Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Carbon-Chalcogenide Cross-Coupling Reactions in Water

Author(s): Atanu Mahata*, Totan Roy, Animesh Mondal and Debasish Kundu*

Volume 11, Issue 4, 2024

Published on: 13 March, 2024

Page: [325 - 335] Pages: 11

DOI: 10.2174/0122133461302866240308045200

Price: $65

conference banner
Abstract

Over the past two decades, researchers have witnessed the synthesis of diaryl sulfides and diaryl selenides via transition metals-mediated carbon-heteroatom cross-coupling reactions in the presence of various organic and inorganic solvents. The use of water as a clean and environmentally friendly solvent in cross-coupling chemistry of C-S/Se bond formations has attracted profound interest owing to its availability, non-toxicity, low cost and renewability. The most commonly used solvents have been recognized as being of environmental concern, but the use of green and eco-friendly solvents like water is frequently considered with respect to the recovery of catalysts, isolation of products, and recycling. The fundamental interactions between the water and the transition metal catalysts or ligands are viewed from mechanistic aspects, which mostly favours the rational selection of high-performance and safe solvents. In this article, the authors intended to focus extensively on the critical role of water in various transition metals mediated C-S/Se cross-coupling methodologies.

Keywords: Sulfenylation, selenylation, water, cross-coupling, transition metals catalyst, aryl halides, aryl thiols.

Graphical Abstract
[1]
Davies, H.M.L.; Morton, D. Recent advances in C–H functionalization. J. Org. Chem., 2016, 81(2), 343-350.
[http://dx.doi.org/10.1021/acs.joc.5b02818] [PMID: 26769355]
[2]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C-H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed., 2012, 51(36), 8960-9009.
[http://dx.doi.org/10.1002/anie.201201666] [PMID: 22887739]
[3]
Devillanova, F.A.; du Mont, W.W. Handbook of chalcogen chemistry: New perspectives in sulfur, selenium and tellurium, 2nd ed; RSC Publishing: Cambridge, 2013.
[4]
Kundu, D.; Roy, T.; Mahata, A. Recent advances in copper-catalyzed carbon chalcogenides cross coupling reactions. Curr. Org. Synth., 2023, 20(3), 267-277.
[http://dx.doi.org/10.2174/1570179419666220324122735] [PMID: 35331115]
[5]
Alcaraz, M.-L.; Atkinson, S.; Cornwall, P.; Foster, A.C.; Gill, D.M.; Humphries, L.A.; Keegan, P.S. Efficient syntheses of AZD4407 via thioether formation by nucleophilic attack of organometallic species on sulphur. Org. Process Res. Dev., 2005, 9, 555-569.
[6]
Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737]
[7]
Schlüter, A.D. The tenth anniversary of Suzuki polycondensation (SPC). J. Polym. Sci. A Polym. Chem., 2001, 39(10), 1533-1556.
[http://dx.doi.org/10.1002/pola.1130]
[8]
Xu, S.; Kim, E.H.; Wei, A.; Negishi, E. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Sci. Technol. Adv. Mater., 2014, 15(4), 044201.
[http://dx.doi.org/10.1088/1468-6996/15/4/044201] [PMID: 27877696]
[9]
Dyson, P.J.; Jessop, P.G. Solvent effects in catalysis: Rational improvements of catalysts via manipulation of solvent interactions. Catal. Sci. Technol., 2016, 6(10), 3302-3316.
[http://dx.doi.org/10.1039/C5CY02197A]
[10]
Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
[11]
Espinet, P.; Echavarren, A.M. The mechanisms of the Stille reaction. Angew. Chem. Int. Ed., 2004, 43(36), 4704-4734.
[http://dx.doi.org/10.1002/anie.200300638] [PMID: 15366073]
[12]
Li, Y.; Wang, H.; Li, X.; Chen, T.; Zhao, D. CuS/Fe: A novel and highly efficient catalyst system for coupling reaction of aryl halides with diaryl diselenides. Tetrahedron, 2010, 66(45), 8583-8586.
[http://dx.doi.org/10.1016/j.tet.2010.09.061]
[13]
Movassagh, B.; Hosseinzadeh, Z. A highly efficient copper-catalyzed synthesis of unsymmetrical diaryl- and aryl alkyl chalcogenides from aryl iodides and diorganyl disulfides and diselenides. Synlett, 2015, 27(5), 777-781.
[http://dx.doi.org/10.1055/s-0035-1561268]
[14]
Reddy, V.P.; Kumar, A.V.; Swapna, K.; Rao, K.R. Copper oxide nanoparticle-catalyzed coupling of diaryl diselenide with aryl halides under ligand-free conditions. Org. Lett., 2009, 11(4), 951-953.
[http://dx.doi.org/10.1021/ol802734f] [PMID: 19182886]
[15]
Zhao, R.; Yan, C.; Jiang, Y.; Cai, M. Efficient heterogeneous copper-catalysed C–Se coupling of aryl iodides with symmetrical diselenides towards unsymmetrical monoselenides. J. Chem. Res., 2018, 42(11), 584-588.
[http://dx.doi.org/10.3184/174751918X15409874473285]
[16]
Taniguchi, N.; Onami, T. Magnesium-induced copper-catalyzed synthesis of unsymmetrical diaryl chalcogenide compounds from aryl iodide via cleavage of the Se-Se or S-S bond. J. Org. Chem., 2004, 69(3), 915-920.
[http://dx.doi.org/10.1021/jo030300+] [PMID: 14750822]
[17]
Chatterjee, T.; Ranu, B.C. Solvent-controlled halo-selective selenylation of aryl halides catalyzed by Cu(II) supported on Al2O3. A general protocol for the synthesis of unsymmetrical organo mono- and bis-selenides. J. Org. Chem., 2013, 78(14), 7145-7153.
[http://dx.doi.org/10.1021/jo401062k] [PMID: 23786642]
[18]
Roy, S.; Chatterjee, T.; Banerjee, B.; Salam, N.; Bhaumik, A.; Islam, S.M. Cu(II) anchored nitrogen-rich covalent imine network (CuII-CIN-1): An efficient and recyclable heterogeneous catalyst for the synthesis of organoselenides from aryl boronic acids in a green solvent. RSC Advances, 2014, 4(86), 46075-46083.
[http://dx.doi.org/10.1039/C4RA08909J]
[19]
Chen, C.; Weng, Z.; Hartwig, J.F. Synthesis of copper(I) thiolate complexes in the thioetherification of aryl halides. Organometallics, 2012, 31(22), 8031-8037.
[http://dx.doi.org/10.1021/om300711c] [PMID: 23316098]
[20]
Yu, S.; Wan, B.; Li, X. Rh(III)-catalyzed selenylation of arenes with selenenyl chlorides/diselenides via C-H activation. Org. Lett., 2015, 17(1), 58-61.
[http://dx.doi.org/10.1021/ol503231p] [PMID: 25515149]
[21]
Dandapat, A.; Korupalli, C.; Prasad, D.J.C.; Singh, R.; Sekar, G. An efficient copper(I) iodide catalyzed synthesis of diaryl selenides through CAr—Se bond formation using solvent acetonitrile as ligand. Synthesis, 2011, 14, 2297-2302.
[22]
Saidi, O.; Marafie, J.; Ledger, A.E.W.; Liu, P.M.; Mahon, M.F.; Kociok-Köhn, G.; Whittlesey, M.K.; Frost, C.G. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc., 2011, 133(48), 19298-19301.
[http://dx.doi.org/10.1021/ja208286b] [PMID: 22047022]
[23]
Peglow, T.J.; Schumacher, R.F.; Cargnelutti, R.; Reis, A.S.; Luchese, C.; Wilhelm, E.A.; Perin, G. Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Lett., 2017, 58(38), 3734-3738.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.030]
[24]
Goldani, B.; Ricordi, V.G.; Seus, N.; Lenardão, E.J.; Schumacher, R.F.; Alves, D. Silver-catalyzed synthesis of diaryl selenides by reaction of diaryl diselenides with aryl boronic acids. J. Org. Chem., 2016, 81(22), 11472-11476.
[http://dx.doi.org/10.1021/acs.joc.6b02108] [PMID: 27731643]
[25]
Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, K.B. “On water”: Unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed., 2005, 44(21), 3275-3279.
[http://dx.doi.org/10.1002/anie.200462883] [PMID: 15844112]
[26]
Li, C.J. Organic reactions in aqueous media with a focus on carbon-carbon bond formations: A decade update. Chem. Rev., 2005, 105(8), 3095-3166.
[http://dx.doi.org/10.1021/cr030009u] [PMID: 16092827]
[27]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[28]
Chanda, A.; Fokin, V.V. Organic synthesis on water. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[29]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[30]
Li, C-J.; Chan, T.H. Organic Reactions in Aqueous Media; Wiley: New York, 1997.
[31]
Organic synthesis in water; Blackie Academic and Professional: London, 1998.
[32]
Leyva-Pérez, A.; Oliver-Meseguer, J.; Rubio-Marqués, P.; Corma, A. Water-stabilized three and four-atom palladium clusters as highly active catalytic species in ligand-free C-C cross-coupling reactions. Angew. Chem. Int. Ed., 2013, 52(44), 11554-11559.
[http://dx.doi.org/10.1002/anie.201303188] [PMID: 24038914]
[33]
Azizi, N.; Saidi, M.R. Highly chemoselective addition of amines to epoxides in water. Org. Lett., 2005, 7(17), 3649-3651.
[http://dx.doi.org/10.1021/ol051220q] [PMID: 16092841]
[34]
Khatik, G.L.; Kumar, R.; Chakraborti, A.K. Catalyst-free conjugated addition of thiols to α,β-unsaturated carbonyl compounds in water. Org. Lett., 2006, 8(11), 2433-2436.
[http://dx.doi.org/10.1021/ol060846t] [PMID: 16706544]
[35]
Ranu, B.C.; Banerjee, S. Significant rate acceleration of the aza-Michael reaction in water. Tetrahedron Lett., 2007, 48(1), 141-143.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.142]
[36]
Engberts, J.B.F.N.; Blandamer, M.J. Understanding organic reactions in water: From hydrophobic encounters to surfactant aggregates. Chem. Commun., 2001, (18), 1701-1708.
[http://dx.doi.org/10.1039/b104537g] [PMID: 12240276]
[37]
Hailes, H.C. Reaction solvent selection: The potential of water as a solvent for organic transformations. Org. Process Res. Dev., 2007, 11(1), 114-120.
[http://dx.doi.org/10.1021/op060157x]
[38]
Wei, W.; Keh, C.C.K.; Li, C.J.; Varma, R.S. Water as a reaction medium for clean chemical processes. Clean Technol. Environ. Policy, 2004, 6(4), 250-257.
[http://dx.doi.org/10.1007/s10098-003-0242-7]
[39]
Carril, M.; SanMartin, R.; Domínguez, E.; Tellitu, I. Simple and efficient recyclable catalytic system for performing copper-catalysed S-arylation reactions in the presence of water. Chemistry, 2007, 13(18), 5100-5105.
[http://dx.doi.org/10.1002/chem.200601737] [PMID: 17385763]
[40]
Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Efficient copper(I)‐catalyzed C–S cross coupling of thiols with aryl halides in water. Eur. J. Org. Chem., 2008, 2008(4), 640-643.
[http://dx.doi.org/10.1002/ejoc.200700978]
[41]
Lan, M.T.; Wu, W.Y.; Huang, S-H.; Luo, K-L.; Tsai, F-Y. Reusable and efficient CoCl2·6H2O/cationic 2,2′-bipyridyl system-catalyzed S-arylation of aryl halides with thiols in water under air. RSC Advances, 2011, 1(9), 1751-1755.
[http://dx.doi.org/10.1039/c1ra00406a]
[42]
Kundu, D.; Chatterjee, T.; Ranu, B.C. Magnetically separable CuFe2O4 nanoparticles catalyzed ligand‐free C—S coupling in water: Access to (E)‐ and (Z)‐styrenyl‐, heteroaryl and sterically hindered aryl sulfides. Adv. Synth. Catal., 2013, 355(11-12), 2285-2296.
[http://dx.doi.org/10.1002/adsc.201300261]
[43]
Sengupta, D.; Basu, B. An efficient heterogeneous catalyst (CuO@ARF) for on-water C-S coupling reaction: An application to the synthesis of phenothiazine structural scaffold. Org. Med. Chem. Lett., 2014, 4(1), 17.
[http://dx.doi.org/10.1186/s13588-014-0017-7] [PMID: 26548993]
[44]
Sindhu, K.S.; Thankachan, A.P.; Thomas, A.M.; Anilkumar, G. An efficient iron-catalyzed S-arylation of aryl and alkylthiols with aryl halides in the presence of water under aerobic conditions. Tetrahedron Lett., 2015, 56(34), 4923-4926.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.087]
[45]
Peihua, T.; Jun, J.; Hongping, X.; Xinhua, L. Green synthesis of aryl thioethers through cu-catalyzed C—S coupling of thiols and aryl boronic acids in water. J. Wuhan Univ. Technol. -. Mat. Sci. Ed, 2019, 34, 987-993.
[46]
Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. An efficient copper-catalyzed carbon-sulfur bond formation protocol in water. Org. Lett., 2011, 13(3), 454-457.
[http://dx.doi.org/10.1021/ol102784c] [PMID: 21174396]
[47]
Feng, Y.S.; Qi, H.X.; Wang, W.C.; Liang, Y.F.; Xu, H.J. Unexpectedly ligand-free copper-catalyzed C–S cross-coupling of benzothiazole with aryl iodides in aqueous solution. Tetrahedron Lett., 2012, 53(23), 2914-2917.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.004]
[48]
Yu, T.Y.; Pang, H.; Cao, Y.; Gallou, F.; Lipshutz, B.H. Safe, scalable, inexpensive, and mild nickel‐catalyzed migita‐like C−S cross‐couplings in recyclable water. Angew. Chem. Int. Ed., 2021, 60(7), 3708-3713.
[http://dx.doi.org/10.1002/anie.202013017] [PMID: 33095957]
[49]
Singha, R.; Chettri, S.; Brahman, D.; Sinha, B.; Ghosh, P. Environmentally benign approach towards C–S cross-coupling reaction by organo-copper(II) complex. Mol. Divers., 2022, 26(1), 505-511.
[http://dx.doi.org/10.1007/s11030-020-10180-5] [PMID: 33389559]
[50]
Marshall, J.R.; Ip, C.; Romano, K.; Fetterly, G.; Fakih, M.; Jovanovic, B.; Perloff, M.; Crowell, J.; Davis, W.; French-Christy, R.; Dew, A.; Coomes, M.; Bergan, R. Methyl selenocysteine: Single-dose pharmacokinetics in men. Cancer Prev. Res., 2011, 4(11), 1938-1944.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0259] [PMID: 21846796]
[51]
Hatfield, D.L.; Tsuji, P.A.; Carlson, B.A.; Gladyshev, V.N. Selenium and selenocysteine: Roles in cancer, health, and development. Trends Biochem. Sci., 2014, 39(3), 112-120.
[http://dx.doi.org/10.1016/j.tibs.2013.12.007] [PMID: 24485058]
[52]
Álvarez-Pérez, M.; Ali, W.; Marć, M.; Handzlik, J.; Domínguez-Álvarez, E. Selenides and diselenides: A review of their anticancer and chemopreventive activity. Molecules, 2018, 23(3), 628.
[http://dx.doi.org/10.3390/molecules23030628] [PMID: 29534447]
[53]
Hatfield, D.L.; Berry, M.J.; Gladyshev, V.N. Selenium: Its molecular biology and role in human health, 3rd ed; Springer-Verlag: New York, USA, 2012.
[http://dx.doi.org/10.1007/978-1-4614-1025-6]
[54]
Brozmanová, J.; Mániková, D.; Vlčková, V.; Chovanec, M. Selenium: A double-edged sword for defense and offence in cancer. Arch. Toxicol., 2010, 84(12), 919-938.
[http://dx.doi.org/10.1007/s00204-010-0595-8] [PMID: 20871980]
[55]
Collery, P. Strategies for the development of selenium-based anticancer drugs. J. Trace Elem. Med. Biol., 2018, 50, 498-507.
[http://dx.doi.org/10.1016/j.jtemb.2018.02.024] [PMID: 29548612]
[56]
Saha, A.; Saha, D.; Ranu, B.C. Copper nano-catalyst: Sustainable phenyl-selenylation of aryl iodides and vinyl bromides in water under ligand free conditions. Org. Biomol. Chem., 2009, 7(8), 1652-1657.
[http://dx.doi.org/10.1039/b819137a] [PMID: 19343253]
[57]
Kumar, A.V.; Reddy, V.P.; Reddy, C.S.; Rao, K.R. Potassium selenocyanate as an efficient selenium source in C–Se cross-coupling catalyzed by copper iodide in water. Tetrahedron Lett., 2011, 52(31), 3978-3981.
[http://dx.doi.org/10.1016/j.tetlet.2011.05.068]
[58]
Roy, S.; Chatterjee, T.; Islam, S.M. Solvent selective phenyl selenylation and phenyl tellurylation of aryl boronic acids catalyzed by Cu(II) grafted functionalized polystyrene. Tetrahedron Lett., 2015, 56(6), 779-783.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.055]
[59]
Choudhury, P.; Kumar Pradhan, A.; Jena, S.; Kumar Sahoo, B.; Kumar Sahu, S.; Kumar Behera, P.; Behera, P.; Swain, A.; Rout, L. CuMoO4 catalyzed Csp2 Se cross‐coupling of aryl bromide and iodide with diaryldiselenides in water. Eur. J. Org. Chem., 2022, 2022(48), e202201194.
[http://dx.doi.org/10.1002/ejoc.202201194]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy