Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Research Article

Synthesis of Ag and AgCl Nanoparticles using Klasea latifolia and Klassa leptoclada Extracts and Assessment of the Antimicrobial Properties of the Synthesized Nanoparticles and Antioxidant Properties of the Extracts

Author(s): Akram Abedi, Ali Firoznia and Cobra Izanloo*

Volume 15, Issue 2, 2025

Published on: 18 April, 2024

Page: [208 - 222] Pages: 15

DOI: 10.2174/0124681873288498240408081151

Price: $65

Abstract

Background: In green synthesis, metal ions are transformed into nanoparticles through a simple reaction, without the need for surfactants, specific conditions, and other stabilizing agents.

Methods: This study performed the biosynthesis of silver nanoparticles using the extract of Klasea latifolia and Klasea leptoclada.

Results: Nanoparticles were characterized using the SEM, XRD, UV-visible Spectroscopy, and EDS methods. The antibacterial properties of the extracts and synthesized nanoparticles were evaluated against Staphylococcus aureus, Bacillus cereus, and Escherichia coli using the agar disk-diffusion and well-diffusion. The antioxidants of the herbs were investigated using the DPPH and FRAP methods, and the IC50 of the extracts was determined as well. The results showed that, although no chlorinated compounds were added to the reaction medium, in addition to silver nanoparticles, silver chloride nanoparticles were also synthesized. The synthesized nanoparticles were spherical (size: 27-38 nm) and had uniform size distribution. Furthermore, the synthesized nanoparticles and extracts exhibited significant antibacterial activity.

Conclusion: Many plants have been used for the biosynthesis of silver nanoparticles, but the advantage of using the extract of K. latifolia and K. leptoclada was that in addition to synthesizing silver nanoparticles, silver chloride nanoparticles were also synthesized.

Keywords: Green synthesis, silver nanoparticles, antibacterial, Klasea latifolia (Boiss.) L. martins, Klasea leptoclada (Bornm. and Sint.) L. martins, antioxidant.

« Previous
Graphical Abstract
[1]
Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012; 2(1): 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[2]
Slawson R, Trevors J, Lee H. Silver accumulation and resistance in Pseudomonas stutzeri. Arch Microbiol 1992; 158(6): 398-404.
[http://dx.doi.org/10.1007/BF00276299]
[3]
Zhao G, Stevens SE Jr. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998; 11(1): 27-32.
[http://dx.doi.org/10.1023/A:1009253223055] [PMID: 9450315]
[4]
Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015; 10(3): 339-54.
[http://dx.doi.org/10.1016/j.nantod.2015.04.002]
[5]
Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 2018; 114: 41-5.
[http://dx.doi.org/10.1016/j.micpath.2017.11.013] [PMID: 29146498]
[6]
Kailasa SK, Park T-J, Rohit JV, Koduru JR. Antimicrobial activity of silver nanoparticles. Nanoparticles in Pharmacotherapy. Elsevier 2019; pp. 461-84.
[7]
Faure C, Derré A, Neri W. Spontaneous formation of silver nanoparticles in multilamellar vesicles. J Phys Chem B 2003; 107(20): 4738-46.
[http://dx.doi.org/10.1021/jp027449u]
[8]
Zhang Y, Chen F, Zhuang J, et al. Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chem Commun 2002; (23): 2814-5.
[http://dx.doi.org/10.1039/b208222e] [PMID: 12478760]
[9]
Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, et al. Nano-silver – A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009; 3(2): 109-38.
[http://dx.doi.org/10.1080/17435390902725914]
[10]
Fatimah I. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J Adv Res 2016; 7(6): 961-9.
[http://dx.doi.org/10.1016/j.jare.2016.10.002] [PMID: 27857843]
[11]
Majdalawieh A, Kanan MC, Kadri EO, Kanan SM. Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 2014; 14(7): 4757-80.
[http://dx.doi.org/10.1166/jnn.2014.9526] [PMID: 24757945]
[12]
Jayaprakash N, Vijaya JJ, Kaviyarasu K, et al. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J Photochem Photobiol B 2017; 169: 178-85.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.03.013] [PMID: 28347958]
[13]
Khalili H, Shandiz SSA, Arani BF. Anticancer properties of phyto-synthesized silver nanoparticles from medicinal plant artemisia tschernieviana besser aerial parts extract toward HT29 human colon adenocarcinoma cells. J Cluster Sci 2017; 28(3): 1617-36.
[http://dx.doi.org/10.1007/s10876-017-1172-6]
[14]
Balciunaitiene A, Viskelis P, Viskelis J, et al. Green synthesis of silver nanoparticles using extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., physico-chemical characterization, antimicrobial and antioxidant activity. Processes 2021; 9(8): 1304.
[http://dx.doi.org/10.3390/pr9081304]
[15]
Rad SM, Pohl P. Synthesis of biogenic silver nanoparticles (AgCl-NPs) using a Pulicaria vulgaris Gaertn. Aerial part extract and their application as antibacterial, antifungal and antioxidant agents. Nanomaterials 2020; 10(4): 638.
[http://dx.doi.org/10.3390/nano10040638] [PMID: 32235379]
[16]
Khan AU, Wei Y, Haq Khan ZU, et al. Visible light-induced photodegradation of methylene blue and reduction of 4-nitrophenol to 4-aminophenol over bio-synthesized silver nanoparticles. Sep Sci Technol 2016; 51(6): 1070-8.
[http://dx.doi.org/10.1080/01496395.2016.1140203]
[17]
Khan ZUH, Khan A, Chen YM, et al. Enhanced antimicrobial, anti-oxidant applications of green synthesized AgNPs- an acute chronic toxicity study of phenolic azo dyes & study of materials surface using X-ray photoelectron spectroscopy. J Photochem Photobiol B 2018; 180: 208-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.02.015] [PMID: 29459312]
[18]
Khan AU, Wei Y, Khan ZUH, et al. Electrochemical and antioxidant properties of biogenic silver nanoparticles. Int J Electrochem Sci 2015; 10(10): 7905-16.
[http://dx.doi.org/10.1016/S1452-3981(23)11064-9]
[19]
Khan ZUH, Shah NS, Iqbal J, et al. Biomedical and photocatalytic applications of biosynthesized silver nanoparticles: Ecotoxicology study of brilliant green dye and its mechanistic degradation pathways. J Mol Liq 2020; 319: 114114.
[http://dx.doi.org/10.1016/j.molliq.2020.114114]
[20]
Aravinthan A, Govarthanan M, Selvam K, et al. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int J Nanomedicine 2015; 10: 1977-83.
[PMID: 25792831]
[21]
Govarthanan M, Thangasamy S, Koildhasan M, et al. Biosynthesis and characterization of silver nanoparticles using panchakavya, an Indian traditional farming formulating agent. Int J Nanomedicine 2014; 9: 1593-9.
[http://dx.doi.org/10.2147/IJN.S58932] [PMID: 24741307]
[22]
Govarthanan M, Seo YS, Lee KJ, et al. Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity. Artif Cells Nanomed Biotechnol 2016; 44: 1878-82.
[23]
Govarthanan M, Cho M, Park JH, et al. Cotton seed oil cake extract mediated green synthesis of silver nanoparticles and its antibacterial and cytotoxic activity. J Nanomater 2016; 2016: 1-6.
[24]
Ameen F, Srinivasan P, Selvankumar T, et al. Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity. Bioorg Chem 2019; 88: 102970.
[http://dx.doi.org/10.1016/j.bioorg.2019.102970]
[25]
Utilization of market vegetables waste for silver nanoparticles synthesis and its antibacterial activity. Mater Lett 2018; 225: 101-4.
[http://dx.doi.org/10.1016/j.matlet.2018.04.111]
[26]
Chaturvedi VK, Yadav N, Rai NK, et al. Pleurotus sajor-caju-Mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of herbonanoceutics. Molecules 2020; 25(13): 3091.
[http://dx.doi.org/10.3390/molecules25133091] [PMID: 32645899]
[27]
Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr Drug Metab 2019; 20(6): 416-29.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[28]
Chaturvedi VK, Rai SN, Tabassum N, et al. Rapid eco-friendly synthesis, characterization, and cytotoxic study of trimetallic stable nanomedicine: A potential material for biomedical applications. Biochem Biophys Rep 2020; 24: 100812.
[http://dx.doi.org/10.1016/j.bbrep.2020.100812] [PMID: 33083576]
[29]
Chaturvedi V K, Sharma B, Tripathi A D, et al. Biosynthesized nanoparticles: A novel approach for cancer therapeutics. Front Med Technol 2023; 5: 1236107.
[http://dx.doi.org/10.3389/fmedt.2023.1236107]
[30]
Tabassum N, Singh V, Chaturvedi VK, Vamanu E, Singh MP. A facile synthesis of flower-like iron oxide nanoparticles and its efficacy measurements for antibacterial, cytotoxicity and antioxidant activity. Pharmaceutics 2023; 15(6): 1726.
[http://dx.doi.org/10.3390/pharmaceutics15061726] [PMID: 37376174]
[31]
Lee KJ, Park SH, Govarthanan M, et al. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 2013; 105: 128-31.
[32]
Muthusamy G, Thangasamy S, Raja M, Chinnappan S, Kandasamy S. Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environ Sci Pollut Res Int 2017; 24(23): 19459-64.
[http://dx.doi.org/10.1007/s11356-017-9772-0] [PMID: 28730357]
[33]
Valarmathi N, Fuad Ameen A. Govarthanan, utilization of marine sea weed spyridia filamentosa for silver nanoparticles synthesis and its clinical applications. Mater Lett 2020; 263: 127244.
[http://dx.doi.org/10.1016/j.matlet.2019.127244]
[34]
Ameen F, AlYahya S, Govarthanan M, et al. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J Mol Struct 2020; 1202: 127233.
[http://dx.doi.org/10.1016/j.molstruc.2019.127233]
[35]
Seyed ASS, Montazeri A, Abdolhosseini M, et al. Functionalization of ag nanoparticles by glutamic acid and conjugation of Ag@Glu by thiosemicarbazide enhances the apoptosis of human breast cancer MCF-7 cells. J Cluster Sci 2018; 29: 1107-14.
[36]
Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31(2): 346-56.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[37]
Duhan J, Gahlawat S. Biogenesis of nanoparticles: A review. Afr J Biotechnol 2014; 13(28)
[38]
Barua S, Konwarh R, Bhattacharya SS, et al. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles. Colloids Surf B Biointerfaces 2013; 105: 37-42.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.015] [PMID: 23352940]
[39]
Mozafarian V. A Dictionary of Iranin Plant Names: Latin-English-Persian. (3rd ed.). Tehran: Contemporary Culture Publications 1996; pp. 594-6.
[40]
Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 2011; 13(7): 2981-8.
[http://dx.doi.org/10.1007/s11051-010-0193-y]
[41]
Pokorny J, Yanishlieva N, Gordon MH. Antioxidants In Food: Practical Applications. CRC press 2001.
[42]
Mau J, Lai EY, Wang N-P, Chen C-C, Chang C-H, Chyau C-C. Composition and antioxidant activity of the essential oil from Curcuma zedoaria. Food Chem 2003; 82(4): 583-91.
[http://dx.doi.org/10.1016/S0308-8146(03)00014-1]
[43]
Saha K, Lajis NH, Israf DA, et al. Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J Ethnopharmacol 2004; 92(2-3): 263-7.
[http://dx.doi.org/10.1016/j.jep.2004.03.007] [PMID: 15138010]
[44]
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 1996; 239(1): 70-6.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[45]
Ku KM, Juvik JA. Environmental stress and methyl jasmonate-mediated changes in flavonoid concentrations and antioxidant activity in Broccoli Florets and Kale Leaf tissues. HortScience 2013; 48(8): 996-1002.
[http://dx.doi.org/10.21273/HORTSCI.48.8.996]
[46]
Jegadeeswaran P, Shivaraj R, Venckatesh R. Green synthesis of silver nanoparticles from extracts of Padina tetrastromatica leaf. Dig J Nanomater Biostruct 2012; 7(3): 991-8.
[47]
Gopinath V, Priyadarshini S, Priyadharsshini MN, Pandian K, Velusamy P. Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn. Mater Lett 2013; 91: 224-7.
[http://dx.doi.org/10.1016/j.matlet.2012.09.102]
[48]
Celebioglu A, Topuz F, Yildiz ZI, Uyar T. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers. Carbohydr Polym 2019; 207: 471-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.008] [PMID: 30600030]
[49]
Alishah H, Pourseyedi S, Mahani SE, Ebrahimipour SY. Extract- mediated synthesis of Ag@AgCl nanoparticles using Conium maculatum seeds: characterization, antibacterial activity and cytotoxicity effect against MCF-7 cell line. RSC Adv 2016; 6(77): 73197-202.
[http://dx.doi.org/10.1039/C6RA16127H]
[50]
Jansen W, Vanderbruggen J, Verhoef J, Fluit A. Bacterial resistance: A sensitive issueComplexity of the challenge and containment strategy in Europe. Drug Resist Updat 2006; 9(3): 123-33.
[http://dx.doi.org/10.1016/j.drup.2006.06.002] [PMID: 16807066]
[51]
Mostader M, Salari H, Mozafari H, Farahmand A. Evaluation the qualitative and quantitative essential oil of Calendula officinalis and its antibacterial effects. J Cellul Molecul Res 2016; 29: 291-301.
[52]
Manosalva N, Tortella G, Diez CM, et al. Green synthesis of silver nanoparticles: Effect of synthesis reaction parameters on antimicrobial activity. World J Microbiol Biotechnol 2019; 35(6): 88.
[http://dx.doi.org/10.1007/s11274-019-2664-3] [PMID: 31134435]
[53]
Bergendi L, Beneš L, Ďuračková Z, Ferenčik M. Chemistry, physiology and pathology of free radicals. Life Sci 1999; 65(18-19): 1865-74.
[http://dx.doi.org/10.1016/S0024-3205(99)00439-7] [PMID: 10576429]
[54]
Riddle JM. Contraception And Abortion From The Ancient World To The Renaissance. Harvard University Press 1994.
[55]
Tel G, Öztürk M, Duru ME, Doğan B, Harmandar M. Fatty acid composition, antioxidant, anticholinesterase and tyrosinase inhibitory activities of four Serratula species from anatolia. Rec Nat Prod 2013; 7(2)
[56]
Nowak G, Nawrot J, Latowski K. Arbutin in serratula quinquefolia MB. Acta Soc Bot Pol 2011; 78(2): 137-40.
[http://dx.doi.org/10.5586/asbp.2009.018]
[57]
Rustaiyan A, Faramarzi S. Sesquiterpene lactones from Serratula latifolia. Phytochemistry 1988; 27(2): 479-81.
[http://dx.doi.org/10.1016/0031-9422(88)83124-8]
[58]
Báthori M, Zupkó I, Hunyadi A, Gácsné-Baitz E, Dinya Z, Forgó P. Monitoring the antioxidant activity of extracts originated from various Serratula species and isolation of flavonoids from Serratula coronata. Fitoterapia 2004; 75(2): 162-7.
[http://dx.doi.org/10.1016/j.fitote.2003.12.009] [PMID: 15030920]
[59]
Chinnappan S, Kandasamy S, Arumugam S, Seralathan KK, Thangaswamy S, Muthusamy G. Biomimetic synthesis of silver nanoparticles using flower extract of Bauhinia purpurea and its antibacterial activity against clinical pathogens. Environ Sci Pollut Res Int 2018; 25(1): 963-9.
[http://dx.doi.org/10.1007/s11356-017-0841-1] [PMID: 29218578]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy