Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Mini-Review Article

Nanocarrier-based Drug Delivery of Brinzolamide for Ocular Diseases: A Mini-Review

Author(s): Rashmi Maurya, Akash Vikal, Preeti Patel, Raj Kumar Narang and Balak Das Kurmi*

Volume 15, Issue 2, 2025

Published on: 16 April, 2024

Page: [113 - 128] Pages: 16

DOI: 10.2174/0124681873294344240408061056

Price: $65

Abstract

Brinzolamide (BRZ) represents a significant advancement in glaucoma treatment as a topically active carbonic anhydrase inhibitor (CAI). It exhibits selectivity and potent inhibitory activity for carbonic anhydrase type II isozyme (CA-II), which is crucial in aqueous humor secretion. With excellent ocular bioavailability and a formulation optimized for physiologic pH, brinzolamide effectively lowers intraocular pressure by inhibiting CA-II in ciliary processes. Its superior ocular comfort profile enhances patient compliance. Preclinical evaluations confirm its specific CA inhibition without notable side effects, and its low systemic absorption minimizes systemic CA inhibition-related issues. BRZ's prolonged tissue half-life in the eye ensures sustained IOP reduction, supported by clinical trials demonstrating comparable efficacy with reduced dosing frequency. Challenges in ocular disease treatment arise from physiological, anatomical, and dynamic barriers hindering effective drug delivery to the eye. Nanocarriers, such as micelles, nanoparticles, liposomes, niosomes, and dendrimers, offer promising solutions by improving permeation, targeting specific sites, and overcoming the limitations of conventional forms. This review explores diverse nanomedicines, detailing their applications, advantages, and disadvantages in ophthalmic drug delivery. It also includes recent research findings for a comprehensive overview of the current landscape.

Keywords: Brinzolamide, nanocarriers, intraocular pressure, carbonic anhydrase inhibitors, glaucoma, ocular hypertension, ophthalmic drug delivery.

Next »
Graphical Abstract
[1]
Ikuta Y, Aoyagi S, Tanaka Y, et al. Creation of nano eye-drops and effective drug delivery to the interior of the eye. Sci Rep 2017; 7(1): 44229.
[http://dx.doi.org/10.1038/srep44229] [PMID: 28290486]
[2]
Li T, Wang Y, Chen J, et al. Co-delivery of brinzolamide and miRNA-124 by biodegradable nanoparticles as a strategy for glaucoma therapy. Drug Deliv 2020; 27(1): 410-21.
[http://dx.doi.org/10.1080/10717544.2020.1731861] [PMID: 32133894]
[3]
Desantis L. Preclinical overview of brinzolamide. Surv Ophthalmol 2000; 44 (Suppl. 2): S119-29.
[http://dx.doi.org/10.1016/S0039-6257(99)00108-3] [PMID: 10665514]
[4]
Brinzolamide IM. Expert Opin Pharmacother 2008; 9(4): 653-62.
[http://dx.doi.org/10.1517/14656566.9.4.653] [PMID: 18312166]
[5]
Vo A, Feng X, Patel D, et al. Factors affecting the particle size distribution and rheology of brinzolamide ophthalmic suspensions. Int J Pharm 2020; 586: 119495.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119495] [PMID: 32553495]
[6]
Hosoya K, Yamamoto A, Akanuma S, Tachikawa M. Lipophilicity and transporter influence on blood-retinal barrier permeability: a comparison with blood-brain barrier permeability. Pharm Res 2010; 27(12): 2715-24.
[http://dx.doi.org/10.1007/s11095-010-0272-x] [PMID: 20859661]
[7]
Sharma S, Trikha S, Perera SA, Aung T. Clinical effectiveness of brinzolamide 1%-brimonidine 0.2% fixed combination for primary open-angle glaucoma and ocular hypertension. Clin Ophthalmol 2015; 9: 2201-7.
[PMID: 26648686]
[8]
Wu W, Li J, Wu L, et al. Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation. AAPS Pharm Sci Tech 2013; 14(3): 1063-71.
[http://dx.doi.org/10.1208/s12249-013-9997-2] [PMID: 23813437]
[9]
Iester M. Brinzolamide ophthalmic suspension: a review of its pharmacology and use in the treatment of open angle glaucoma and ocular hypertension. Clin Ophthalmol 2008; 2(3): 517-23.
[http://dx.doi.org/10.2147/OPTH.S3182] [PMID: 19668749]
[10]
Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J 2010; 12(3): 348-60.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[11]
Scozzafava A, Supuran CT. Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell Biochem 2014; 75: 349-59.
[http://dx.doi.org/10.1007/978-94-007-7359-2_17] [PMID: 24146387]
[12]
Occhipinti R, Boron WF. Role of carbonic anhydrases and inhibitors in acid–base physiology: Insights from mathematical modeling. Int J Mol Sci 2019; 20(15): 3841.
[http://dx.doi.org/10.3390/ijms20153841] [PMID: 31390837]
[13]
Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Res 2023; 51(D1): D1373-80.
[http://dx.doi.org/10.1093/nar/gkac956] [PMID: 36305812]
[14]
Zhang J, Jiao J, Niu M, et al. Ten years of knowledge of nano- carrier based drug delivery systems in ophthalmology: Current evidence, challenges, and future prospective. Int J Nanomedicine 2021; 16: 6497-530.
[http://dx.doi.org/10.2147/IJN.S329831] [PMID: 34588777]
[15]
Cvetkovic RS, Perry CM. Brinzolamide. Drugs Aging 2003; 20(12): 919-47.
[http://dx.doi.org/10.2165/00002512-200320120-00008] [PMID: 14565787]
[16]
Edward DP, Bouhenni R. Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis). Transactions of the American Ophthalmological Society 2011; 109: pp. 66-114.
[17]
Shoji N. Brinzolamide: efficacy, safety and role in the management of glaucoma. Expert Rev Ophthalmol 2007; 2(5): 695-704.
[http://dx.doi.org/10.1586/17469899.2.5.695]
[18]
Zhao M, Ma J, Li M, et al. Cytochrome p450 enzymes and drug metabolism in humans. Int J Mol Sci 2021; 22(23): 12808.
[http://dx.doi.org/10.3390/ijms222312808] [PMID: 34884615]
[19]
March WF, Ochsner KI. The brinzolamide long-term therapy study group. The long-term safety and efficacy of brinzolamide 1.0% (Azopt) in patients with primary open-angle glaucoma or ocular hypertension. Am J Ophthalmol 2000; 129(2): 136-43.
[http://dx.doi.org/10.1016/S0002-9394(99)00343-8] [PMID: 10682964]
[20]
Silver L. Brinzolamide dose-response study group. Dose-response evaluation of the ocular hypotensive effect of brinzolamide ophthalmic suspension (Azopt). Surv Ophthalmol 2000; 44 (Suppl. 2): S147-53.
[http://dx.doi.org/10.1016/S0039-6257(99)00110-1] [PMID: 10665517]
[21]
Sall K. Brinzolamide primary therapy study group. The efficacy and safety of brinzolamide 1% ophthalmic suspension (Azopt) as a primary therapy in patients with open-angle glaucoma or ocular hypertension. Surv Ophthalmol 2000; 44 (Suppl. 2): S155-62.
[http://dx.doi.org/10.1016/S0039-6257(99)00107-1] [PMID: 10665518]
[22]
Silver LH. Brinzolamide primary therapy study group. Clinical efficacy and safety of brinzolamide (Azopt™), a new topical carbonic anhydrase inhibitor for primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol 1998; 126(3): 400-8.
[http://dx.doi.org/10.1016/S0002-9394(98)00095-6] [PMID: 9744373]
[23]
Kurmi BD, Patel P, Paliwal R, Kumar P, Paliwal SR. Multifunctional nanotherapeutics for intracellular trafficking of doxorubicin against breast cancer. Nanomedicine 2023; 18(19): 1261-79.
[http://dx.doi.org/10.2217/nnm-2023-0087] [PMID: 37721134]
[24]
Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv 2020; 10(46): 27835-55.
[http://dx.doi.org/10.1039/D0RA04971A] [PMID: 35516960]
[25]
Wadhwa S, Paliwal R, Paliwal S, Vyas S. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 2009; 15(23): 2724-50.
[http://dx.doi.org/10.2174/138161209788923886] [PMID: 19689343]
[26]
Han H, Li S, Xu M, et al. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196: 114770.
[http://dx.doi.org/10.1016/j.addr.2023.114770] [PMID: 36894134]
[27]
Razavi MS, Ebrahimnejad P, Fatahi Y, D’Emanuele A, Dinarvand R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front Chem 2022; 10: 850757.
[http://dx.doi.org/10.3389/fchem.2022.850757] [PMID: 35494641]
[28]
Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine 2012; 7: 123-31.
[PMID: 22275828]
[29]
bigdeli A, Makhmalzadeh BS, Feghhi M, SoleimaniBiatiani E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: formulation development and in vitro/in vivo evaluation. Drug Deliv Transl Res 2023; 13(4): 1035-47.
[http://dx.doi.org/10.1007/s13346-022-01266-8] [PMID: 36477776]
[30]
Kim SN, Min CH, Kim YK, et al. Iontophoretic ocular delivery of latanoprost-loaded nanoparticles via skin-attached electrodes. Acta Biomater 2022; 144: 32-41.
[http://dx.doi.org/10.1016/j.actbio.2022.03.015] [PMID: 35292414]
[31]
Nguyen DD, Luo LJ, Lai JY. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma. Acta Biomater 2020; 111: 302-15.
[http://dx.doi.org/10.1016/j.actbio.2020.04.055] [PMID: 32428681]
[32]
Xu B, Liu T. Travoprost loaded microemulsion soaked contact lenses: Improved drug uptake, release kinetics and physical properties. J Drug Deliv Sci Technol 2020; 57: 101792.
[http://dx.doi.org/10.1016/j.jddst.2020.101792]
[33]
Xu H, Liu Y, Jin L, et al. Preparation and characterization of ion-sensitive brimonidine tartrate in situ gel for ocular delivery. Pharmaceuticals 2023; 16(1): 90.
[http://dx.doi.org/10.3390/ph16010090] [PMID: 36678587]
[34]
Spataro G, Malecaze F, Turrin CO, et al. Designing dendrimers for ocular drug delivery. Eur J Med Chem 2010; 45(1): 326-34.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.017] [PMID: 19889480]
[35]
Satyanarayana SD, Abu Lila AS, Moin A, et al. Ocular delivery of bimatoprost-loaded solid lipid nanoparticles for effective management of glaucoma. Pharmaceuticals 2023; 16(7): 1001.
[http://dx.doi.org/10.3390/ph16071001] [PMID: 37513913]
[36]
Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv Drug Deliv Rev 2020; 154-155: 102-22.
[http://dx.doi.org/10.1016/j.addr.2020.07.002] [PMID: 32650041]
[37]
Yuba E. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B Mater Biol Med 2020; 8(6): 1093-107.
[http://dx.doi.org/10.1039/C9TB02470K] [PMID: 31960007]
[38]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[39]
Lai WF, Wong WT, Rogach AL. Molecular design of layer-by-layer functionalized liposomes for oral drug delivery. ACS Appl Mater Interfaces 2020; 12(39): 43341-51.
[http://dx.doi.org/10.1021/acsami.0c13504] [PMID: 32877163]
[40]
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[41]
Li H, Liu Y, Zhang Y, et al. Liposomes as a novel ocular delivery system for brinzolamide: in vitro and in vivo studies. AAPS Pharm Sci Tech 2016; 17(3): 710-7.
[http://dx.doi.org/10.1208/s12249-015-0382-1] [PMID: 26335415]
[42]
Wang F, Bao X, Fang A, et al. Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion complex: a potential therapeutic ocular drug-delivery system. Front Pharmacol 2018; 9: 91.
[http://dx.doi.org/10.3389/fphar.2018.00091] [PMID: 29487529]
[43]
Zhang Y, Ren K, He Z, et al. Development of inclusion complex of brinzolamide with hydroxypropyl-β-cyclodextrin. Carbohydr Polym 2013; 98(1): 638-43.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.052] [PMID: 23987393]
[44]
Ji T, Lang J, Wang J, et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 2017; 11(9): 8668-78.
[http://dx.doi.org/10.1021/acsnano.7b01026] [PMID: 28806504]
[45]
Soliman OAEA, Mohamed EAM, El-Dahan MS, Khatera NAA. Potential use of cyclodextrin complexes for enhanced stability, anti-inflammatory efficacy, and ocular bioavailability of loteprednol etabonate. AAPS PharmSciTech 2017; 18(4): 1228-41.
[http://dx.doi.org/10.1208/s12249-016-0589-9] [PMID: 27469220]
[46]
Jin Q, Li H, Jin Z, et al. TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma. Int J Pharm 2018; 553(1-2): 21-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.033] [PMID: 30316795]
[47]
Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 2007; 46(30): 5670-703.
[http://dx.doi.org/10.1002/anie.200604646] [PMID: 17585397]
[48]
Webber MJ, Appel EA, Meijer EW, Langer R. Supramolecular biomaterials. Nat Mater 2016; 15(1): 13-26.
[http://dx.doi.org/10.1038/nmat4474] [PMID: 26681596]
[49]
Cegielska O, Sierakowski M, Sajkiewicz P, Lorenz K, Kogermann K. Mucoadhesive brinzolamide-loaded nanofibers for alternative glaucoma treatment. Eur J Pharm Biopharm 2022; 180: 48-62.
[http://dx.doi.org/10.1016/j.ejpb.2022.09.008] [PMID: 36167272]
[50]
Uzel E, Durgun ME, Esentürk-Güzel İ, Güngör S, Özsoy Y. Nanofibers in ocular drug targeting and tissue engineering: their importance, advantages, advances, and future perspectives 2023; 15(4): 1062.
[51]
Omer S, Zelkó R. A systematic review of drug-loaded electrospun nanofiber-based ophthalmic inserts. Pharmaceutics 2021; 13(10): 1637.
[http://dx.doi.org/10.3390/pharmaceutics13101637] [PMID: 34683930]
[52]
Siafaka PI, Özcan Bülbül E, Miliotou AN, Karantas ID, Okur ME, Üstündağ Okur N. Delivering active molecules to the eye; the concept of electrospinning as potent tool for drug delivery systems. J Drug Deliv Sci Technol 2023; 84: 104565.
[http://dx.doi.org/10.1016/j.jddst.2023.104565]
[53]
Dott C, Tyagi C, Tomar L, et al. A mucoadhesive electrospun nanofibrous matrix for rapid oramucosal drug delivery. J Nanomaterials 2013; 2013
[http://dx.doi.org/10.1155/2013/924947]
[54]
Akhter S, Anwar M, Siddiqui MA, et al. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies. Colloids Surf B Biointerfaces 2016; 148: 19-29.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.048] [PMID: 27591567]
[55]
Marianecci C, Di Marzio L, Rinaldi F, et al. Niosomes from 80s to present: The state of the art. Adv Colloid Interface Sci 2014; 205: 187-206.
[http://dx.doi.org/10.1016/j.cis.2013.11.018] [PMID: 24369107]
[56]
Moghtaderi M, Sedaghatnia K, Bourbour M, et al. Niosomes: a novel targeted drug delivery system for cancer. Med Oncol 2022; 39(12): 240.
[http://dx.doi.org/10.1007/s12032-022-01836-3] [PMID: 36175809]
[57]
Hamishehkar H, Rahimpour Y, Kouhsoltani M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 2013; 10(2): 261-72.
[http://dx.doi.org/10.1517/17425247.2013.746310] [PMID: 23252629]
[58]
Gupta P, Yadav KS. Formulation and evaluation of brinzolamide encapsulated niosomal in-situ gel for sustained reduction of IOP in rabbits. J Drug Deliv Sci Technol 2022; 67: 103004.
[http://dx.doi.org/10.1016/j.jddst.2021.103004]
[59]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J controll rele : offi j Controll Rele Soci 2017; 248: 96-116.
[60]
Cholkar K, Patel A, Vadlapudi AD, Mitra AK. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2012; 2(2): 82-95.
[http://dx.doi.org/10.2174/1877912311202020082] [PMID: 25400717]
[61]
Sipos B, Katona G, Csóka I. A systematic, knowledge space-based proposal on quality by design-driven polymeric micelle development. Pharmaceutics 2021; 13(5): 702.
[http://dx.doi.org/10.3390/pharmaceutics13050702] [PMID: 34065825]
[62]
Talaei S, Mahboobian MM, Mohammadi M. Investigating the ocular toxicity potential and therapeutic efficiency of in situ gel nanoemulsion formulations of brinzolamide. Toxicol Res 2020; 9(4): 578-87.
[http://dx.doi.org/10.1093/toxres/tfaa066] [PMID: 32905229]
[63]
Mohan P, Rajeswari J, Kesavan K. TPGS-chitosan conjugated mucoadhesive micelles of brinzolamide for glaucoma therapy: In vitro and in vivo evaluation. Materialia 2023; 28: 101711.
[http://dx.doi.org/10.1016/j.mtla.2023.101711]
[64]
Yavuz B, Bozdağ Pehlivan S, Ünlü N. Dendrimeric systems and their applications in ocular drug delivery. Sci Worl J 2013; 2013: 1-13.
[http://dx.doi.org/10.1155/2013/732340] [PMID: 24396306]
[65]
Lancina MG III, Yang H. Dendrimers for ocular drug delivery. Can J Chem 2017; 95(9): 897-902.
[http://dx.doi.org/10.1139/cjc-2017-0193] [PMID: 29147035]
[66]
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 2022; 16(1): 18.
[http://dx.doi.org/10.1186/s13036-022-00298-5] [PMID: 35879774]
[67]
Lancina MG III, Singh S, Kompella UB, Husain S, Yang H. Fast dissolving dendrimer nanofiber mats as alternative to eye drops for more efficient antiglaucoma drug delivery. ACS Biomater Sci Eng 2017; 3(8): 1861-8.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00319] [PMID: 29152562]
[68]
Okur NÜ, Yağcılar AP, Siafaka PI. Promising polymeric drug carriers for local delivery: the case of in situ gels. Curr Drug Deliv 2020; 17(8): 675-93.
[http://dx.doi.org/10.2174/1567201817666200608145748] [PMID: 32510291]
[69]
Paul S, Majumdar S, Chakraborty M. Revolutionizing ocular drug delivery: recent advancements in in situ gel technology. Bull Natl Res Cent 2023; 47(1): 154.
[http://dx.doi.org/10.1186/s42269-023-01123-9]
[70]
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 2020; 12(9): 859.
[http://dx.doi.org/10.3390/pharmaceutics12090859] [PMID: 32927595]
[71]
Fan R, Cheng Y, Wang R, et al. Thermosensitive hydrogels and advances in their application in disease therapy. Polymers 2022; 14(12): 2379.
[http://dx.doi.org/10.3390/polym14122379] [PMID: 35745954]
[72]
Ni X, Guo Q, Zou Y, et al. Preparation and characterization of bear bile-loaded pH sensitive in-situ gel eye drops for ocular drug delivery. Iran J Basic Med Sci 2020; 23(7): 922-9.
[PMID: 32774815]
[73]
Sun J, Zhou Z. A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation. Drug Des Devel Ther 2018; 12: 383-9.
[http://dx.doi.org/10.2147/DDDT.S153405] [PMID: 29503531]
[74]
Lotfi M, Kazemi S, Shirafkan F, et al. The protective effects of quercetin nano-emulsion on intestinal mucositis induced by 5-fluorouracil in mice. Biochem Biophys Res Commun 2021; 585: 75-81.
[http://dx.doi.org/10.1016/j.bbrc.2021.11.005] [PMID: 34800883]
[75]
Fresco-Cala B, Cárdenas S. Advanced polymeric solids containing nano- and micro-particles prepared via emulsion-based polymerization approaches. A review. Anal Chim Acta 2022; 1208: 339669.
[http://dx.doi.org/10.1016/j.aca.2022.339669] [PMID: 35525580]
[76]
Mushtaq A, Mohd Wani S, Malik AR, et al. Recent insights into nanoemulsions: Their preparation, properties and applications. Food Chem X 2023; 18: 100684.
[http://dx.doi.org/10.1016/j.fochx.2023.100684] [PMID: 37131847]
[77]
Zong TX, Silveira AP, Morais JAV, et al. Recent advances in antimicrobial nano-drug delivery systems. Nanomaterials 2022; 12(11): 1855.
[http://dx.doi.org/10.3390/nano12111855] [PMID: 35683711]
[78]
Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem 2020; 8: 286.
[http://dx.doi.org/10.3389/fchem.2020.00286] [PMID: 32391321]
[79]
Wang B, Tian H, Xiang D. Stabilizing the oil-in-water emulsions using the mixtures of dendrobium officinale polysaccharides and gum arabic or propylene glycol alginate. Molecules 2020; 25(3): 759.
[http://dx.doi.org/10.3390/molecules25030759] [PMID: 32050560]
[80]
Liu LC, Chen YH, Lu DW. Overview of recent advances in nano-based ocular drug delivery. Int J Mol Sci 2023; 24(20): 15352.
[http://dx.doi.org/10.3390/ijms242015352] [PMID: 37895032]
[81]
Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics 2023; 15(5): 1520.
[http://dx.doi.org/10.3390/pharmaceutics15051520] [PMID: 37242763]
[82]
Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, Gołkowska AM, Malec K, Karolewicz B. Ophthalmic nanoemulsions: from composition to technological processes and quality control. Mol Pharm 2021; 18(10): 3719-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00650] [PMID: 34533317]
[83]
Boddeda B, Boddu P, Avasarala H, Jayanti V. Design and ocular tolerance of flurbiprofen loaded nanosuspension. Pharm Nanotechnol 2015; 3(1): 56-67.
[http://dx.doi.org/10.2174/2211738503666150630185230]
[84]
Mobaraki M, Soltani M, Zare Harofte S, et al. Biodegradable nanoparticle for cornea drug delivery: focus review. Pharmaceutics 2020; 12(12): 1232.
[http://dx.doi.org/10.3390/pharmaceutics12121232] [PMID: 33353013]
[85]
Rebibo L, Tam C, Sun Y, et al. Topical tacrolimus nanocapsules eye drops for therapeutic effect enhancement in both anterior and posterior ocular inflammation models. J Controll Rele : offil J Controll Relea Soci 2021; 333: 283-97.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.035]
[86]
Wu KY, Ashkar S, Jain S, Marchand M, Tran SD. Breaking barriers in eye treatment: polymeric nano-based drug-delivery system for anterior segment diseases and glaucoma. Polymers 2023; 15(6): 1373.
[http://dx.doi.org/10.3390/polym15061373] [PMID: 36987154]
[87]
Mikušová V, Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int J Mol Sci 2021; 22(17): 9652.
[http://dx.doi.org/10.3390/ijms22179652] [PMID: 34502560]
[88]
Dubey V, Mohan P, Dangi JS, Kesavan K. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamic study. Int J Biol Macromol 2020; 152: 1224-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.219] [PMID: 31751741]
[89]
Agarwal R, Iezhitsa I, Agarwal P, et al. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 2016; 23(4): 1075-91.
[http://dx.doi.org/10.3109/10717544.2014.943336] [PMID: 25116511]
[90]
Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N. Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 2013; 8: 495-503.
[http://dx.doi.org/10.2147/IJN.S30725] [PMID: 23439842]
[91]
Kwon S, Kim SH, Khang D, Lee JY. Potential therapeutic usage of nanomedicine for glaucoma treatment. Int J Nanomedicine 2020; 15: 5745-65.
[http://dx.doi.org/10.2147/IJN.S254792] [PMID: 32821099]
[92]
Yang C, Yang J, Lu A, et al. Nanoparticles in ocular applications and their potential toxicity. Front Mol Biosci 2022; 9: 931759.
[http://dx.doi.org/10.3389/fmolb.2022.931759] [PMID: 35911959]
[93]
Wang R, Gao Y, Liu A, Zhai G. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target 2021; 29(7): 687-702.
[http://dx.doi.org/10.1080/1061186X.2021.1878366] [PMID: 33474998]
[94]
Li Z, Liu M, Ke L, et al. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. Nanoscale Adv 2021; 3(18): 5240-54.
[http://dx.doi.org/10.1039/D1NA00596K] [PMID: 36132623]
[95]
Onugwu AL, Nwagwu CS, Onugwu OS, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354: 465-88.
[http://dx.doi.org/10.1016/j.jconrel.2023.01.018] [PMID: 36642250]
[96]
Wu Y, Liu Y, Li X, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asia J Pharmaceutic Sci 2019; 14(1): 1-15.
[http://dx.doi.org/10.1016/j.ajps.2018.04.008] [PMID: 32104434]
[97]
Al-Qaysi ZK, Beadham IG, Schwikkard SL, Bear JC, Al-Kinani AA, Alany RG. Sustained release ocular drug delivery systems for glaucoma therapy. Expert Opin Drug Deliv 2023; 20(7): 905-19.
[http://dx.doi.org/10.1080/17425247.2023.2219053] [PMID: 37249548]
[98]
Dhahir RK, Al-Nima AM, Al-Bazzaz FY. Nanoemulsions as ophthalmic drug delivery systems. Turki J Pharmaceut Sci 2021; 18(5): 652-64.
[http://dx.doi.org/10.4274/tjps.galenos.2020.59319]
[99]
Durak S, Esmaeili Rad M, Alp Yetisgin A, et al. Niosomal drug delivery systems for ocular disease-recent advances and future prospects. Nanomaterials 2020; 10(6): 1191.
[http://dx.doi.org/10.3390/nano10061191] [PMID: 32570885]
[100]
Albarqi HA, Garg A, Ahmad MZ, Alqahtani AA, Walbi IA, Ahmad J. Recent progress in chitosan-based nanomedicine for its ocular application in glaucoma. Pharmaceutics 2023; 15(2): 681.
[http://dx.doi.org/10.3390/pharmaceutics15020681] [PMID: 36840002]
[101]
Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (odds) for cyclosporine-A. Pharmaceutics 2021; 13(2): 192.
[http://dx.doi.org/10.3390/pharmaceutics13020192] [PMID: 33535607]
[102]
Wong KY, Liu Y, Zhou L, Wong MS, Liu J. Mucin-targeting-aptamer functionalized liposomes for delivery of cyclosporin A for dry eye diseases. J Mater Chem B Mater Biol Med 2023; 11(21): 4684-94.
[http://dx.doi.org/10.1039/D3TB00598D] [PMID: 37161679]
[103]
Patel Asha, Chhowala Ishrat, Dharamsi Abhay, Patel Rakesh. Optimization of PCL-HA laden biodegradable nanoparticles containing Cyclosporine-A for the treatment of Dry eye syndrome: in vitro-in vivo evaluation". Int J Nanopartic 2020; 13.
[104]
Soiberman U, Kambhampati SP, Wu T, et al. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials 2017; 125: 38-53.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.016] [PMID: 28226245]
[105]
Taheri SL, Rezazadeh M, Hassanzadeh F, et al. Preparation, physicochemical, and retinal anti-angiogenic evaluation of poloxamer hydrogel containing dexamethasone/avastin-loaded chitosan-N- acetyl-L-cysteine nanoparticles. Int J Biol Macromol 2022; 220: 1605-18.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.101] [PMID: 36116595]
[106]
Alami-Milani M, Zakeri-Milani P, Valizadeh H, Sattari S, Salatin S, Jelvehgari M. Evaluation of anti-inflammatory impact of dexamethasone-loaded PCL-PEG-PCL micelles on endotoxin-induced uveitis in rabbits. Pharm Dev Technol 2019; 24(6): 680-8.
[http://dx.doi.org/10.1080/10837450.2019.1578370] [PMID: 30892119]
[107]
Fialho SL, Da Silva-Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol 2004; 32(6): 626-32.
[http://dx.doi.org/10.1111/j.1442-9071.2004.00914.x] [PMID: 15575833]
[108]
Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol 2013; 9(6): 998-1007.
[http://dx.doi.org/10.1166/jbn.2013.1594] [PMID: 23858964]
[109]
Ibrahim HK, El-Leithy IS, Makky AA. Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm 2010; 7(2): 576-85.
[http://dx.doi.org/10.1021/mp900279c] [PMID: 20163167]
[110]
Katzer T, Chaves P, Bernardi A, Pohlmann A, Guterres SS, Ruver Beck RC. Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity. J Microencapsul 2014; 31(6): 519-28.
[http://dx.doi.org/10.3109/02652048.2013.879930] [PMID: 24697184]
[111]
Cheng YH, Ko YC, Chang YF, Huang SH, Liu CJ. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp Eye Res 2019; 179: 179-87.
[http://dx.doi.org/10.1016/j.exer.2018.11.017] [PMID: 30471279]
[112]
Xu J, Ge Y, Bu R, et al. Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma. J Control Release 2019; 305: 18-28.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.025] [PMID: 31103677]
[113]
Wadetwar RN, Agrawal AR, Kanojiya PS. In situ gel containing Bimatoprost solid lipid nanoparticles for ocular delivery: in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2020; 56: 101575.
[http://dx.doi.org/10.1016/j.jddst.2020.101575]
[114]
Li Q, Ma C, Ma Y, Ma Y, Mao Y, Meng Z. Sustained bimatoprost release using gold nanoparticles laden contact lenses. J Biomater Sci Polym Ed 2021; 32(12): 1618-34.
[http://dx.doi.org/10.1080/09205063.2021.1927656] [PMID: 33980134]
[115]
Franca JR, Foureaux G, Fuscaldi LL, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One 2014; 9(4): e95461.
[http://dx.doi.org/10.1371/journal.pone.0095461] [PMID: 24788066]
[116]
Xu W, Jiao W, Li S, Tao X, Mu G. Bimatoprost loaded microemulsion laden contact lens to treat glaucoma. J Drug Deliv Sci Technol 2019; 54: 101330.
[http://dx.doi.org/10.1016/j.jddst.2019.101330]
[117]
Jung HJ, Abou-Jaoude M, Carbia BE, Plummer C, Chauhan A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release 2013; 165(1): 82-9.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.010] [PMID: 23123188]
[118]
Huang J, Peng T, Li Y, et al. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex-vivo, and in vivo Evaluation. AAPS PharmSciTech 2017; 18(8): 2919-26.
[http://dx.doi.org/10.1208/s12249-017-0763-8] [PMID: 28429294]
[119]
Hathout RM, Gad HA, Abdel-Hafez SM, et al. Gelatinized core liposomes: A new Trojan horse for the development of a novel timolol maleate glaucoma medication. Int J Pharm 2019; 556: 192-199.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.015] [PMID: 30553005]
[120]
Zafar A, Alruwaili NK, Imam SS, et al. Formulation of carteolol chitosomes for ocular delivery: Formulation optimization, ex-vivo permeation, and ocular toxicity examination. Cutan Ocul Toxicol 2021; 40(4): 338-49.
[http://dx.doi.org/10.1080/15569527.2021.1958225] [PMID: 34340615]
[121]
Nagai N, Yamaoka S, Fukuoka Y, et al. Enhancement in corneal permeability of dissolved carteolol by its combination with magnesium hydroxide nanoparticles. Int J Mol Sci 2018; 19(1): 282.
[http://dx.doi.org/10.3390/ijms19010282] [PMID: 29342127]
[122]
Emad Eldeeb A, Salah S, Ghorab M. Proniosomal gel-derived niosomes: an approach to sustain and improve the ocular delivery of brimonidine tartrate; formulation, in-vitro characterization, and in- vivo pharmacodynamic study. Drug Deliv 2019; 26(1): 509-21.
[http://dx.doi.org/10.1080/10717544.2019.1609622] [PMID: 31090464]
[123]
Shivakumar HN, Desai BG, Subhash PG, Ashok P, Hulakoti B. Design of ocular inserts of brimonidine tartrate by response surface methodology. J Drug Deliv Sci Technol 2007; 17(6): 421-30.
[http://dx.doi.org/10.1016/S1773-2247(07)50083-3]
[124]
Zhao Y, Huang C, Zhang Z, et al. Sustained release of brimonidine from BRI@SR@TPU implant for treatment of glaucoma. Drug Deliv 2022; 29(1): 613-23.
[http://dx.doi.org/10.1080/10717544.2022.2039806] [PMID: 35174743]
[125]
Sun J, Lei Y, Dai Z, et al. Sustained release of brimonidine from a new composite drug delivery system for treatment of glaucoma. ACS Appl Mater Interfaces 2017; 9(9): 7990-9.
[http://dx.doi.org/10.1021/acsami.6b16509] [PMID: 28198606]
[126]
Kassem AA, Salama A, Mohsen AM. Formulation and optimization of cationic nanoemulsions for enhanced ocular delivery of dorzolamide hydrochloride using Box-Behnken design: In vitro and in vivo assessments. J Drug Deliv Sci Technol 2022; 68: 103047.
[http://dx.doi.org/10.1016/j.jddst.2021.103047]
[127]
Tuomela A, Liu P, Puranen J, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo. Int J Pharm 2014; 467(1-2): 34-41.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.048] [PMID: 24680962]
[128]
Smith SM, Salmon JH, Abbaraju S, Amin R, Gilger BC. Tolerability, pharmacokinetics, and pharmacodynamics of a brinzolamide episcleral sustained release implant in normotensive New Zealand white rabbits. J Drug Deliv Sci Technol 2021; 61: 102123.
[http://dx.doi.org/10.1016/j.jddst.2020.102123]
[129]
Patel CC, Mandava N, Oliver SCN, Braverman R, Quiroz-Mercado H, Olson JL. Treatment of intractable posterior uveitis in pediatric patients with the fluocinolone acetonide intravitreal implant (Retisert). Retina 2012; 32(3): 537-42.
[http://dx.doi.org/10.1097/IAE.0b013e31822058bb] [PMID: 21963487]
[130]
Salama AH, Mahmoud AA, Kamel R. A novel method for preparing surface-modified fluocinolone acetonide loaded plga nanoparticles for ocular use: In vitro and in vivo evaluations. AAPS PharmSciTech 2016; 17(5): 1159-72.
[http://dx.doi.org/10.1208/s12249-015-0448-0] [PMID: 26589410]
[131]
Shelley H, Annaji M, Grant M, Fasina O, Babu RJ. Sustained release biodegradable microneedles of difluprednate for delivery to posterior eye. J Ocul Pharmacol Ther 2022; 38(6): 449-58.
[http://dx.doi.org/10.1089/jop.2021.0089] [PMID: 35167767]
[132]
Gonzalez-Pizarro R, Parrotta G, Vera R, et al. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine 2019; 14(23): 3089-104.
[http://dx.doi.org/10.2217/nnm-2019-0201] [PMID: 31769335]
[133]
Baba K, Hashida N, Tujikawa M, Quantock AJ, Nishida K. The generation of fluorometholone nanocrystal eye drops, their metabolization to dihydrofluorometholone and penetration into rabbit eyes. Int J Pharm 2021; 592: 120067.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120067] [PMID: 33189813]
[134]
Nirbhavane P, Sharma G, Singh B, et al. Triamcinolone acetonide loaded-cationic nano-lipoidal formulation for uveitis: Evidences of improved biopharmaceutical performance and anti-inflammatory activity. Colloids Surf B Biointerfaces 2020; 190: 110902.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110902] [PMID: 32143010]
[135]
Yan J, Peng X, Cai Y, Cong W. Development of facile drug delivery platform of ranibizumab fabricated PLGA-PEGylated magnetic nanoparticles for age-related macular degeneration therapy. J Photochem Photobiol B 2018; 183: 133-6.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.033] [PMID: 29704861]
[136]
Elsaid N, Jackson TL, Elsaid Z, Alqathama A, Somavarapu S. PLGA microparticles entrapping chitosan-based nanoparticles for the ocular delivery of ranibizumab. Mol Pharm 2016; 13(9): 2923-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00335] [PMID: 27286558]
[137]
Joseph RR, Tan DWN, Ramon MRM, et al. Characterization of liposomal carriers for the transscleral transport of Ranibizumab. Sci Rep 2017; 7(1): 16803.
[http://dx.doi.org/10.1038/s41598-017-16791-7] [PMID: 29196745]
[138]
Qian C, Yan P, Wan G, Liang S, Dong Y, Wang J. Facile synthetic photoluminescent graphene quantum dots encapsulated β-cyclodextrin drug carrier system for the management of macular degeneration: detailed analytical and biological investigations. J Photochem Photobiol B 2018; 189: 244-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.019] [PMID: 30419519]
[139]
Peter A. Campochiaro, Shamika Gune, Mauricio Maia, Han Ting Ding, Katie Maass; pharmacokinetic profile of the port delivery system with ranibizumab (pds) in the phase 3 archway trial. Invest Ophthalmol Vis Sci 2021; 62(8): 350.
[140]
Yandrapu SK, Upadhyay AK, Petrash JM, Kompella UB. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol Pharm 2013; 10(12): 4676-86.
[http://dx.doi.org/10.1021/mp400487f] [PMID: 24131101]
[141]
Jiang P, Chaparro FJ, Cuddington CT, et al. Injectable biodegradable bi-layered capsule for sustained delivery of bevacizumab in treating wet age-related macular degeneration. J Control Release 2020; 320: 442-56.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.036] [PMID: 31981659]
[142]
Zhang XP, Sun JG, Yao J, et al. Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed Pharmacother 2018; 107: 1056-63.
[http://dx.doi.org/10.1016/j.biopha.2018.08.092] [PMID: 30257317]
[143]
Jiang P, Jacobs KM, Ohr MP, Swindle-Reilly KE. Chitosan-polycaprolactone core shell microparticles for sustained delivery of bevacizumab. Mol Pharm 2020; 17(7): 2570-84.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00260] [PMID: 32484677]
[144]
Liu W, Lee BS, Mieler WF, Kang-Mieler JJ. Biodegradable microsphere-hydrogel ocular drug delivery system for controlled and extended release of bioactive aflibercept in vitro. Curr Eye Res 2019; 44(3): 264-74.
[http://dx.doi.org/10.1080/02713683.2018.1533983] [PMID: 30295090]
[145]
Kelly S, Hirani A, Shahidadpury V, et al. Aflibercept nanoformulation inhibits vegf expression in ocular in vitro model: a preliminary report. Biomedicines 2018; 6(3): 92.
[http://dx.doi.org/10.3390/biomedicines6030092] [PMID: 30208574]
[146]
Laddha UD, Kshirsagar SJ. Formulation of PPAR-gamma agonist as surface modified PLGA nanoparticles for non-invasive treatment of diabetic retinopathy: in vitro and in vivo evidences. Heliyon 2020; 6(8): e04589.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04589] [PMID: 32832706]
[147]
Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine 2012; 8(5): 784-91.
[http://dx.doi.org/10.1016/j.nano.2011.09.003] [PMID: 21945900]
[148]
Paiva MRB, Andrade GF, Dourado LFN, et al. Surface functionalized mesoporous silica nanoparticles for intravitreal application of tacrolimus. J Biomater Appl 2021; 35(8): 1019-33.
[http://dx.doi.org/10.1177/0885328220977605] [PMID: 33290123]
[149]
Dave V, Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf B Biointerfaces 2020; 194: 111151.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111151] [PMID: 32540764]
[150]
Tan G, Yu S, Pan H, Li J, Liu D, Yuan K, et al. Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate. Int j biolo macromolecul 2017; 94(Pt A): 355-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.035]
[151]
Franco P, Sacco O, Vaiano V, De Marco I. Supercritical carbon dioxide-based processes in photocatalytic applications. Molecules 2021; 26(9): 2640.
[http://dx.doi.org/10.3390/molecules26092640] [PMID: 33946498]
[152]
Miralles E, Kamma-Lorger CS, Domènech Ò, et al. Assessment of efficacy and safety using ppar-γ agonist-loaded nanocarriers for inflammatory eye diseases. Int J Mol Sci 2022; 23(19): 11184.
[http://dx.doi.org/10.3390/ijms231911184] [PMID: 36232486]
[153]
Kesarla R, Tank T, Vora PA, Shah T, Parmar S, Omri A. Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel. Drug Deliv 2016; 23(7): 2363-70.
[http://dx.doi.org/10.3109/10717544.2014.987333] [PMID: 25579467]
[154]
Guo C, Zhang Y, Yang Z, et al. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: In vitro mechanism and in vivo permeation evaluation. Sci Rep 2015; 5(1): 12968.
[http://dx.doi.org/10.1038/srep12968]
[155]
Eldeeb AE, Salah S, Ghorab M. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study. J Drug Deliv Sci Technol 2019; 52: 236-47.
[http://dx.doi.org/10.1016/j.jddst.2019.04.036]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy