Abstract
Plastic waste is a current issue worldwide that is already negatively influencing and threatening the lives of human beings, with residual micro- and nanoplastics entering water and soil bodies inducing recalcitrant pollution and health issues. The proposed perspective has been aimed to provide an overview of the potential of plastic waste valorization to green hydrogen and carbonaceous nanostructures. The overall concept additionally includes the utilization of the generated carbonaceous nanostructures to design advanced functional materials in combination with the obtained green hydrogen from plastic waste in a number of batch-to-flow catalytic hydrogenations to close the circle of sustainable integrated valorization of plastic waste. The concept also includes insightful Life-Cycle Assessment (LCA) and techno-economic studies in order to select the most relevant lines from the sustainability and cost-competitive standpoints.
Keywords: Plastic waste, green hydrogen, carbonaceous nanostructures, global warming, green house gases, pollution.
[http://dx.doi.org/10.1126/science.abg5433] [PMID: 34210878]
[http://dx.doi.org/10.1016/j.chempr.2020.12.006]
[http://dx.doi.org/10.1016/j.jfueco.2023.100103]
[http://dx.doi.org/10.1016/j.scitotenv.2021.149911] [PMID: 34525745]
[http://dx.doi.org/10.1126/science.1260352] [PMID: 25678662]
[http://dx.doi.org/10.1039/b908135f]
[http://dx.doi.org/10.1126/sciadv.1700782] [PMID: 28776036]
[http://dx.doi.org/10.1126/sciadv.1501591] [PMID: 27386559]
[http://dx.doi.org/10.1021/acscatal.2c02775];
(b) Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen, L.; Chen, C. Current technologies for plastic waste treatment: A review. J. Clean. Prod., 2021, 282, 124523.
[http://dx.doi.org/10.1016/j.jclepro.2020.124523]
[http://dx.doi.org/10.1016/j.chemosphere.2022.133893] [PMID: 35134407]
[http://dx.doi.org/10.1016/j.tifs.2023.104221]
[http://dx.doi.org/10.1016/j.envadv.2024.100494]
[http://dx.doi.org/10.1016/j.jece.2023.111016]
[http://dx.doi.org/10.1016/j.rser.2022.112966]
[http://dx.doi.org/10.1016/j.rser.2023.113346]
[http://dx.doi.org/10.1016/j.heliyon.2023.e20194] [PMID: 37809432]
[http://dx.doi.org/10.1016/j.bej.2022.108546]
[http://dx.doi.org/10.1016/j.jenvman.2023.118842] [PMID: 37619388]
(b) Olazar, L.; Saldarriaga, J.F.; Lopez, G.; Santamaria, L.; Amutio, M.; Olazar, M.; Artetxe, M. Insight into the joint valorization of CO2 and waste plastics by pyrolysis and in line dry reforming for syngas production. Fuel Process. Technol., 2024, 253, 108024.
[http://dx.doi.org/10.1016/j.fuproc.2023.108024]
[http://dx.doi.org/10.1016/j.wmb.2023.10.009];
(b) Valizadeh, S.; Hakimian, H.; Farooq, A.; Jeon, B.H.; Chen, W.H.; Hoon Lee, S.; Jung, S.C.; Won Seo, M.; Park, Y.K. Valorization of biomass through gasification for green hydrogen generation: A comprehensive review. Bioresour. Technol., 2022, 365, 128143.
[http://dx.doi.org/10.1016/j.biortech.2022.128143] [PMID: 36265786]
[http://dx.doi.org/10.1016/j.jenvman.2023.118993] [PMID: 37751665];
(b) Saba, B.; Bharathidasan, A.K.; Ezeji, T.C.; Cornish, K. Characterization and potential valorization of industrial food processing wastes. Sci. Total Environ., 2023, 868, 161550.
[http://dx.doi.org/10.1016/j.scitotenv.2023.161550] [PMID: 36652966]
[http://dx.doi.org/10.1016/j.jaap.2023.105918]
[http://dx.doi.org/10.1016/j.apenergy.2023.120692]
[http://dx.doi.org/10.1016/j.biortech.2021.126197] [PMID: 34710608];
(b) Kraakman, N.J.R.; Diaz, I.; Fdz-Polanco, M.; Muñoz, R. Large-scale micro-aerobic digestion studies at municipal water resource recovery facilities for process-integrated biogas desulfurization. J. Water Process Eng., 2023, 53, 103643.
[http://dx.doi.org/10.1016/j.jwpe.2023.103643]
[http://dx.doi.org/10.1016/j.jclepro.2023.136762];
(b) Ambaye, T.G.; Djellabi, R.; Vaccari, M.; Prasad, S.; M Aminabhavi, T.; Rtimi, S. Emerging technologies and sustainable strategies for municipal solid waste valorization: Challenges of circular economy implementation. J. Clean. Prod., 2023, 423, 138708.
[http://dx.doi.org/10.1016/j.jclepro.2023.138708]
[http://dx.doi.org/10.1016/j.biortech.2023.128732] [PMID: 36774986]
[http://dx.doi.org/10.1016/j.ijbiomac.2023.126492] [PMID: 37634772]
[http://dx.doi.org/10.1016/j.apcatb.2024.123718];
(b) Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Microwave heating for sustainable valorization of almond hull towards high-added-value chemicals. Ind. Crops Prod., 2022, 189, 115766.
[http://dx.doi.org/10.1016/j.indcrop.2022.115766]
[http://dx.doi.org/10.1038/s41929-020-00538-1]
[http://dx.doi.org/10.1016/j.tca.2022.179294]
[http://dx.doi.org/10.1016/j.ijhydene.2023.08.224]
[http://dx.doi.org/10.1016/j.cej.2024.149270]
[http://dx.doi.org/10.1016/j.cej.2024.149777];
(b) Fan, S.; Zhang, Y.; Cui, L.; Maqsood, T.; Nižetić, S. Cleaner production of aviation oil from microwave-assisted pyrolysis of plastic wastes. J. Clean. Prod., 2023, 390, 136102.
[http://dx.doi.org/10.1016/j.jclepro.2023.136102]
[http://dx.doi.org/10.1016/j.fuel.2021.121769];
(b) Wang, B.; Chen, Y.; Chen, W.; Hu, J.; Chang, C.; Pang, S.; Li, P. Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field. Energy, 2024, 293, 130711.
[http://dx.doi.org/10.1016/j.energy.2024.130711];
c) Nguyen, B.N.T.; Lim, J.Y.C. Emerging green approaches for valorization of plastics with saturated carbon backbones. Trends Chem., 2024, 6(3), 100-114.
[http://dx.doi.org/10.1016/j.trechm.2024.01.001]
[http://dx.doi.org/10.1016/j.jenvman.2024.120052] [PMID: 38244409]
[http://dx.doi.org/10.1073/pnas.2305078120] [PMID: 37695879]