Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Antimicrobial Nano-coatings of Ti Surfaces for Anti-inflammatory Aims in Dental Implants

Author(s): Sahar Masoudi, Ali Torab, Ramin Negahdari, Solmaz Maleki Dizaj*, Simin Sharifi* and Amin Mosayebzadeh

Volume 15, Issue 2, 2025

Published on: 25 April, 2024

Page: [197 - 207] Pages: 11

DOI: 10.2174/0124681873290646240418060259

Price: $65

Abstract

Introduction: Coating of dental implants with nanoparticles can lead to improved fixation of implants.

Aim: The aim of this study was to review the reported antimicrobial nano-coatings of Ti surfaces (dental implants) for anti-inflammatory, tissue integration, and osteogeneration aims.

Methods: The data were collected from Google Scholar, PubMed, and Scopus sources.

Results: The results showed that the antimicrobial nano-coatings of Ti surfaces exhibited a reduction in initial bacterial adhesion, concomitantly with an increase in the attachment of human gingival fibroblasts. In addition, the application of these surfaces resulted in anti-inflammatory effects with different mechanisms. Some nano-coated titanium surfaces have also shown enhanced hydrophilicity and corrosion resistance, aiding the adhesion and proliferation of osteoblasts.

Conclusion: Coating Ti surfaces with antimicrobial nanoparticles can improve soft tissue integration and osteogeneration, leading to improved fixation of implants. Moreover, such coatings may profit biocompatible surfaces with a controlled release profile for the antimicrobial agents.

Keywords: Antimicrobial nano-coatings, Ti surfaces, anti-inflammatory, dental implants, tissue integration, osteogeneration.

Graphical Abstract
[1]
Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: A 10–16-year follow-up of non-submerged dental implants. Clin Oral Implants Res 2010; 21(7): 772-7.
[http://dx.doi.org/10.1111/j.1600-0501.2010.01912.x] [PMID: 20636731]
[2]
Moraschini V, Poubel LAC, Ferreira VF, Barboza ESP. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int J Oral Maxillofac Surg 2015; 44(3): 377-88.
[http://dx.doi.org/10.1016/j.ijom.2014.10.023] [PMID: 25467739]
[3]
Ghinassi B, D’Addazio G, Di Baldassarre A, et al. Immunohistochemical results of soft tissues around a new implant healing-abutment surface: A human study. J Clin Med 2020; 9(4): 1009.
[http://dx.doi.org/10.3390/jcm9041009] [PMID: 32252463]
[4]
Gaviria L. Current trends in dental implants. JKAOMS 2014; (2): 50-60.
[http://dx.doi.org/10.5125/jkaoms.2014.40.2.50]
[5]
Chaturvedi VK. Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of herbonanoceutics. Molecules 2020; 25(13): 3091.
[http://dx.doi.org/10.3390/molecules25133091]
[6]
Niu J, Guo Y, Li K, et al. Improved mechanical, bio-corrosion properties and in vitro cell responses of Ti-Fe alloys as candidate dental implants. Mater Sci Eng C Mater Biol Appl, 2021; 122: 111917.
[http://dx.doi.org/10.1016/j.msec.2021.111917] [PMID: 33641910]
[7]
Harris J. Fibroblasts and their transformations: The connective-tissue cell family. Mol Biol Cell 1994; 1179: 1193.
[8]
Parithimarkalaignan S, Padmanabhan TV. Osseointegration: An update. The Journal of Indian Prosthodontic Society 2013; 13(1): 2-6.
[http://dx.doi.org/10.1007/s13191-013-0252-z] [PMID: 24431699]
[9]
Yazdani J, Ahmadian E, Sharifi S, Shahi S, Maleki Dizaj S. A short view on nanohydroxyapatite as coating of dental implants. Biomed Pharmacother 2018; 105: 553-7.
[http://dx.doi.org/10.1016/j.biopha.2018.06.013] [PMID: 29886376]
[10]
Schwarz F, Derks J, Monje A, Wang HL. Peri-implantitis. J Periodontol 2018; 89 (Suppl. 1): S267-90.
[http://dx.doi.org/10.1002/JPER.16-0350] [PMID: 29926957]
[11]
Parnia F, Yazdani J, Javaherzadeh V, Maleki Dizaj S. Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. J Pharm Pharm Sci 2017; 20(0): 148-60.
[http://dx.doi.org/10.18433/J3GP6G] [PMID: 28554344]
[12]
Lang NP, Berglundh T. Periimplant diseases: Where are we now? – Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 2011; 38(s11) (Suppl. 11): 178-81.
[http://dx.doi.org/10.1111/j.1600-051X.2010.01674.x] [PMID: 21323713]
[13]
Sanz M, Chapple IL. Clinical research on peri-implant diseases: Consensus report of W orking G roup 4. J Clin Periodontol 2012; 39(s12) (Suppl. 12): 202-6.
[http://dx.doi.org/10.1111/j.1600-051X.2011.01837.x] [PMID: 22533957]
[14]
Lindhe J, Meyle J. Peri-implant diseases: Consensus report of the sixth european workshop on periodontology. J Clin Periodontol 2008; 35(s8) (Suppl.): 282-5.
[http://dx.doi.org/10.1111/j.1600-051X.2008.01283.x] [PMID: 18724855]
[15]
Al-Ahmad A. Shift of microbial composition of peri-implantitis-associated oral biofilm as revealed by 16S rRNA gene cloning. J Med Microbiol 2018; 67(3): 332-40.
[http://dx.doi.org/10.1099/jmm.0.000682]
[16]
De Santis S, Sotgiu G, Porcelli F, Marsotto M, Iucci G, Orsini M. A simple cerium coating strategy for titanium oxide nanotubes’ bioactivity enhancement. Nanomaterials 2021; 11(2): 445.
[http://dx.doi.org/10.3390/nano11020445] [PMID: 33578788]
[17]
Zhou L, Lai Y, Huang W, et al. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility. Colloids and Surfaces B Biointerfaces 2015; 128: 552-60.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.008] [PMID: 25800357]
[18]
Gosau M, Haupt M, Thude S, Strowitzki M, Schminke B, Buergers R. Antimicrobial effect and biocompatibility of novel metallic nanocrystalline implant coatings. J Biomed Mater Res B Appl Biomater 2016; 104(8): 1571-9.
[http://dx.doi.org/10.1002/jbm.b.33376] [PMID: 26293552]
[19]
Bottino MC, Münchow EA, Albuquerque MTP, et al. Tetracycline-incorporated polymer nanofibers as a potential dental implant surface modifier. J Biomed Mater Res B Appl Biomater 2017; 105(7): 2085-92.
[http://dx.doi.org/10.1002/jbm.b.33743] [PMID: 27405272]
[20]
Odatsu T, Kuroshima S, Sato M, et al. Antibacterial properties of nano-ag coating on healing abutment: An in vitro and clinical study. Antibiotics 2020; 9(6): 347.
[http://dx.doi.org/10.3390/antibiotics9060347] [PMID: 32575552]
[21]
Hamidi-Asl E. A genosensor for point mutation detection of P53 gene PCR product using magnetic particles. Electroanalysis 2015; 27(6): 1378-86.
[http://dx.doi.org/10.1002/elan.201400660]
[22]
Hamidi A. Novel aldehyde-terminated dendrimers; Synthesis and cytotoxicity assay. Bioimpacts 2012; 2(2): 97.
[23]
Maleki Dizaj S. Electrospun nanofibers as versatile platform in antimicrobial delivery: Current state and perspectives. Pharm Dev Technol 2019; 24(10): 1187-99.
[http://dx.doi.org/10.1080/10837450.2019.1656238]
[24]
Abdolahinia ED. Application of nanogels as drug delivery systems in multicellular spheroid tumor model. J Drug Deliv Sci Technol 2022; 68: 103109.
[http://dx.doi.org/10.1016/j.jddst.2022.103109]
[25]
Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[26]
Samiei M. Early osteogenic differentiation stimulation of dental pulp stem cells by calcitriol and curcumin. Stem Cells Int 2021; 2021: 9980137.
[http://dx.doi.org/10.1155/2021/9980137]
[27]
Sharifi S. Effect of curcumin-loaded mesoporous silica nanoparticles on the head and neck cancer cell line, HN5. Curr Issues Mol Biol 2022; 44(11): 5247-59.
[http://dx.doi.org/10.3390/cimb44110357]
[28]
Noronha VT, Paula AJ, Durán G, et al. Silver nanoparticles in dentistry. Dental Materials 2017; 33(10): 1110-26.
[http://dx.doi.org/10.1016/j.dental.2017.07.002] [PMID: 28779891]
[29]
Chaturvedi VK, Rai SN, Tabassum N, et al. Rapid eco-friendly synthesis, characterization, and cytotoxic study of trimetallic stable nanomedicine: A potential material for biomedical applications. Biochemistry and Biophysics Reports 2020; 24: 100812.
[http://dx.doi.org/10.1016/j.bbrep.2020.100812] [PMID: 33083576]
[30]
Chaturvedi VK. Two birds with one stone: Oyster mushroom mediated bimetallic Au-Pt nanoparticles for agro-waste management and anticancer activity. Environ Sci Pollut Res Int 2021; 28(11): 13761-75.
[http://dx.doi.org/10.1007/s11356-020-11435-2]
[31]
Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental implant nano-engineering: Advances, limitations and future directions. Nanomaterials 2021; 11(10): 2489.
[http://dx.doi.org/10.3390/nano11102489] [PMID: 34684930]
[32]
Jia Z, Xiu P, Li M, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 2016; 75: 203-22.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.035] [PMID: 26513414]
[33]
Kulshrestha S, Khan S, Meena R, Singh BR, Khan AU. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling 2014; 30(10): 1281-94.
[http://dx.doi.org/10.1080/08927014.2014.983093] [PMID: 25431994]
[34]
van Hengel IAJ, Putra NE, Tierolf MWAM, et al. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria. Acta Biomaterialia 2020; 107: 325-37.
[http://dx.doi.org/10.1016/j.actbio.2020.02.044] [PMID: 32145392]
[35]
Zhang X, Chen Q, Mao X. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. Biomed Res Int 2019; 2019: 7908205.
[http://dx.doi.org/10.1155/2019/7908205] [PMID: 31828131]
[36]
Kanafchian M, Esmaeilzadeh S, Mahjoub S, Rahsepar M, Ghasemi M. Status of serum copper, magnesium, and total antioxidant capacity in patients with polycystic ovary syndrome. Biol Trace Elem Res 2020; 193(1): 111-7.
[http://dx.doi.org/10.1007/s12011-019-01705-7] [PMID: 30941676]
[37]
Tabassum N, Singh V, Chaturvedi VK, Vamanu E, Singh MP. A facile synthesis of flower-like iron oxide nanoparticles and its efficacy measurements for antibacterial, cytotoxicity and antioxidant activity. Pharmaceutics 2023; 15(6): 1726.
[http://dx.doi.org/10.3390/pharmaceutics15061726] [PMID: 37376174]
[38]
Tabassum N. in vitro cytotoxicity and antioxidant efficiency of synthesized mixed phase manganese oxide nanomaterial. J Exp Zool India 2021; 24(1): 95-100.
[39]
Rodelo-Haad C, Pendón-Ruiz de Mier MV, Díaz-Tocados JM, et al. The role of disturbed mg homeostasis in chronic kidney disease comorbidities. Front Cell Dev Biol 2020; 8: 543099.
[http://dx.doi.org/10.3389/fcell.2020.543099] [PMID: 33282857]
[40]
Bai Y, Wang L, Zhao L, et al. Antibacterial and antioxidant effects of magnesium alloy on titanium dental implants. Comput Math Methods Med 2022; 2022: 6537676.
[http://dx.doi.org/10.1155/2022/6537676] [PMID: 35035523]
[41]
Li X, Qi M, Sun X, et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater 2019; 94: 627-43.
[http://dx.doi.org/10.1016/j.actbio.2019.06.023] [PMID: 31212111]
[42]
Dong H. Surface modified techniques and emerging functional coating of dental implants. Coatings 2020; 10(11): 1012.
[http://dx.doi.org/10.3390/coatings10111012]
[43]
Yi Q, Liang P, Liang D, et al. Improvement of polydopamine-loaded salidroside on osseointegration of titanium implants. Chin Med 2022; 17(1): 26.
[http://dx.doi.org/10.1186/s13020-022-00569-9] [PMID: 35189918]
[44]
Han L, Lin H, Lu X, et al. BMP2-encapsulated chitosan coatings on functionalized Ti surfaces and their performance in vitro and in vivo. Mater Sci Eng C Mater Biol Appl 2014; 40: 1-8.
[http://dx.doi.org/10.1016/j.msec.2014.03.043] [PMID: 24857458]
[45]
Sharifi S. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors 2020; 46(6): 874-93.
[http://dx.doi.org/10.1002/biof.1682]
[46]
Gomez-Florit M, Pacha-Olivenza MA, Fernández-Calderón MC, et al. Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria. Sci Rep 2016; 6(1): 22444.
[http://dx.doi.org/10.1038/srep22444] [PMID: 26925553]
[47]
Negahdari R. Antibacterial effect of nanocurcumin inside the implant fixture: An in vitro study. Clin Exp Dent Res 2021; 7(2): 163-9.
[http://dx.doi.org/10.1002/cre2.348]
[48]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[49]
Anadioti E. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health 2020; 20(1): 1-9.
[50]
Terada C, Komasa S, Kusumoto T, Kawazoe T, Okazaki J. Effect of amelogenin coating of a nano-modified titanium surface on bioactivity. Int J Mol Sci 2018; 19(5): 1274.
[http://dx.doi.org/10.3390/ijms19051274] [PMID: 29695118]
[51]
Luo J, Ding X, Song W, et al. Inducing macrophages M2 polarization by dexamethasone laden mesoporous silica nanoparticles from titanium implant surface for enhanced osteogenesis. Acta Metallurgica Sinica 2019; 32(10): 1253-60.
[http://dx.doi.org/10.1007/s40195-019-00926-y]
[52]
Maleki Dizaj S. Gelatin–curcumin nanocomposites as a coating for implant healing abutment: in vitro stability investigation. Clin Pract . 2023; 13: pp. (1)88-101.
[http://dx.doi.org/10.3390/clinpract13010009]
[53]
Mahin T. Antibacterial effects of healing abutments coated with gelatincurcumin nanocomposite. Pharm Nanotechnol 2023; 11(4): 390-5.
[54]
Ghavimi MA. Antimicrobial effects of nanocurcumin gel on reducing the microbial count of gingival fluids of implant‒abutment interface: A clinical study. J Adv Periodontol Implant Dent 2022; 14(2): 114.
[http://dx.doi.org/10.34172/japid.2022.014]
[55]
Negahdari R. Curcumin nanocrystals: Production, physicochemical assessment, and in vitro evaluation of the antimicrobial effects against bacterial loading of the implant fixture. Appl Sci 2020; 10(23): 8356.
[http://dx.doi.org/10.3390/app10238356]
[56]
Aktas B. DLP 3D printing of TiO2-doped Al2O3 bioceramics: Manufacturing, mechanical properties, and biological evaluation. Mater Today Commun 2024; 38: 107872.
[http://dx.doi.org/10.1016/j.mtcomm.2023.107872]
[57]
Qin H, Cao H, Zhao Y, et al. in vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials 2014; 35(33): 9114-25.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.040] [PMID: 25112937]
[58]
Rotman SG, Thompson K, Grijpma DW, et al. Development of bone seeker–functionalised microspheres as a targeted local antibiotic delivery system for bone infections. J Orthop Translat 2020; 21: 136-45.
[http://dx.doi.org/10.1016/j.jot.2019.07.006] [PMID: 32309139]
[59]
Zhou W, Bai T, Wang L, et al. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration. Bioactive Materials 2023; 20: 64-80.
[http://dx.doi.org/10.1016/j.bioactmat.2022.05.015] [PMID: 35633877]
[60]
Yang Y, Ao HY, Yang SB, et al. in vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. Int J Nanomedicine 2016; 11: 2223-34.
[PMID: 27274245]
[61]
Wang M, Li H, Yang Y, et al. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial infection. Bioact Mater 2021; 6(5): 1318-29.
[http://dx.doi.org/10.1016/j.bioactmat.2020.10.022] [PMID: 33210025]
[62]
Zhuang Y, Ren L, Zhang S, Wei X, Yang K, Dai K. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomater 2021; 119: 472-84.
[http://dx.doi.org/10.1016/j.actbio.2020.10.026] [PMID: 33091623]
[63]
Sun T, Huang J, Zhang W, et al. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections. Bioact Mater 2023; 21: 44-56.
[http://dx.doi.org/10.1016/j.bioactmat.2022.07.028] [PMID: 36017072]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy