Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Revealing the Potential of Mucoadhesive Ocular Nanoparticles for Enhanced Drug Delivery

Author(s): Shubhrat Maheshwari, Aditya Singh, Rufaida Wasim, Bhupendra G. Prajapati*, Rishabha Malviya* and Gamal A. Shazly

Volume 15, Issue 2, 2025

Published on: 16 April, 2024

Page: [129 - 141] Pages: 13

DOI: 10.2174/0124681873284203240328102643

Price: $65

Abstract

An ocular drug delivery system, or ODDS, is the method for executing a prescription to the peeper in order to treat or manage conditions related to the eyes. The range of ODDS modalities is broad and includes simple aseptic eye drops for the optic surface as well as complex implants for intraocular tissue. The use of ODDS is often necessary for states such as cataracts, progressive retinal illness, inflammation, dry eye syndrome, diabetic retinopathy (DR), and other related diseases or disorders. To sustain the intended drug concentrations at the prescribed place, new drug delivery technologies have been developed, incorporating fibrin-sealing materials and sticky gels. The advancement of long-lasting drug delivery systems that are non-invasive and applied externally to the back portion of the eye possesses the potential to improve drug administration significantly. The progress made in the field of ophthalmic drug delivery has resulted in promising advancements in the treatment of diseases affecting both the front and back portions of the eye. These groundbreaking strategies for administering medication hold immense potential for enhancing drug delivery in the future. Furthermore, these inventive devices and/or formulations are easy to develop, causing minimal or negligible irritation, boasting a prolonged period residing in front of the cornea, sustaining the release of drugs, and increasing the therapeutic availability of medications within the eye. To remain up to date with the current advancements in the field of ocular drug delivery, it is essential to acquire the latest information. This helps drug delivery scientists improve their thought processes and also makes it possible to create fresh, trustworthy drug delivery methods. The objective of this investigation is to provide a thorough investigation while also tracking their advancement. Next, we shall examine the latest breakthroughs in formulation innovations based on nanotechnology. We will also discuss the most recent developments in additional ocular medication administration methods, including in-situ gels, implants, contact lenses, and microneedles.

Keywords: Ocular drug delivery system , diabetic macular edema , bioadhesive , intraocular tissue , bioavailability , diabetic retinopathy.

Graphical Abstract
[1]
Karati D, Mukherjee S, Singh S, Prajapati BG, Basu B. Biopolymer-based nano-formulations for mitigation of ocular infections: a review. Polym Bull 2023.
[http://dx.doi.org/10.1007/s00289-023-05095-8]
[2]
Silva M, Calado R, Marto J, Bettencourt A, Almeida A, Gonçalves L. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs 2017; 15(12): 370.
[http://dx.doi.org/10.3390/md15120370] [PMID: 29194378]
[3]
Naik JB, Pardeshi SR, Patil RP, Patil PB, Mujumdar A. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: an overview. Bionanoscience 2020; 10(3): 564-82.
[http://dx.doi.org/10.1007/s12668-020-00752-y]
[4]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[5]
Garala K, Basu B, Prajapati B. Role of lipids in ocular drug delivery systems. InLipid-Based Drug Delivery Systems. Jenny Stanford Publishing 2024; pp. 591-619.
[6]
Lakhani P, Patil A, Majumdar S. Recent advances in topical nano drug-delivery systems for the anterior ocular segment. Ther Deliv 2018; 9(2): 137-53.
[http://dx.doi.org/10.4155/tde-2017-0088] [PMID: 29325511]
[7]
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in ocular drug delivery. Pharmaceutics 2019; 12(1): 22.
[http://dx.doi.org/10.3390/pharmaceutics12010022] [PMID: 31878298]
[8]
Gholizadeh S, Wang Z, Chen X, Dana R, Annabi N. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov Today 2021; 26(6): 1437-49.
[http://dx.doi.org/10.1016/j.drudis.2021.02.027] [PMID: 33689858]
[9]
Billowria K, Sandhu NK, Singh B. Topical advances in mucoadhesive ocular drug delivery system. Curr Drug Deliv 2023; 20(8): 1127-40.
[http://dx.doi.org/10.2174/1567201819666221010122413] [PMID: 36221885]
[10]
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017; 7(3): 281-91.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001] [PMID: 28540165]
[11]
Donnelly RF, Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci 2011; 3(1): 89-100.
[http://dx.doi.org/10.4103/0975-7406.76478] [PMID: 21430958]
[12]
Rodríguez-Jiménez S, Song H, Lam E, et al. Self-assembled liposomes enhance electron transfer for efficient photocatalytic CO2 reduction. J Am Chem Soc 2022; 144(21): 9399-412.
[http://dx.doi.org/10.1021/jacs.2c01725] [PMID: 35594410]
[13]
Macwan M, Prajapati B. Development, optimization and characterization of ocular nanoemulsion of an antifungal agent using design of experiments. Res J Pharm Technol 2022; 15(5): 2273-8.
[http://dx.doi.org/10.52711/0974-360X.2022.00378]
[14]
Sakellari GI, Zafeiri I, Batchelor H, Spyropoulos F. Solid lipid nanoparticles and nanostructured lipid carriers of dual functionality at emulsion interfaces. Part I: Pickering stabilisation functionality. Colloids Surf A Physicochem Eng Asp 2022; 654: 130135.
[http://dx.doi.org/10.1016/j.colsurfa.2022.130135]
[15]
Varela-Fernández R, García-Otero X, Díaz-Tomé V, et al. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. Eur J Pharm Biopharm 2022; 172: 144-56.
[http://dx.doi.org/10.1016/j.ejpb.2022.02.010] [PMID: 35183717]
[16]
Radwan IT, Baz MM, Khater H, Selim AM. Nanostructured Lipid Carriers (NLC) for Biologically active green tea and fennel natural oils delivery: larvicidal and adulticidal activities against Culex pipiens. Molecules 2022; 27(6): 1939.
[http://dx.doi.org/10.3390/molecules27061939] [PMID: 35335302]
[17]
Li Z, Shi M, Li N, Xu R. Application of functional biocompatible nanomaterials to improve curcumin bioavailability. Front Chem 2020; 8: 589957.
[http://dx.doi.org/10.3389/fchem.2020.589957] [PMID: 33134284]
[18]
Peabody JE, Shei RJ, Bermingham BM, et al. Seeing cilia: imaging modalities for ciliary motion and clinical connections. Am J Physiol Lung Cell Mol Physiol 2018; 314(6): L909-21.
[http://dx.doi.org/10.1152/ajplung.00556.2017] [PMID: 29493257]
[19]
Scribner MR, Santos-Lopez A, Marshall CW, Deitrick C, Cooper VS. Parallel evolution of tobramycin resistance across species and environments. MBio 2020; 11(3): e00932-20.
[http://dx.doi.org/10.1128/mBio.00932-20] [PMID: 32457248]
[20]
Pogue JM, Kaye KS, Veve MP, et al. Ceftolozane/tazobactam vs polymyxin or aminoglycoside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa. Clin Infect Dis 2020; 71(2): 304-10.
[http://dx.doi.org/10.1093/cid/ciz816] [PMID: 31545346]
[21]
Schoenwald RD. Ocular drug delivery. Pharmacokinetic considerations. Clin Pharmacokinet 1990; 18(4): 255-69.
[http://dx.doi.org/10.2165/00003088-199018040-00001] [PMID: 2182264]
[22]
Kiran Vaka SR, Sammeta SM, Day LB, Murthy SN. Transcorneal iontophoresis for delivery of ciprofloxacin hydrochloride. Curr Eye Res 2008; 33(8): 661-7.
[http://dx.doi.org/10.1080/02713680802270945] [PMID: 18696341]
[23]
Tirucherai GS, Dias C, Mitra AK. Corneal permeation of ganciclovir: mechanism of ganciclovir permeation enhancement by acyl ester prodrug design. J Ocul Pharmacol Ther 2002; 18(6): 535-48.
[http://dx.doi.org/10.1089/108076802321021081] [PMID: 12537680]
[24]
Gunda S, Hariharan S, Mitra AK. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): In vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. J Ocul Pharmacol Ther 2006; 22(6): 465-76.
[http://dx.doi.org/10.1089/jop.2006.22.465] [PMID: 17238815]
[25]
Gallarate M, Chirio D, Bussano R, et al. Development of O/W nanoemulsions for ophthalmic administration of timolol. Int J Pharm 2013; 440(2): 126-34.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.015] [PMID: 23078859]
[26]
Tirucherai GS, Mitra AK. Effect of hydroxypropyl beta cyclodextrin complexation on aqueous solubility, stability, and corneal permeation of acyl ester prodrugs of ganciclovir. AAPS PharmSciTech 2003; 4(3): 124-35.
[http://dx.doi.org/10.1208/pt040345] [PMID: 14621977]
[27]
Bakhsheshi-Rad HR, Hadisi Z, Ismail AF, et al. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym Test 2020; 82: 106298.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106298]
[28]
Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood–retina barrier: Emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 2006; 58(11): 1136-63.
[http://dx.doi.org/10.1016/j.addr.2006.07.024] [PMID: 17081648]
[29]
Shen J, Gan L, Zhu C, et al. Novel NSAIDs ophthalmic formulation: Flurbiprofen axetil emulsion with low irritancy and improved anti-inflammation effect. Int J Pharm 2011; 412(1-2): 115-22.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.041] [PMID: 21440613]
[30]
Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res 2002; 21(1): 15-34.
[http://dx.doi.org/10.1016/S1350-9462(01)00017-9] [PMID: 11906809]
[31]
Liang H, Brignole-Baudouin F, Rabinovich-Guilatt L, et al. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: An in vivo study in rabbits. Mol Vis 2008; 14: 204-16.
[PMID: 18347566]
[32]
Tajika T, Isowaki A, Sakaki H. Ocular distribution of difluprednate ophthalmic emulsion 0.05% in rabbits. J Ocul Pharmacol Ther 2011; 27(1): 43-9.
[http://dx.doi.org/10.1089/jop.2010.0093] [PMID: 21118027]
[33]
Liu Y, Lin X, Tang X. Lipid emulsions as a potential delivery system for ocular use of azithromycin. Drug Dev Ind Pharm 2009; 35(7): 887-96.
[http://dx.doi.org/10.1080/03639040802680271] [PMID: 19466890]
[34]
Karasawa F, Ehata T, Okuda T, Satoh T. Propofol injection pain is not alleviated by pretreatment with flurbiprofen axetil, a prodrug of a nonsteroidal antiinflammatory drug. J Anesth 2000; 14(3): 135-7.
[http://dx.doi.org/10.1007/s005400070020] [PMID: 14564579]
[35]
Yamaguchi M, Ueda K, Isowaki A, et al. Mucoadhesive properties of chitosan-coated ophthalmic lipid emulsion containing indomethacin in tear fluid. Biol Pharm Bull 2009; 32(7): 1266-71.
[http://dx.doi.org/10.1248/bpb.32.1266] [PMID: 19571396]
[36]
Lang J, Roehrs R, Jani R. Remington: The science and practice of pharmacy. Philadelphia: Lippincott Williams & Wilkins 2009; p. 85.
[37]
Scoper SV, Kabat AG, Owen GR, et al. Ocular distribution, bactericidal activity and settling characteristics of TobraDex® ST ophthalmic suspension compared with TobraDex® ophthalmic suspension. Adv Ther 2008; 25(2): 77-88.
[http://dx.doi.org/10.1007/s12325-008-0019-9] [PMID: 18309465]
[38]
Sasaki H, Yamamura K, Mukai T, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst 1999; 16: 85-146.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v16.i1.20]
[39]
Fukuda M, Hanazome I, Sasaki K. The intraocular dynamics of vancomycin hydrochloride ophthalmic ointment (TN-011) in rabbits. J Infect Chemother 2003; 9(1): 93-6.
[http://dx.doi.org/10.1007/s10156-002-0219-1] [PMID: 12673416]
[40]
Oguro S, Kasama T, Eguchi H, Shiota H. The inhibitory effect of vancomycin ointment on the manifestation of MRSA keratitis in rabbits. J Infect Chemother 2009; 15(5): 279-83.
[http://dx.doi.org/10.1007/s10156-009-0708-6] [PMID: 19856064]
[41]
Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Curr Drug Deliv 2006; 3(2): 207-17.
[http://dx.doi.org/10.2174/156720106776359186] [PMID: 16611007]
[42]
Shastri DH, Shelat PK, Shukla AK, Patel PB. Ophthalmic drug delivery system: Challenges and approaches. Systematic Reviews in Pharmacy 2010; 1(2): 113-20.
[http://dx.doi.org/10.4103/0975-8453.75042]
[43]
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem 2022; 10: 850757.
[http://dx.doi.org/10.3389/fchem.2022.850757] [PMID: 35494641]
[44]
Yi X, Wang Y, Yu FS. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci 2000; 41(13): 4093-100.
[PMID: 11095601]
[45]
Weng YH, Ma XW, Che J, et al. Nanomicelle-assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo. Adv Sci 2018; 5(1): 1700455.
[http://dx.doi.org/10.1002/advs.201700455] [PMID: 29375972]
[46]
Akhter S, Anwar M, Siddiqui MA, et al. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids Surf B Biointerfaces 2016; 148: 19-29.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.048] [PMID: 27591567]
[47]
Shi S, Zhang Z, Luo Z, et al. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac. Sci Rep 2015; 5(1): 11337.
[http://dx.doi.org/10.1038/srep11337] [PMID: 26067670]
[48]
Song D, Wang X, Yang J, et al. Hydrophobin HGFI improving the nanoparticle formation, stability and solubility of Curcumin. Colloids Surf A Physicochem Eng Asp 2021; 610: 125922.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125922]
[49]
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J 2010; 12(3): 348-60.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[50]
Subrizi A, del Amo EM, Korzhikov-Vlakh V, Tennikova T, Ruponen M, Urtti A. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today 2019; 24(8): 1446-57.
[http://dx.doi.org/10.1016/j.drudis.2019.02.001] [PMID: 30738982]
[51]
Nayak K, Choudhari MV, Bagul S, Chavan TA, Misra M. Ocular drug delivery systems. In: Chappel E, Ed. Developments in biomedical engineering and bioelectronics, drug delivery devices and therapeutic systems. Cambridge, MA, USA: Academic Press 2020; pp. 515-66.
[52]
Kang-Mieler JJ, Rudeen KM, Liu W, Mieler WF. Advances in ocular drug delivery systems. Eye 2020; 34(8): 1371-9.
[http://dx.doi.org/10.1038/s41433-020-0809-0] [PMID: 32071402]
[53]
Thornit DN, Vinten CM, Sander B, Lund-Andersen H, la Cour M. Blood-retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: estimations from macular volume changes after peroral glycerol. Invest Ophthalmol Vis Sci 2010; 51(6): 2827-34.
[http://dx.doi.org/10.1167/iovs.09-4172] [PMID: 20042642]
[54]
Tavakoli S, Peynshaert K, Lajunen T, et al. Ocular barriers to retinal delivery of intravitreal liposomes: Impact of vitreoretinal interface. J Control Release 2020; 328: 952-61.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.028] [PMID: 33091527]
[55]
Adrianto MF, Annuryanti F, Wilson CG, Sheshala R, Thakur RRS. in vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv Transl Res 2021; 1-21.
[PMID: 34382178]
[56]
Chen P, Chen H, Zang X, et al. Expression of efflux transporters in human ocular tissues. Drug Metab Dispos 2013; 41(11): 1934-48.
[http://dx.doi.org/10.1124/dmd.113.052704] [PMID: 23979916]
[57]
Zhang T, Xiang CD, Gale D, Carreiro S, Wu EY, Zhang EY. Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: Implications for ocular drug disposition. Drug Metab Dispos 2008; 36(7): 1300-7.
[http://dx.doi.org/10.1124/dmd.108.021121] [PMID: 18411399]
[58]
Zarbin MA, Montemagno C, Leary JF, Ritch R. Nanotechnology in ophthalmology. Can J Ophthalmol 2010; 45(5): 457-76.
[http://dx.doi.org/10.3129/i10-090] [PMID: 20871642]
[59]
Patel VM, Prajapati BG, Patel HV, Patel KM. Mucoadhesive bilayer tablets of propranolol hydrochloride. AAPS PharmSciTech 2007; 8(3): E203-8.
[http://dx.doi.org/10.1208/pt0803077] [PMID: 17915827]
[60]
Uner B, Ozdemir S, Yildirim E, et al. Loteprednol loaded nanoformulations for corneal delivery: Ex-vivo permeation study, ocular safety assessment and stability studies. J Drug Deliv Sci Technol 2023; 81: 104252.
[http://dx.doi.org/10.1016/j.jddst.2023.104252]
[61]
Huang H, Pierstorff E, Osawa E, Ho D. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2008; 2(2): 203-12.
[http://dx.doi.org/10.1021/nn7000867] [PMID: 19206620]
[62]
Srivastava V, Singh V, Kumar Khatri D, Kumar Mehra N. Recent trends and updates on ultradeformable and elastic vesicles in ocular drug delivery. Drug Discov Today 2023; 28(8): 103647.
[http://dx.doi.org/10.1016/j.drudis.2023.103647] [PMID: 37263389]
[63]
Sonkaew P, Sane A, Suppakul P. Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J Agric Food Chem 2012; 60(21): 5388-99.
[http://dx.doi.org/10.1021/jf301311g] [PMID: 22583595]
[64]
Zhao ZX, Gao SY, Wang JC, et al. Self-assembly nanomicelles based on cationic mPEG-PLA-b-Polyarginine(R15) triblock copolymer for siRNA delivery. Biomaterials 2012; 33(28): 6793-807.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.067] [PMID: 22721724]
[65]
Das B, Nayak AK, Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J Drug Deliv Sci Technol 2022; 76: 103780.
[http://dx.doi.org/10.1016/j.jddst.2022.103780]
[66]
Pontes-Quero GM, Benito-Garzón L, Pérez Cano J, Aguilar MR, Vázquez-Lasa B. Amphiphilic polymeric nanoparticles encapsulating curcumin: Antioxidant, anti-inflammatory and biocompatibility studies. Mater Sci Eng C 2021; 121: 111793.
[http://dx.doi.org/10.1016/j.msec.2020.111793] [PMID: 33579443]
[67]
Zahir-Jouzdani F, Wolf JD, Atyabi F, Bernkop-Schnürch A. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv 2018; 15(10): 1007-19.
[http://dx.doi.org/10.1080/17425247.2018.1517741] [PMID: 30173567]
[68]
Davies NM, Fair SJ, Hadgraft J, Kellaway IW. Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions. Pharm Res 1991; 8(8): 1039-43.
[http://dx.doi.org/10.1023/A:1015813225804] [PMID: 1924157]
[69]
Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: Two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm 2002; 28(4): 353-69.
[http://dx.doi.org/10.1081/DDC-120002997] [PMID: 12056529]
[70]
Sosnik A, das Neves J, Sarmento B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014; 39(12): 2030-75.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.07.010]
[71]
Saraswathi B, Balaji A, Umashankar MS. Polymers in mucoadhesive drug delivery system-latest updates. Int J Pharm Pharm Sci 2013; 5: 423-30.
[72]
Kharenko EA, Larionova NI, Demina NB. Mucoadhesive drug delivery systems (Review). Pharm Chem J 2009; 43(4): 200-8.
[http://dx.doi.org/10.1007/s11094-009-0271-6]
[73]
Chhonker YS, Prasad YD, Chandasana H, et al. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol 2015; 72: 1451-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.014] [PMID: 25453292]
[74]
Asasutjarit R, Theerachayanan T, Kewsuwan P, Veeranondha S, Fuongfuchat A, Ritthidej GC. Gamma sterilization of diclofenac sodium loaded-N-trimethyl chitosan nanoparticles for ophthalmic use. Carbohydrate polymers 2017; 157: 603-12.;
Wu J, Su ZG, Ma GH. A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharm 2006; 315(1-2): 1-1.
[PMID: 16616819]
[75]
Zhao F, Lu J, Jin X, et al. Comparison of response surface methodology and artificial neural network to optimize novel ophthalmic flexible nano-liposomes: Characterization, evaluation, in vivo pharmacokinetics and molecular dynamics simulation. Colloids Surf B Biointerfaces 2018; 172: 288-97.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.046] [PMID: 30173096]
[76]
He W, Guo X, Feng M, Mao N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm 2013; 458(2): 305-14.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.033] [PMID: 24409520]
[77]
Brannigan RP, Khutoryanskiy VV. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery. Colloids Surf B Biointerfaces 2017; 155: 538-43.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.050] [PMID: 28494432]
[78]
Rao JP, Geckeler KE. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci 2011; 36(7): 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[79]
Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J Microbiol Methods 2019; 160: 130-42.
[http://dx.doi.org/10.1016/j.mimet.2019.03.017] [PMID: 30898602]
[80]
Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery. Eur J Pharm Biopharm 2017; 110: 70-5.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.009] [PMID: 27789358]
[81]
Tatke A, Dudhipala N, Janga K, et al. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: Tear kinetics and ocular disposition studies. Nanomaterials 2018; 9(1): 33.
[http://dx.doi.org/10.3390/nano9010033] [PMID: 30591688]
[82]
Khalil IA, Ali IH, El-Sherbiny IM. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: In vitro, ex-vivo and in vivo evaluation. Nanomedicine 2019; 14(1): 33-55.
[http://dx.doi.org/10.2217/nnm-2018-0297] [PMID: 30543484]
[83]
Kalam MA, Iqbal M, Alshememry A, Alkholief M, Alshamsan A. Fabrication and characterization of tedizolid phosphate nanocrystals for topical ocular application: Improved solubilization and in vitro drug release. Pharmaceutics 2022; 14(7): 1328.
[http://dx.doi.org/10.3390/pharmaceutics14071328] [PMID: 35890223]
[84]
Hu J, Li H, Zhao Y, et al. Critical evaluation of multifunctional betaxolol hydrochloride nanoformulations for effective sustained intraocular pressure reduction. Int J Nanomedicine 2022; 17: 5915-31.
[http://dx.doi.org/10.2147/IJN.S382968] [PMID: 36506343]
[85]
Maulvi FA, Patil RJ, Desai AR, et al. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation. Acta Biomater 2019; 86: 350-62.
[http://dx.doi.org/10.1016/j.actbio.2019.01.004] [PMID: 30625414]
[86]
Hassan HAFM, Ali AI, ElDesawy EM, ElShafeey AH. Pharmacokinetic and pharmacodynamic evaluation of gemifloxacin chitosan nanoparticles as an antibacterial ocular dosage form. J Pharm Sci 2022; 111(5): 1497-508.
[http://dx.doi.org/10.1016/j.xphs.2021.12.016] [PMID: 34929155]
[87]
Pearson PA, Comstock TL, Ip M, et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology 2011; 118(8): 1580-7.
[http://dx.doi.org/10.1016/j.ophtha.2011.02.048] [PMID: 21813090]
[88]
Gupta PK, Venkateswaran N. The role of KPI-121 0.25% in the treatment of dry eye disease: Penetrating the mucus barrier to treat periodic flares. Ther Adv Ophthalmol 2021; 13
[http://dx.doi.org/10.1177/25158414211012797] [PMID: 34017938]
[89]
Beckman KA, Katz JA, Majmudar PA, Rips AG, Vaidya NS, Rostov AT. KPI-121 1% for pain and inflammation in ocular surgery. Pain Manag 2022; 12(1): 17-23.
[http://dx.doi.org/10.2217/pmt-2021-0023] [PMID: 34164994]
[90]
Bruschi ML, de Souza Ferreira SB, da Silva JB. Mucoadhesive and mucus-penetrating polymers for drug delivery. In Nanotechnology for oral drug delivery. Academic Press 2020; pp. 77-141.
[http://dx.doi.org/10.1016/B978-0-12-818038-9.00011-9]
[91]
Sharma R, Kumar S, Malviya R, et al. Recent advances in biopolymer-based mucoadhesive drug delivery systems for oral application. J Drug Deliv Sci Technol 2023; 105227.
[92]
Bakhrushina E, Anurova M, Demina N, et al. Comparative study of the mucoadhesive properties of polymers for pharmaceutical use. OA Macedon J Med Sci 2020; 8(A): 639-345.
[http://dx.doi.org/10.3889/oamjms.2020.4930]
[93]
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 2020; 12(9): 859.
[http://dx.doi.org/10.3390/pharmaceutics12090859] [PMID: 32927595]
[94]
Gutierrez Cisneros C, Bloemen V, Mignon A. Synthetic, natural, and semisynthetic polymer carriers for controlled nitric oxide release in dermal applications: A review. Polymers 2021; 13(5): 760.
[http://dx.doi.org/10.3390/polym13050760] [PMID: 33671032]
[95]
Kumar A, Naik PK, Pradhan D, Ghosh G, Rath G. Mucoadhesive formulations: Innovations, merits, drawbacks, and future outlook. Pharm Dev Technol 2020; 25(7): 797-814.
[http://dx.doi.org/10.1080/10837450.2020.1753771] [PMID: 32267180]
[96]
Naskar S, Sharma S, Kuotsu K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J Drug Deliv Sci Technol 2019; 49: 66-81.
[http://dx.doi.org/10.1016/j.jddst.2018.10.022]
[97]
Tripathi GK, Singh S. Formulation and in vitro evaluation of pH sensitive oil entrapped buoyant beads of amoxicillin. Int J Drug Deliv 2011; 3(1): 125-32.
[http://dx.doi.org/10.5138/ijdd.2010.0975.0215.03062]
[98]
Bíró T, Aigner Z. Current approaches to use cyclodextrins and mucoadhesive polymers in ocular drug delivery—A mini-review. Sci Pharm 2019; 87(3): 15.
[http://dx.doi.org/10.3390/scipharm87030015]
[99]
Silva FB, Nunes AL, Silva CS, Simões SP. Inventors; Bluepharma-Industria Farmaceutica Sa, assignee. Mucoadhesive compositions and uses thereof. United States patent application US 17/431,941., 2021.
[100]
Dave RS, Goostrey TC, Ziolkowska M, Czerny-Holownia S, Hoare T, Sheardown H. Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective. J Control Release 2021; 336: 71-88.
[http://dx.doi.org/10.1016/j.jconrel.2021.06.011] [PMID: 34119558]
[101]
Jacob S, Nair AB, Shah J, et al. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—an overview on recent advances. Pharmaceutics 2022; 14(3): 533.
[http://dx.doi.org/10.3390/pharmaceutics14030533] [PMID: 35335909]
[102]
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606: 120873.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120873] [PMID: 34246741]
[103]
Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent advances in the excipients used for modified ocular drug delivery. Materials 2021; 14(15): 4290.
[http://dx.doi.org/10.3390/ma14154290] [PMID: 34361483]
[104]
Vaneev A, Tikhomirova V, Chesnokova N, et al. Nanotechnology for topical drug delivery to the anterior segment of the eye. Int J Mol Sci 2021; 22(22): 12368.
[http://dx.doi.org/10.3390/ijms222212368] [PMID: 34830247]
[105]
jahan F, Zaman S, Arshad R, Tabish TA, Naseem AA, Shahnaz G. Mapping the potential of thiolated pluronic based nanomicelles for the safe and targeted delivery of vancomycin against staphylococcal blepharitis. J Drug Deliv Sci Technol 2021; 61: 102220.
[http://dx.doi.org/10.1016/j.jddst.2020.102220]
[106]
Schlachet I, Sosnik A. Mixed mucoadhesive amphiphilic polymeric nanoparticles cross a model of nasal septum epithelium in vitro. ACS Appl Mater Interfaces 2019; 11(24): 21360-71.
[http://dx.doi.org/10.1021/acsami.9b04766] [PMID: 31124655]
[107]
Kim J, Park J, Park YG, et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure. Nat Biomed Eng 2021; 5(7): 772-82.
[http://dx.doi.org/10.1038/s41551-021-00719-8] [PMID: 33941897]
[108]
Doloff JC, Veiseh O, de Mezerville R, et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat Biomed Eng 2021; 5(10): 1115-30.
[http://dx.doi.org/10.1038/s41551-021-00739-4] [PMID: 34155355]
[109]
Kligman S, Ren Z, Chung CH, et al. The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med 2021; 10(8): 1641.
[http://dx.doi.org/10.3390/jcm10081641] [PMID: 33921531]
[110]
Mansour SE, Kiernan DF, Roth DB, et al. Two-year interim safety results of the 0.2 µg/day fluocinolone acetonide intravitreal implant for the treatment of diabetic macular oedema: the observational PALADIN study. Br J Ophthalmol 2021; 105(3): 414-9.
[http://dx.doi.org/10.1136/bjophthalmol-2020-315984] [PMID: 32461262]
[111]
Ruiz-Medrano J, Rodríguez-Leor R, Almazán E, et al. Results of dexamethasone intravitreal implant (Ozurdex) in diabetic macular edema patients: Early versus late switch. Eur J Ophthalmol 2021; 31(3): 1135-45.
[http://dx.doi.org/10.1177/1120672120929960] [PMID: 32493065]
[112]
Musgrave CSA, Fang F. Contact lens materials: A materials science perspective. Materials 2019; 12(2): 261.
[http://dx.doi.org/10.3390/ma12020261] [PMID: 30646633]
[113]
Lambiase A, Abdolrahimzadeh S, Recupero SM. An update on intravitreal implants in use for eye disorders. Drugs of today 2014; 50(3): 239-49.
[http://dx.doi.org/10.1358/dot.2014.050.03.2103755]
[114]
Kashanian S, Harding F, Irani Y, et al. Evaluation of mesoporous silicon/polycaprolactone composites as ophthalmic implants. Acta Biomater 2010; 6(9): 3566-72.
[http://dx.doi.org/10.1016/j.actbio.2010.03.031] [PMID: 20350620]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy