C.; Tuukkanen, J.; Sormunen, R.; Liakka, A.; Thesleff, I.; Kraal, G.; Tryggvason, K. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell, 1995, 80(4), 603-609.
[http://dx.doi.org/10.1016/0092-8674(95)90514-6] [PMID: 7867067]
[86]
O’Neill, L.A.J.; Golenbock, D.; Bowie, A.G. The history of Toll-like receptors redefining innate immunity. Nat. Rev. Immunol., 2013, 13(6), 453-460.
[http://dx.doi.org/10.1038/nri3446] [PMID: 23681101]
[87]
Bertin, J.; Nir, W.J.; Fischer, C.M.; Tayber, O.V.; Errada, P.R.; Grant, J.R.; Keilty, J.J.; Gosselin, M.L.; Robison, K.E.; Wong, G.H.W.; Glucksmann, M.A.; DiStefano, P.S. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J. Biol. Chem., 1999, 274(19), 12955-12958.
[http://dx.doi.org/10.1074/jbc.274.19.12955] [PMID: 10224040]
[88]
Inohara, N.; Koseki, T.; del Peso, L.; Hu, Y.; Yee, C.; Chen, S.; Carrio, R.; Merino, J.; Liu, D.; Ni, J.; Núñez, G. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem., 1999, 274(21), 14560-14567.
[http://dx.doi.org/10.1074/jbc.274.21.14560] [PMID: 10329646]
[89]
Minakami, R.; Sumimotoa, H. Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Int. J. Hematol., 2006, 84(3), 193-198.
[http://dx.doi.org/10.1532/IJH97.06133] [PMID: 17050190]
[90]
El-Gayar, S.; Thüring-Nahler, H.; Pfeilschifter, J.; Röllinghoff, M.; Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol., 2003, 171(9), 4561-4568.
[http://dx.doi.org/10.4049/jimmunol.171.9.4561] [PMID: 14568929]
[91]
Mostowy, S.; Bonazzi, M.; Hamon, M.A.; Tham, T.N.; Mallet, A.; Lelek, M.; Gouin, E.; Demangel, C.; Brosch, R.; Zimmer, C.; Sartori, A.; Kinoshita, M.; Lecuit, M.; Cossart, P. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe, 2010, 8(5), 433-444.
[http://dx.doi.org/10.1016/j.chom.2010.10.009] [PMID: 21075354]
[92]
Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol., 2013, 13(10), 722-737.
[http://dx.doi.org/10.1038/nri3532] [PMID: 24064518]
[93]
Deng, B.; Wehling-Henricks, M.; Villalta, S.A.; Wang, Y.; Tidball, J.G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol., 2012, 189(7), 3669-3680.
[http://dx.doi.org/10.4049/jimmunol.1103180] [PMID: 22933625]
[94]
Troidl, C.; Möllmann, H.; Nef, H.; Masseli, F.; Voss, S.; Szardien, S.; Willmer, M.; Rolf, A.; Rixe, J.; Troidl, K.; Kostin, S.; Hamm, C.; Elsässer, A. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell. Mol. Med., 2009, 13(9b), 3485-3496.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00707.x] [PMID: 19228260]
[95]
Beutler, B.; Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol., 2003, 3(2), 169-176.
[http://dx.doi.org/10.1038/nri1004] [PMID: 12563300]
[96]
Medzhitov, R.; Janeway, C.J. Jr Innate immune recognition: mechanisms and pathways. Immunol. Rev., 2000, 173(1), 89-97.
[http://dx.doi.org/10.1034/j.1600-065X.2000.917309.x] [PMID: 10719670]
[97]
Monick, M.M.; Carter, A.B.; Robeff, P.K.; Flaherty, D.M.; Peterson, M.W.; Hunninghake, G.W. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of β-catenin. J. Immunol., 2001, 166(7), 4713-4720.
[http://dx.doi.org/10.4049/jimmunol.166.7.4713] [PMID: 11254732]
[98]
Monick, M.M.; Robeff, P.K.; Butler, N.S.; Flaherty, D.M.; Carter, A.B.; Peterson, M.W.; Hunninghake, G.W. Phosphatidylinositol 3-kinase activity negatively regulates stability of cyclooxygenase 2 mRNA. J. Biol. Chem., 2002, 277(36), 32992-33000.
[http://dx.doi.org/10.1074/jbc.M203218200] [PMID: 12072439]
[99]
Zhang, Z.; Tang, J.; Cui, X.; Qin, B.; Zhang, J.; Zhang, L.; Zhang, H.; Liu, G.; Wang, W.; Zhang, J. New insights and novel therapeutic potentials for macrophages in myocardial infarction. Inflammation, 2021, 44(5), 1696-1712.
[http://dx.doi.org/10.1007/s10753-021-01467-2] [PMID: 33866463]
[100]
Moskalik, A.; Niderla-Bielińska, J.; Ratajska, A. Multiple roles of cardiac macrophages in heart homeostasis and failure. Heart Fail. Rev., 2022, 27(4), 1413-1430.
[http://dx.doi.org/10.1007/s10741-021-10156-z] [PMID: 34387811]
[101]
Heidt, T.; Courties, G.; Dutta, P.; Sager, H.B.; Sebas, M.; Iwamoto, Y.; Sun, Y.; Da Silva, N.; Panizzi, P.; van der Laan, A.M.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res., 2014, 115(2), 284-295.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.303567] [PMID: 24786973]
[102]
Dick, S.A.; Macklin, J.A.; Nejat, S.; Momen, A.; Clemente-Casares, X.; Althagafi, M.G.; Chen, J.; Kantores, C.; Hosseinzadeh, S.; Aronoff, L.; Wong, A.; Zaman, R.; Barbu, I.; Besla, R.; Lavine, K.J.; Razani, B.; Ginhoux, F.; Husain, M.; Cybulsky, M.I.; Robbins, C.S.; Epelman, S. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol., 2019, 20(1), 29-39.
[http://dx.doi.org/10.1038/s41590-018-0272-2] [PMID: 30538339]
[103]
Kain, D.; Amit, U.; Yagil, C.; Landa, N.; Naftali-Shani, N.; Molotski, N.; Aviv, V.; Feinberg, M.S.; Goitein, O.; Kushnir, T.; Konen, E.; Epstein, F.H.; Yagil, Y.; Leor, J. Macrophages dictate the progression and manifestation of hypertensive heart disease. Int. J. Cardiol., 2016, 203, 381-395.
[http://dx.doi.org/10.1016/j.ijcard.2015.10.126] [PMID: 26539962]
[104]
Hulsmans, M.; Sager, H.B.; Roh, J.D.; Valero-Muñoz, M.; Houstis, N.E.; Iwamoto, Y.; Sun, Y.; Wilson, R.M.; Wojtkiewicz, G.; Tricot, B.; Osborne, M.T.; Hung, J.; Vinegoni, C.; Naxerova, K.; Sosnovik, D.E.; Zile, M.R.; Bradshaw, A.D.; Liao, R.; Tawakol, A.; Weissleder, R.; Rosenzweig, A.; Swirski, F.K.; Sam, F.; Nahrendorf, M. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med., 2018, 215(2), 423-440.
[http://dx.doi.org/10.1084/jem.20171274] [PMID: 29339450]
[105]
Steinberg, G.R.; Schertzer, J.D. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol. Cell Biol., 2014, 92(4), 340-345.
[http://dx.doi.org/10.1038/icb.2014.11] [PMID: 24638063]
[106]
Mantovani, A; Allavena, P; Sica, A; Balkwill, F. Cancer-related inflammation. nature, 2008, 454(7203), 436-444.
[107]
Boussiotis, V.A.; Chatterjee, P.; Li, L. Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J., 2014, 20(4), 265-271.
[http://dx.doi.org/10.1097/PPO.0000000000000059] [PMID: 25098287]
[108]
Barkal, A.A.; Weiskopf, K.; Kao, K.S.; Gordon, S.R.; Rosental, B.; Yiu, Y.Y.; George, B.M.; Markovic, M.; Ring, N.G.; Tsai, J.M.; McKenna, K.M.; Ho, P.Y.; Cheng, R.Z.; Chen, J.Y.; Barkal, L.J.; Ring, A.M.; Weissman, I.L.; Maute, R.L. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol., 2018, 19(1), 76-84.
[http://dx.doi.org/10.1038/s41590-017-0004-z] [PMID: 29180808]
[109]
Okazawa, H.; Motegi, S.; Ohyama, N.; Ohnishi, H.; Tomizawa, T.; Kaneko, Y.; Oldenborg, P.A.; Ishikawa, O.; Matozaki, T. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol., 2005, 174(4), 2004-2011.
[http://dx.doi.org/10.4049/jimmunol.174.4.2004] [PMID: 15699129]
[110]
Ogden, C.A.; deCathelineau, A.; Hoffmann, P.R.; Bratton, D.; Ghebrehiwet, B.; Fadok, V.A.; Henson, P.M. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med., 2001, 194(6), 781-796.
[http://dx.doi.org/10.1084/jem.194.6.781] [PMID: 11560994]
[111]
Zheng, P.; Luo, Q.; Wang, W.; Li, J.; Wang, T.; Wang, P.; Chen, L.; Zhang, P.; Chen, H.; Liu, Y.; Dong, P.; Xie, G.; Ma, Y.; Jiang, L.; Yuan, X.; Shen, L. Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E. Cell Death Dis., 2018, 9(4), 434.
[http://dx.doi.org/10.1038/s41419-018-0465-5] [PMID: 29567987]
[112]
Binenbaum, Y.; Fridman, E.; Yaari, Z.; Milman, N.; Schroeder, A.; Ben David, G.; Shlomi, T.; Gil, Z. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res., 2018, 78(18), 5287-5299.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0124] [PMID: 30042153]
[113]
Kaneda, M.M.; Messer, K.S.; Ralainirina, N.; Li, H.; Leem, C.J.; Gorjestani, S.; Woo, G.; Nguyen, A.V.; Figueiredo, C.C.; Foubert, P.; Schmid, M.C.; Pink, M.; Winkler, D.G.; Rausch, M.; Palombella, V.J.; Kutok, J.; McGovern, K.; Frazer, K.A.; Wu, X.; Karin, M.; Sasik, R.; Cohen, E.E.W.; Varner, J.A. PI3Kγ is a molecular switch that controls immune suppression. Nature, 2016, 539(7629), 437-442.
[http://dx.doi.org/10.1038/nature19834] [PMID: 27642729]
[114]
An, C.; Wen, J.; Hu, Z.; Mitch, W.E.; Wang, Y. Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin II–induced hypertension. Nephrol. Dial. Transplant., 2020, 35(9), 1491-1500.
[http://dx.doi.org/10.1093/ndt/gfaa062] [PMID: 32500132]
[115]
Amano, M.T.; Castoldi, A.; Andrade-Oliveira, V.; Latancia, M.T.; Terra, F.F.; Correa-Costa, M.; Breda, C.N.S.; Felizardo, R.J.F.; Pereira, W.O.; da Silva, M.B.; Miyagi, M.Y.S.; Aguiar, C.F.; Hiyane, M.I.; Silva, J.S.; Moura, I.C.; Camara, N.O.S. The lack of PI3Kγ favors M1 macrophage polarization and does not prevent kidney diseases progression. Int. Immunopharmacol., 2018, 64, 151-161.
[http://dx.doi.org/10.1016/j.intimp.2018.08.020] [PMID: 30176533]
[116]
Markó, L.; Vigolo, E.; Hinze, C.; Park, J.K.; Roël, G.; Balogh, A.; Choi, M.; Wübken, A.; Cording, J.; Blasig, I.E.; Luft, F.C.; Scheidereit, C.; Schmidt-Ott, K.M.; Schmidt-Ullrich, R.; Müller, D.N. Tubular epithelial NF-κB activity regulates ischemic AKI. J. Am. Soc. Nephrol., 2016, 27(9), 2658-2669.
[http://dx.doi.org/10.1681/ASN.2015070748] [PMID: 26823548]
[117]
Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs, 2017, 77(5), 521-546.
[http://dx.doi.org/10.1007/s40265-017-0701-9] [PMID: 28255960]
[118]
Wang, S.; Zhang, C.; Li, J.; Niyazi, S.; Zheng, L.; Xu, M.; Rong, R.; Yang, C.; Zhu, T. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death Dis., 2017, 8(4), e2725.
[http://dx.doi.org/10.1038/cddis.2017.104] [PMID: 28383559]
[119]
Zhu, M.; Wang, L.; Yang, J.; Xie, K.; Liu, S.; Xu, C.; Wang, J.; Gu, L.; Ni, Z.; Xu, G.; Che, M. Erythropoietin ameliorates lung injury by accelerating pulmonary endothelium cell proliferation via Janus kinase-signal transducer and activator of transcription 3 pathway after kidney ischemia and reperfusion injury. In:In Transplantation proceedings; Elsevier, 2019, 51, pp. (3)972-978.
[http://dx.doi.org/10.1016/j.transproceed.2019.01.059]
[120]
Kaur, C.; Hao, A.J.; Wu, C.H.; Ling, E.A. Origin of microglia. Microsc. Res. Tech., 2001, 54(1), 2-9.
[http://dx.doi.org/10.1002/jemt.1114] [PMID: 11526953]
[121]
Ferrari, D.; Chiozzi, P.; Falzoni, S.; Dal Susino, M.; Collo, G.; Buell, G.; Di Virgilio, F. ATP-mediated cytotoxicity in microglial cells. Neuropharmacology, 1997, 36(9), 1295-1301.
[http://dx.doi.org/10.1016/S0028-3908(97)00137-8] [PMID: 9364484]
[122]
Tedesco, S.; De Majo, F.; Kim, J.; Trenti, A.; Trevisi, L.; Fadini, G.P.; Bolego, C.; Zandstra, P.W.; Cignarella, A.; Vitiello, L. Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol., 2018, 9, 71.
[http://dx.doi.org/10.3389/fphar.2018.00071] [PMID: 29520230]
[123]
Hoppenbrouwers, T.; Bastiaan-Net, S.; Garssen, J.; Pellegrini, N.; Willemsen, L.E.M.; Wichers, H.J. Functional differences between primary monocyte-derived and THP-1 macrophages and their response to LCPUFAs. PharmaNutrition, 2022, 22, 100322.
[http://dx.doi.org/10.1016/j.phanu.2022.100322]
[124]
Schildberger, A; Rossmanith, E; Eichhorn, T; Strassl, K; Weber, V Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Med. inflamm., 2013, 2013, 697972.
[125]
Hijiya, N.; Miyake, K.; Akashi, S.; Matsuura, K.; Higuchi, Y.; Yamamoto, S. Possible involvement of toll-like receptor 4 in endothelial cell activation of larger vessels in response to lipopolysaccharide. Pathobiology, 2002, 70(1), 18-25.
[http://dx.doi.org/10.1159/000066000] [PMID: 12415188]
[126]
Binesh, A.; Devaraj Sivasitambaram, N.; Halagowder, D. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis. J. Biochem. Mol. Toxicol., 2020, 34(3), e22442.
[http://dx.doi.org/10.1002/jbt.22442] [PMID: 31926051]
[127]
Gao, X.X.; Wang, B.X.; Fei, X.F.; Zhang, J.; Gong, Y.J.; Minami, M.; Nagata, T.; Ikejima, T. Effects of polysaccharides (FI0-c) from mycelium of Ganoderma tsugae on proinflammatory cytokine production by THP-1 cells and human PBMC (II). Acta Pharmacol. Sin., 2000, 21(12), 1186-1192.
[PMID: 11603298]
[128]
Han, X.Q.; Chung Lap Chan, B.; Dong, C.X.; Yang, Y.H.; Ko, C.H.; Gar-Lee Yue, G.; Chen, D.; Wong, C.K.; Bik-San Lau, C.; Tu, P.F.; Shaw, P.C.; Fung, K.P.; Leung, P.C.; Hsiao, W.L.; Han, Q.B. Isolation, structure characterization, and immunomodulating activity of a hyperbranched polysaccharide from the fruiting bodies of Ganoderma sinense. J. Agric. Food Chem., 2012, 60(17), 4276-4281.
[http://dx.doi.org/10.1021/jf205056u] [PMID: 22500548]
[129]
Schroecksnadel, S.; Gostner, J.; Schennach, H. überall, F.; Fuchs, D.; Jenny, M. Peripheral blood mononuclear cells versus myelomonocytic cell line THP-1 to test for immumodulatory properties of chemicals. J. Bionanosci., 2012, 6(2), 134-141.
[http://dx.doi.org/10.1166/jbns.2012.1083]
[130]
Chanput, W.; Mes, J.J.; Wichers, H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol., 2014, 23(1), 37-45.
[http://dx.doi.org/10.1016/j.intimp.2014.08.002] [PMID: 25130606]
[131]
Nascimento, C.R.; Rodrigues Fernandes, N.A.; Gonzalez Maldonado, L.A.; Rossa, Junior C. Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies. Biochem. Biophys. Rep., 2022, 32, 101383.
[http://dx.doi.org/10.1016/j.bbrep.2022.101383] [PMID: 36420419]
[132]
Minafra, L.; Di Cara, G.; Albanese, N.N.; Cancemi, P. Proteomic differentiation pattern in the U937 cell line. Leuk. Res., 2011, 35(2), 226-236.
[http://dx.doi.org/10.1016/j.leukres.2010.07.040] [PMID: 20801507]
[133]
Valdés López, J.F.; Urcuqui-Inchima, S. Synergism between phorbol-12-myristate-13-acetate and vitamin D3 in the differentiation of U937 cells to monocytes and macrophages. Morphologie, 2018, 102(338), 205-218.
[http://dx.doi.org/10.1016/j.morpho.2018.06.001] [PMID: 30075941]
[134]
Odgerel, T.; Kikuchi, J.; Wada, T.; Shimizu, R.; Futaki, K.; Kano, Y.; Furukawa, Y. The FLT3 inhibitor PKC412 exerts differential cell cycle effects on leukemic cells depending on the presence of FLT3 mutations. Oncogene, 2008, 27(22), 3102-3110.
[http://dx.doi.org/10.1038/sj.onc.1210980] [PMID: 18071308]
[135]
Lamichhane, P.P.; Puthavathana, P. PR8 virus harbouring H5N1 NS gene contributed for THP-1 cell tropism. Virusdisease, 2018, 29(4), 548-552.
[http://dx.doi.org/10.1007/s13337-018-0499-4] [PMID: 30539061]
[136]
Chanput, W.; Peters, V.; Wichers, H. The Impact of Food Bioactives on Health: in vitro and ex vivo models; Springer, 2015.
[137]
Song, J.; Seo, Y.; Park, H. Pinosylvin enhances leukemia cell death via down‐regulation of AMPKα expression. Phytother. Res., 2018, 32(10), 2097-2104.
[http://dx.doi.org/10.1002/ptr.6156] [PMID: 30027566]
[138]
Fernandes, C.; Horn, A., Jr; Lopes, B.F.; Bull, E.S.; Azeredo, N.F.B.; Kanashiro, M.M.; Borges, F.V.; Bortoluzzi, A.J.; Szpoganicz, B.; Pires, A.B.; Franco, R.W.A.; Almeida, J.C.A.; Maciel, L.L.F.; Resende, J.A.L.C.; Schenk, G. Induction of apoptosis in leukemia cell lines by new copper(II) complexes containing naphthyl groups via interaction with death receptors. J. Inorg. Biochem., 2015, 153, 68-87.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.09.014] [PMID: 26485179]
[139]
Platt, R.J.; Chen, S.; Zhou, Y.; Yim, M.J.; Swiech, L.; Kempton, H.R.; Dahlman, J.E.; Parnas, O.; Eisenhaure, T.M.; Jovanovic, M.; Graham, D.B.; Jhunjhunwala, S.; Heidenreich, M.; Xavier, R.J.; Langer, R.; Anderson, D.G.; Hacohen, N.; Regev, A.; Feng, G.; Sharp, P.A.; Zhang, F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014, 159(2), 440-455.
[http://dx.doi.org/10.1016/j.cell.2014.09.014] [PMID: 25263330]
[140]
Brzicova, T.; Javorkova, E.; Vrbova, K.; Zajicova, A.; Holan, V.; Pinkas, D.; Philimonenko, V.; Sikorova, J.; Klema, J.; Topinka, J.; Rossner, P. Jr Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles. Nanomaterials , 2019, 9(5), 687.
[http://dx.doi.org/10.3390/nano9050687] [PMID: 31052583]
[141]
Chen, S.J.; Huang, W.C.; Shen, H.J.; Chen, R.Y.; Chang, H.; Ho, Y.S.; Tsai, P.J.; Chuang, L.T. Investigation of modulatory effect of pinolenic acid (PNA) on inflammatory responses in human THP-1 macrophage-like cell and mouse models. Inflammation, 2020, 43(2), 518-531.
[http://dx.doi.org/10.1007/s10753-019-01134-7] [PMID: 31776889]
[142]
Wardyn, J.D.; Chan, A.S.Y.; Jeyasekharan, A.D. A robust protocol for CRISPR‐Cas9 gene editing in human suspension cell lines. Curr. Protoc., 2021, 1(11), e286.
[http://dx.doi.org/10.1002/cpz1.286] [PMID: 34748280]
[143]
Farooq, U; Notani, D Optimized protocol to create deletion in adherent cell lines using CRISPR/Cas9 system. STAR protocols., 2021, 2(4), 100857.
[144]
Sanjurjo-Soriano, C.; Erkilic, N.; Mamaeva, D.; Kalatzis, V. CRISPR/Cas9-mediated genome editing to generate clonal iPSC lines. In: Induced Pluripotent Stem (iPS) Cells: Methods and Protocols; Springer US: New York, NY, 2021; pp. 589-606.
[145]
Auwerx, J.H.; Deeb, S.; Brunzell, J.D.; Peng, R.; Chait, A. Transcriptional activation of the lipoprotein lipase and apolipoprotein E genes accompanies differentiation in some human macrophage-like cell lines. Biochemistry, 1988, 27(8), 2651-2655.
[http://dx.doi.org/10.1021/bi00408a003] [PMID: 3401441]
[146]
Pang, J.H.S.; Wu, C.J.; Chau, L.Y. Post-transcriptional regulation of H-ferritin gene expression in human monocytic THP-1 cells by protein kinase C. Biochem. J., 1996, 319(1), 185-189.
[http://dx.doi.org/10.1042/bj3190185] [PMID: 8870667]
[147]
a) Liu, T.; Huang, T.; Li, J.; Li, A.; Li, C.; Huang, X.; Li, D.; Wang, S.; Liang, M. Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA. PLoS One, 2023, 18(7), e0286056.
[http://dx.doi.org/10.1371/journal.pone.0286056] [PMID: 37459313];
b) Ahn, CB.; Je, JY. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells. Immunopharmacology and Immunotoxicology, 2012, 1;34(3), 379-84.
[148]
Clouet, E.; Bechara, R.; Raffalli, C.; Damiens, M.H.; Groux, H.; Pallardy, M.; Ferret, P.J.; Kerdine-Römer, S. The THP-1 cell toolbox: A new concept integrating the key events of skin sensitization. Arch. Toxicol., 2019, 93(4), 941-951.
[http://dx.doi.org/10.1007/s00204-019-02416-7] [PMID: 30806763]
[149]
Small, A.; Lansdown, N.; Al-Baghdadi, M.; Quach, A.; Ferrante, A. Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes. J. Immunol. Methods, 2018, 461, 73-77.
[http://dx.doi.org/10.1016/j.jim.2018.06.019] [PMID: 30158075]
[150]
Deng, Y.; Govers, C.; Beest, E.; van Dijk, A.J.; Hettinga, K.; Wichers, H.J. THP-1 cell line-based exploration of immune responses toward heat-treated BLG. Front. Nutr., 2021, 7, 612397.
[http://dx.doi.org/10.3389/fnut.2020.612397] [PMID: 33521038]
[151]
Zhang, J.Z.; Ward, K.W. Besifloxacin, a novel fluoroquinolone antimicrobial agent, exhibits potent inhibition of pro-inflammatory cytokines in human THP-1 monocytes. J. Antimicrob. Chemother., 2007, 61(1), 111-116.
[http://dx.doi.org/10.1093/jac/dkm398] [PMID: 17965029]
[152]
Habeeb, F.; Stables, G.; Bradbury, F.; Nong, S.; Cameron, P.; Plevin, R.; Ferro, V.A. The inner gel component of Aloe vera suppresses bacterial-induced pro-inflammatory cytokines from human immune cells. Methods, 2007, 42(4), 388-393.
[http://dx.doi.org/10.1016/j.ymeth.2007.03.005] [PMID: 17560326]
[153]
Giambartolomei, G.H.; Dennis, V.A.; Lasater, B.L.; Murthy, P.K.; Philipp, M.T. Autocrine and exocrine regulation of interleukin-10 production in THP-1 cells stimulated with Borrelia burgdorferi lipoproteins. Infect. Immun., 2002, 70(4), 1881-1888.
[http://dx.doi.org/10.1128/IAI.70.4.1881-1888.2002] [PMID: 11895951]
[154]
Hsu, W.H.; Lee, B.H.; Liao, T.H.; Hsu, Y.W.; Pan, T.M. Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes. Food Chem. Toxicol., 2012, 50(5), 1178-1186.
[http://dx.doi.org/10.1016/j.fct.2012.02.029] [PMID: 22381257]
[155]
Kim, Y.; So, H.S.; Kim, S.J.; Youn, M.J.; Lee, J.H.; Kim, N.S.; Lee, J.H.; Woo, W.H.; Lee, D.W.; Cho, K.H.; Moon, B.S.; Park, R. Antiinflammatory effect of Daesiho, a Korean traditional prescription for cerebral infarct patients. Phytother. Res., 2008, 22(6), 829-835.
[http://dx.doi.org/10.1002/ptr.2389] [PMID: 18412147]
[156]
Eguchi, A.; Murakami, A.; Ohigashi, H. Nobiletin, a citrus flavonoid, suppresses phorbol ester‐induced expression of multiple scavenger receptor genes in THP‐1 human monocytic cells. FEBS Lett., 2006, 580(13), 3321-3328.
[http://dx.doi.org/10.1016/j.febslet.2006.04.077] [PMID: 16698017]
[157]
He, X.; Shu, J.; Xu, L.; Lu, C.; Lu, A. Inhibitory effect of Astragalus polysaccharides on lipopolysaccharide-induced TNF-a and IL-1β production in THP-1 cells. Molecules, 2012, 17(3), 3155-3164.
[http://dx.doi.org/10.3390/molecules17033155] [PMID: 22410422]
[158]
Iio, A.; Ohguchi, K.; Maruyama, H.; Tazawa, S.; Araki, Y.; Ichihara, K.; Nozawa, Y.; Ito, M. Ethanolic extracts of Brazilian red propolis increase ABCA1 expression and promote cholesterol efflux from THP-1 macrophages. Phytomedicine, 2012, 19(5), 383-388.
[http://dx.doi.org/10.1016/j.phymed.2011.10.007] [PMID: 22305277]
[159]
Yang, C.W.; Chang, C.L.; Lee, H.C.; Chi, C.W.; Pan, J.P.; Yang, W.C. Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK Pathways. BMC Complement. Altern. Med., 2012, 12(1), 22.
[http://dx.doi.org/10.1186/1472-6882-12-22] [PMID: 22443687]
[160]
Xu, L.; Shen, S.; Ma, Y.; Kim, J.K.; Rodriguez-Agudo, D.; Heuman, D.M.; Hylemon, P.B.; Pandak, W.M.; Ren, S. 25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages. Am. J. Physiol. Endocrinol. Metab., 2012, 302(7), E788-E799.
[http://dx.doi.org/10.1152/ajpendo.00337.2011] [PMID: 22275753]
[161]
Smiderle, F.R.; Ruthes, A.C.; van Arkel, J.; Chanput, W.; Iacomini, M.; Wichers, H.J.; Van Griensven, L.J.L.D. Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complement. Altern. Med., 2011, 11(1), 58.
[http://dx.doi.org/10.1186/1472-6882-11-58] [PMID: 21787425]
[162]
Li, M.; Liu, Z.H.; Chen, Q.; Zhou, W.Q.; Yu, M.W.; Lü, G.X.; Lü, X.L.; Shen, Y.N.; Liu, W.D.; Wu, S.X. Insoluble β-glucan from the cell wall of Candida albicans induces immune responses of human THP-1 monocytes through Dectin-1. Chin. Med. J. , 2009, 122(5), 496-501.
[PMID: 19323897]
[163]
Binesh, A.; Devaraj, S.N.; Halagowder, D. Molecular interaction of NFκB and NICD in monocyte–macrophage differentiation is a target for intervention in atherosclerosis. J. Cell. Physiol., 2019, 234(5), 7040-7050.
[http://dx.doi.org/10.1002/jcp.27458] [PMID: 30478968]
[164]
Song, M.; Phelps, D.S. Interaction of surfactant protein A with lipopolysaccharide and regulation of inflammatory cytokines in the THP-1 monocytic cell line. Infect. Immun., 2000, 68(12), 6611-6617.
[http://dx.doi.org/10.1128/IAI.68.12.6611-6617.2000] [PMID: 11083772]
[165]
Harrison, L.M.; van Haaften, W.C.E.; Tesh, V.L. Regulation of proinflammatory cytokine expression by Shiga toxin 1 and/or lipopolysaccharides in the human monocytic cell line THP-1. Infect. Immun., 2004, 72(5), 2618-2627.
[http://dx.doi.org/10.1128/IAI.72.5.2618-2627.2004] [PMID: 15102770]
[166]
Harrison, L.M.; Van Den Hoogen, C.; Van Haaften, W.C.; Tesh, V.L. Chemokine expression in the monocytic cell line THP-1 in response to purified shiga toxin 1 and/or lipopolysaccharides. Infect. Immun., 2005, 73(1), 403-412.
[167]
Needham, B.D.; Carroll, S.M.; Georgiou, P.G. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc. Natl. Acad. Sci. , 2013, 110(4), 1464-1469.
[PMID: 23297218]
[168]
Grodzki, A.C.G.; Giulivi, C.; Lein, P.J. Oxygen tension modulates differentiation and primary macrophage functions in the human monocytic THP-1 cell line. PLoS One, 2013, 8(1), e54926.
[http://dx.doi.org/10.1371/journal.pone.0054926] [PMID: 23355903]
[169]
Gostner, J.M.; Schröcksnadel, S.; Becker, K.; Jenny, M.; Schennach, H.; Überall, F.; Fuchs, D. Antimalarial drug chloroquine counteracts activation of indoleamine (2,3)‐dioxygenase activity in human PBMC. FEBS Open Bio, 2012, 2(1), 241-245.
[http://dx.doi.org/10.1016/j.fob.2012.08.004] [PMID: 23650606]
[170]
Nie, J.; He, Y. Integration of three-dimensional printing and microfluidics. In: Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-chip; Elsevier, 2022; pp. 385-406.
[http://dx.doi.org/10.1016/B978-0-444-59432-7.00003-0]
[171]
Liang, W.; Li, Y.; Cuellar-Camacho, J.L.; Yu, L.; Zhou, S.; Li, W.; Haag, R. Chemically defined stem cell microniche engineering by microfluidics compatible with iPSCs’ growth in 3D culture. Biomaterials, 2022, 280, 121253.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121253] [PMID: 34801253]
[172]
Ortiz-Cárdenas, J.E.; Zatorski, J.M.; Arneja, A.; Montalbine, A.N.; Munson, J.M.; Luckey, C.J.; Pompano, R.R. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiol-ene and methacryloyl hydrogels in a microfluidic device. Organs-on-a-Chip, 2022, 4, 100018.
[http://dx.doi.org/10.1016/j.ooc.2022.100018] [PMID: 35535262]
[173]
Terrell, J.A.; Jones, C.G.; Kabandana, G.K.M.; Chen, C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(31), 6667-6685.
[http://dx.doi.org/10.1039/D0TB00718H] [PMID: 32567628]
[174]
Birol, S.Z.; Fucucuoglu, R.; Cadirci, S.; Sayi-Yazgan, A.; Trabzon, L. Studying dynamic stress effects on the behaviour of THP-1 cells by microfluidic channels. Sci. Rep., 2021, 11(1), 14379.
[http://dx.doi.org/10.1038/s41598-021-93935-w] [PMID: 34257375]
[175]
Lvova, T.Y.; Stepanova, O.I.; Viazmina, L.P.; Okorokova, L.S.; Belyakova, K.L.; Belikova, M.E.; Selkov, S.A.; Sokolov, D.I. Effect of factors secreted by the placenta on phenotype of THP-1 cells cultured on a 3D scaffold. Bull. Exp. Biol. Med., 2016, 161(1), 162-167.
[http://dx.doi.org/10.1007/s10517-016-3368-4] [PMID: 27259498]
[176]
Richmond, T.; Tompkins, N. 3D microfluidics in PDMS: manufacturing with 3D molding. Microfluid. Nanofluidics, 2021, 25(9), 76.
[http://dx.doi.org/10.1007/s10404-021-02478-z]
[177]
Binesh, A.; Devaraj, S.N.; Devaraj, H. Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression. Biochimie, 2018, 148, 63-71.
[http://dx.doi.org/10.1016/j.biochi.2018.02.011] [PMID: 29481959]
[178]
Mizuno, K.; Toyoda, Y.; Fukami, T.; Nakajima, M.; Yokoi, T. Stimulation of pro-inflammatory responses by mebendazole in human monocytic THP-1 cells through an ERK signaling pathway. Arch. Toxicol., 2011, 85(3), 199-207.
[http://dx.doi.org/10.1007/s00204-010-0584-y] [PMID: 20848085]
[179]
Mizuno, K.; Fukami, T.; Toyoda, Y.; Nakajima, M.; Yokoi, T. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway. Life Sci., 2010, 87(17-18), 537-544.
[http://dx.doi.org/10.1016/j.lfs.2010.08.010] [PMID: 20816994]
[180]
Edling, Y.; Sivertsson, L.; Andersson, T.B.; Porsmyr-Palmertz, M.; Ingelman-Sundberg, M. Pro-inflammatory response and adverse drug reactions: Mechanisms of action of ximelagatran on chemokine and cytokine activation in a monocyte in vitro model. Toxicol. In Vitro, 2008, 22(6), 1588-1594.
[http://dx.doi.org/10.1016/j.tiv.2008.06.011] [PMID: 18640260]
[181]
Edling, Y.; Sivertsson, L.K.; Butura, A.; Ingelman-Sundberg, M.; Ek, M. Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol. In Vitro, 2009, 23(7), 1387-1395.
[http://dx.doi.org/10.1016/j.tiv.2009.07.026] [PMID: 19631733]
[182]
Plattner, V.E.; Ratzinger, G.; Engleder, E.T.; Gallauner, S.; Gabor, F.; Wirth, M. Alteration of the glycosylation pattern of monocytic THP-1 cells upon differentiation and its impact on lectin-mediated drug delivery. Eur. J. Pharm. Biopharm., 2009, 73(3), 324-330.
[http://dx.doi.org/10.1016/j.ejpb.2009.07.004] [PMID: 19602437]
[183]
Li, R.; Mouillesseaux, K.P.; Montoya, D.; Cruz, D.; Gharavi, N.; Dun, M.; Koroniak, L.; Berliner, J.A. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC. Circ. Res., 2006, 98(5), 642-650.
[http://dx.doi.org/10.1161/01.RES.0000207394.39249.fc] [PMID: 16456101]
[184]
Kiyotani, K.; Toyoshima, Y.; Nakamura, Y. Personalized immunotherapy in cancer precision medicine. Cancer Biol. Med., 2021, 18(4), 955-965.
[PMID: 34369137]
[185]
Matsa, E.; Ahrens, J.H.; Wu, J.C. Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiol. Rev., 2016, 96(3), 1093-1126.
[http://dx.doi.org/10.1152/physrev.00036.2015] [PMID: 27335446]
[186]
Zhao, Y.; Hao, C.; Zhai, R.; Bao, L.; Wang, D.; Li, Y.; Yu, X.; Huang, R.; Yao, W. Effects of cyclophosphamide on the phenotypes and functions of THP-1 cells. Environ. Toxicol. Pharmacol., 2019, 70, 103201.
[http://dx.doi.org/10.1016/j.etap.2019.103201] [PMID: 31202006]
[187]
Keuper, M.; Blüher, M.; Schön, M.R.; Möller, P.; Dzyakanchuk, A.; Amrein, K.; Debatin, K.M.; Wabitsch, M.; Fischer-Posovszky, P. An inflammatory micro-environment promotes human adipocyte apoptosis. Mol. Cell. Endocrinol., 2011, 339(1-2), 105-113.
[http://dx.doi.org/10.1016/j.mce.2011.04.004] [PMID: 21501656]
[188]
Azenabor, A.A.; Cintrón-Cuevas, J.; Schmitt, H.; Bumah, V. Chlamydia trachomatis induces anti-inflammatory effect in human macrophages by attenuation of immune mediators in Jurkat T-cells. Immunobiology, 2011, 216(12), 1248-1255.
[http://dx.doi.org/10.1016/j.imbio.2011.07.002] [PMID: 21802168]
[189]
Risitano, A.; Beaulieu, L.M.; Vitseva, O.; Freedman, J.E. Platelets and platelet-like particles mediate intercellular RNA transfer. Blood, 2012, 119(26), 6288-6295.
[http://dx.doi.org/10.1182/blood-2011-12-396440] [PMID: 22596260]
[190]
Thiyagarajan, M.; Waldbeser, L.; Whitmill, A. THP-1 leukemia cancer treatment using a portable plasma device. Stud. Health Technol. Inform., 2012, 173, 515-517.
[PMID: 22357047]
[191]
Thuer, E.; Gabaldón, T. Comparative transcriptomics of THP-1 monocytes in response to different pathogens. bioRxiv, 2017, 155853.
[http://dx.doi.org/10.1101/155853]
[192]
ZHOU, HF.; LU, YXP.; SUN, ZH.; GUO, Y. Establishment and characterization of thp-1 cell model stably expressing hiv-1 auxiliary protein rev. Zool. Res., 2008, 29(4), 421-426.
[193]
Zubova, S.V.; Radzyukevich, Y.V.; Grachev, S.V.; Prokhorenko, I.R. Effect of various agents on the direction of THP-1 cell differentiation. Serb. J. Exp. Clin. Res., 2018, 19(3), 263-269.
[http://dx.doi.org/10.2478/sjecr-2018-0029]
[194]
Pinto, S.M.; Kim, H.; Subbannayya, Y.; Giambelluca, M.; Bösl, K.; Kandasamy, R.K. Dose-dependent phorbol 12-myristate-13-acetate-mediated monocyte-to-macrophage differentiation induces unique proteomic signatures in THP-1 cells. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.27.968016]
[195]
Binesh, A.; Devaraj, S.N.; Devaraj, H. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis. J. Biochem. Mol. Toxicol., 2020, 34(2), e22422.
[http://dx.doi.org/10.1002/jbt.22422] [PMID: 31729780]
[196]
Liu, W.; Chen, X.; Wu, M.; Li, L.; Liu, J.; Shi, J.; Hong, T. Recombinant Klotho protein enhances cholesterol efflux of THP-1 macrophage-derived foam cells via suppressing Wnt/β-catenin signaling pathway. BMC Cardiovasc. Disord., 2020, 20(1), 120.
[http://dx.doi.org/10.1186/s12872-020-01400-9] [PMID: 32138681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy