Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Green Method Synthesis of Magnetic Nanoparticles and its Functionalized MNPs for Knoevenagel Condensation Reaction

Author(s): Raju Shekhanavar, Santosh Y Khatavi and Kantharaju Kamanna*

Volume 11, Issue 4, 2024

Published on: 11 March, 2024

Page: [330 - 343] Pages: 14

DOI: 10.2174/0122133372292087240228082859

Price: $65

Abstract

Background: Knoevenagel condensation is an important C-C bond formation reaction catalyzed by various homogeneous and heterogeneous acid-base catalysts.

Method: The present work describes the eco-friendly preparation of magnetic nanoparticles Fe3O4 (MNPs) and its functionalization to Fe3O4@SiO2@SO3H. The prepared MNPs and their functionalized materials were fully characterized by FT-IR, XRD, FE-SEM, HR-TEM, and VSM. Further demonstrated application of these catalysts for the C-C bond formation reactions of Knoevenagel condensation employing special aldehyde derivatives with malononitrile at room temperature gave excellent product isolation.

Results: The application of the prepared functionalized MNPs for the Knoevenagel condensation was demonstrated by the reaction of various aryl/heterocyclic and cholesterol aldehyde with malononitrile at room temperature stirring for about 30 min in ethanol solvent. The final product isolated is confirmed by various spectroscopic techniques such as FT-IR, 1H-, & 13C-NMR, and mass spectrometry. Furthermore, the selected compounds are screened for their photophysical properties, and interestingly compound 3j showed good fluorescent properties.

Conclusion: Overall the present work described a greener method preparation of MNPs, and its functionalized employed as a heterogeneous catalyst for the Knoevenagel condensation of various aryl/heterocyclic and cholesterol aldehyde with malononitrile. The method developed is simple, easily separated catalyst by an external magnet, and recycled up to five cycles without any noticeable change in the final product isolation. Further, the prepared derivatives screened for their photophysical properties, and interestingly compound 3j showed good fluorescent properties.

Keywords: Knoevenagel reaction, magnetic nanoparticles, fluorescence, eco-friendly, agro-waste, heterogeneous catalysis.

Graphical Abstract
[1]
Wang, S.; Yan, W.; Zhao, F. Recovery of solid waste as functional heterogeneous catalysts for organic pollutant removal and biodiesel production. Chem. Eng. J., 2020, 401, 126104.
[http://dx.doi.org/10.1016/j.cej.2020.126104]
[2]
Bhardwaj, B.; Singh, P.; Kumar, A.; Kumar, S.; Budhwar, V. Eco-friendly greener synthesis of nanoparticles. Adv. Pharm. Bull., 2020, 10(4), 566-576.
[http://dx.doi.org/10.34172/apb.2020.067] [PMID: 33072534]
[3]
Sudarsanam, P.; Zhong, R.; Van den Bosch, S.; Coman, S.M.; Parvulescu, V.I.; Sels, B.F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev., 2018, 47(22), 8349-8402.
[http://dx.doi.org/10.1039/C8CS00410B] [PMID: 30226518]
[4]
Liu, F.; Wang, L.; Sun, Q.; Zhu, L.; Meng, X.; Xiao, F.S. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J. Am. Chem. Soc., 2012, 134(41), 16948-16950.
[http://dx.doi.org/10.1021/ja307455w] [PMID: 23009896]
[5]
Johnson, B.F.G. Nanoparticles in catalysis. Top. Catal., 2003, 24(1-4), 147-159.
[http://dx.doi.org/10.1023/B:TOCA.0000003086.83434.b6]
[6]
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res., 2013, 46(8), 1825-1837.
[http://dx.doi.org/10.1021/ar300197s] [PMID: 23350747]
[7]
Fatemeh, S-F. Amine functionalized SiO2@Fe3O4 as a green and reusable magnetic nanoparticles system for the synthesis of Knoevenagel condensation in water. J. Med. Nano. Mat. Chem., 2022, 1, 132-143.
[8]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[9]
Kodama, R.H. Magnetic nanoparticles. J. Magn. Magn. Mater., 1999, 200(1-3), 359-372.
[http://dx.doi.org/10.1016/S0304-8853(99)00347-9]
[10]
Ahmed, A.; Saaid, I.M.; Ahmed, A.A.; Pilus, R.M.; Baig, M.K. Evaluating the potential of surface-modified silica nanoparticles using internal olefin sulfonate for enhanced oil recovery. Petrol. Sci., 2020, 17(3), 722-733.
[http://dx.doi.org/10.1007/s12182-019-00404-1]
[11]
Rostami, A.; Atashkar, B.; Gholami, H. Novel magnetic nanoparticles Fe3O4-immobilized domino Knoevenagel condensation, Michael addition, and cyclization catalyst. Catal. Commun., 2013, 37, 69-74.
[http://dx.doi.org/10.1016/j.catcom.2013.03.022]
[12]
Haghighi, P.; Ziyadi, H.; Hekmati, M.; Habibnejad, N.; Iranfar, S. Hibiscus sabdariffa extract/poly (vinyl alcohol) modified magnetite as a magnetically recyclable nanocatalyst for the selective oxidation of amines. Results Chem., 2022, 4, 100483.
[http://dx.doi.org/10.1016/j.rechem.2022.100483]
[13]
Yang-yang, F.; Xiao-zhong, W.; Ying-qi, C.; Li-yan, D. NiCo2O4 nanoparticles: An efficient and magnetic catalyst for Knoevenagel condensation. Appl. Phys. Eng., 2020, 21(1), 74-84.
[14]
Senthilkumar, N.; Sharma, P.K.; Sood, N.; Bhalla, N. Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord. Chem. Rev., 2021, 445, 214082.
[http://dx.doi.org/10.1016/j.ccr.2021.214082]
[15]
Ziaee, M.; Samini, M.; Bolourtchian, M.; Ghaffarzadeh, M.; Ahmadi, M.; Egbal, M.A.; Khorrami, A.; Andalib, S.; Maleki-Dizaji, N.; Garjani, A. Synthesis of a novel siliconized analog of clofibrate (Silafibrate) and comparison of their anti-inflammatory activities. Iran. J. Pharm. Res., 2012, 11(1), 91-95.
[PMID: 25317189]
[16]
Ashish, A.; Carlos, C.; Esther, P-T.; Manuel, P.L.; Maria Luisa, G-M. Magnetic nanoparticles as MRI contrast agents. Top. Curr. Chem., 2020, 40, 378.
[17]
Zhong, J.; Schilling, M.; Ludwig, F. Magnetic nanoparticle-based biomolecule imaging with a scanning magnetic particle spectrometer. Nanotechnology, 2020, 31(22), 225101.
[http://dx.doi.org/10.1088/1361-6528/ab776a] [PMID: 32069445]
[18]
Anderson, S.D.; Gwenin, V.V.; Gwenin, C.D. Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications. Nanoscale Res. Lett., 2019, 14(1), 188.
[http://dx.doi.org/10.1186/s11671-019-3019-6] [PMID: 31147786]
[19]
Xu, J.; Sun, J.; Wang, Y.; Sheng, J.; Wang, F.; Sun, M. Application of iron magnetic nanoparticles in protein immobilization. Molecules, 2014, 19(8), 11465-11486.
[http://dx.doi.org/10.3390/molecules190811465] [PMID: 25093986]
[20]
Magnetic nanoparticles are useful for a wide range of applications from data storage to medicinal imaging. The large-scale preparation of FeCo nanoparticles boosts this potential. Nat. Mater., 2005, 4, 725-726.
[21]
Zhang, Q.; Yang, X.; Guan, J. Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Appl. Nano Mater., 2019, 2(8), 4681-4697.
[http://dx.doi.org/10.1021/acsanm.9b00976]
[22]
Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials, 2017, 7(9), 243.
[http://dx.doi.org/10.3390/nano7090243] [PMID: 28850089]
[23]
Peng, X.; Wang, Y.; Tang, X.; Liu, W. Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg(II). Dyes Pigments, 2011, 91(1), 26-32.
[http://dx.doi.org/10.1016/j.dyepig.2011.01.012]
[24]
Ali, A.; Zafar, H.; Zia, M. ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[http://dx.doi.org/10.2147/NSA.S99986] [PMID: 27578966]
[25]
Pandey, R.; Singh, D.; Thakur, N.; Raj, K.K. Catalytic C–H bond activation and knoevenagel condensation using pyridine-2,3-dicarboxylate-based metal–organic frameworks. ACS Omega, 2021, 6(20), 13240-13259.
[http://dx.doi.org/10.1021/acsomega.1c01155] [PMID: 34056473]
[26]
Singh, S.B. Iron and iron oxide-based eco-nanomaterials for catalysis and water remediation; Springer, Cham., 2018, 987, pp. (1)319-428.
[27]
Gazit, A.; Yaish, P.; Gilon, C.; Levitzki, A.; Tyrphostins, I. Synthesis and biological activity of protein tyrosine kinase inhibitors. J. Med. Chem., 1989, 32(10), 2344-2352.
[http://dx.doi.org/10.1021/jm00130a020] [PMID: 2552117]
[28]
Renzetti, A.; Dardennes, E.; Fontana, A.; De Maria, P.; Sapi, J.; Gérard, S. TiCl4/Et3N-promoted three-component condensation between aromatic heterocycles, aldehydes, and active methylene compounds. J. Org. Chem., 2008, 73(17), 6824-6827.
[http://dx.doi.org/10.1021/jo800529q] [PMID: 18690741]
[29]
Kumbhare, R.M.; Sridhar, M. Magnesium fluoride catalyzed Knoevenagel reaction: An efficient synthesis of electrophilic alkenes. Catal. Commun., 2008, 9(3), 403-405.
[http://dx.doi.org/10.1016/j.catcom.2007.07.027]
[30]
Shanthan Rao, P.; Venkataratnam, R.V. Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Lett., 1991, 32(41), 5821-5822.
[http://dx.doi.org/10.1016/S0040-4039(00)93564-0]
[31]
Salvitti, C.; Bortolami, M.; Chiarotto, I.; Troiani, A.; de Petris, G. The Knoevenagel condensation catalysed by ionic liquids: A mass spectrometric insight into the reaction mechanism. New J. Chem., 2021, 45(38), 17787-17795.
[http://dx.doi.org/10.1039/D1NJ03594K]
[32]
Han, J.; Xu, Y.; Su, Y.; She, X.; Pan, X. Guanidine-catalyzed Henry reaction and Knoevenagel condensation. Catal. Commun., 2008, 9(10), 2077-2079.
[http://dx.doi.org/10.1016/j.catcom.2008.04.006]
[33]
Jia, H.; Zhao, Y.; Niu, P.; Lu, N.; Fan, B.; Li, R. Amine-functionalized MgAl LDH nanosheets as efficient solid base catalysts for Knoevenagel condensation. Mol. Catal., 2018, 449, 31-37.
[http://dx.doi.org/10.1016/j.mcat.2018.02.004]
[34]
Sebastian, S.; Sebastian, N.; Rico, T.; Michael, M.; Christoph, T.; Petr, F.; Rene, H.; Heinrich, L. Porous magnesium oxide by twin polymerization: From hybrid materials to catalysis. Eur. J. Inorg. Chem., 2023, 26, e2022006.
[35]
Zhang, W.; Liang, J.; Liu, Y.; Sun, S.; Ren, X.; Jiang, M. Knoevenagel condensation reaction over acid-base bifunctional MgO/HMCM-22 catalysts. Chin. J. Catal., 2013, 34(3), 559-566.
[http://dx.doi.org/10.1016/S1872-2067(11)60493-2]
[36]
Chatterjee, S.; Anslyn, E.V.; Bandyopadhyay, A. Boronic acid based dynamic click chemistry: Recent advances and emergent applications. Chem. Sci., 2021, 12(5), 1585-1599.
[http://dx.doi.org/10.1039/D0SC05009A]
[37]
Bahuguna, A.; Kumar, A.; Chhabra, T.; Kumar, A.; Krishnan, V. Potassium-functionalized graphitic carbon nitride supported on reduced graphene oxide as a sustainable catalyst for knoevenagel condensation. ACS Appl. Nano Mater., 2018, 1(12), 6711-6723.
[http://dx.doi.org/10.1021/acsanm.8b01524]
[38]
Bahuguna, A.; Kumar, S.; Sharma, V.; Reddy, K.L.; Bhattacharyya, K.; Ravikumar, P.C.; Krishnan, V. Nanocomposite of MoS 2 -RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids. ACS Sustain. Chem. Eng., 2017, 5(10), 8551-8567.
[http://dx.doi.org/10.1021/acssuschemeng.7b00648]
[39]
Brillon, D.; Sauve, G. Silica gel-catalyzed Knoevenagel condensation of peptidyl cyanomethyl ketones with aromatic aldehydes and ketones. A novel Michael acceptor functionality for C-modified peptides: the benzylidene and alkylidene cyanomethyl ketone function. J. Org. Chem., 1992, 57(6), 1838-1842.
[http://dx.doi.org/10.1021/jo00032a042]
[40]
Lomba, L.; Tucciarone, F.; Giner, B.; Artal, M.; Lafuente, C. Thermophysical characterization of choline chloride: Resorcinol and its mixtures with water. Fluid Phase Equilib., 2022, 557, 113435.
[http://dx.doi.org/10.1016/j.fluid.2022.113435]
[41]
Nemati, F.; Sabaqian, S. Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as an efficient, eco-friendly and magnetically recoverable catalyst for synthesis of various xanthene derivatives under solvent-free conditions. J. Saudi Chem. Soc., 2017, 21, S383-S393.
[http://dx.doi.org/10.1016/j.jscs.2014.04.009]
[42]
Navjeet, K.; Dharma, K. Montmorillonite: An efficient, heterogeneous and green catalyst for organic synthesis. J. Chem. Pharm. Res., 2012, 4(2), 991-1015.
[43]
Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the knoevenagel synthesis of coumarin-3-carboxylic acids. J. Org. Chem., 1999, 64(3), 1033-1035.
[http://dx.doi.org/10.1021/jo981794r] [PMID: 11674183]
[44]
Almáši, M.; Zeleňák, V.; Opanasenko, M.; Císařová, I. Ce(III) and Lu(III) metal–organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation. Catal. Today, 2015, 243, 184-194.
[http://dx.doi.org/10.1016/j.cattod.2014.07.028]
[45]
Rahmati, E.; Rafiee, Z. Synthesis of Co-MOF/COF nanocomposite: application as a powerful and recoverable catalyst in the Knoevenagel reaction. J. Porous Mater., 2021, 28(1), 19-27.
[http://dx.doi.org/10.1007/s10934-020-00965-2]
[46]
Aryanejad, S.; Bagherzade, G.; Farrokhi, A. Efficient and recyclable novel Ni‐based metal–organic framework nanostructure as catalyst for the cascade reaction of alcohol oxidation–Knoevenagel condensation. Appl. Organomet. Chem., 2018, 32(2), e3995.
[http://dx.doi.org/10.1002/aoc.3995]
[47]
Hegedus, L.S. Organocatalysis in organic synthesis. J. Am. Chem. Soc., 2009, 131(50), 17995-17997.
[http://dx.doi.org/10.1021/ja908581u] [PMID: 20000854]
[48]
Varma, R.S. Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain. Chem. Eng., 2016, 4(11), 5866-5878.
[http://dx.doi.org/10.1021/acssuschemeng.6b01623] [PMID: 32704457]
[49]
Zhao, B.; Li, C.; Hu, T.; Zhang, X. Nanoporous Pb 3 -organic framework for catalytic cycloaddition of CO 2 with epoxides and knoevenagel condensation. ACS Appl. Nano Mater., 2023, 6(24), 23196-23206.
[http://dx.doi.org/10.1021/acsanm.3c04586]
[50]
Li, C.; Lv, H.; Yang, K.; Zhang, X. Robust fluorine-functionalized Ln 5 -organic frameworks for excellent catalytic performance on cycloaddition of CO 2 with epoxides and knoevenagel condensation. ACS Appl. Mater. Interfaces, 2023, 15(29), 35052-35061.
[http://dx.doi.org/10.1021/acsami.3c06804] [PMID: 37436029]
[51]
Kantharaju, K.; Khatavi, S.Y. Microwave accelerated synthesis of 2‐amino‐4 H ‐chromenes catalyzed by WELFSA: A green protocol. ChemistrySelect, 2018, 3(18), 5016-5024.
[http://dx.doi.org/10.1002/slct.201800096]
[52]
Aitken, R.J.; Baker, M.A. The role of genetics and oxidative stress in the etiology of male infertility—a unifying hypothesis? Front. Endocrinol., 2020, 11, 581838.
[http://dx.doi.org/10.3389/fendo.2020.581838] [PMID: 33101214]
[53]
Yao, G.; Wu, L.; Lv, T.; Li, J.; Huang, Y.; Dong, K.; Li, X. The effect of CuO modification for a TiO2 nanotube confined CeO2 catalyst on the catalytic combustion of butane. Open Chem., 2018, 16(1), 1-8.
[http://dx.doi.org/10.1515/chem-2018-0003]
[54]
Allin, S.M.; Bulman Page, P.C. The development and application of 1,3-dithiane 1-oxide derivatives as chiral auxiliaries and asymmetric building blocks for organic synthesis. A review. Org. Prep. Proced. Int., 1998, 30(2), 145-176.
[http://dx.doi.org/10.1080/00304949809355275]
[55]
Mukherjee, S.; Kundu, A.; Pramanik, A. A new and efficient synthesis of pyrazole-fused isocoumarins on the solid surface of magnetically separable Fe 3 O 4 @SiO 2 -SO 3 H nanoparticles. Tetrahedron Lett., 2016, 57(19), 2103-2108.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.002]
[56]
Danehchin, M.; Esmaeili, A.A. Synthesis of Fe3O4@SiO2@Pr-NH2@DAP as a magnetic recyclable nano-catalyst for efficient synthesis of pyranothiazolopyrimidines and 4H-pyrans under solvent-free condition. Sci. Rep., 2023, 13(1), 14937.
[http://dx.doi.org/10.1038/s41598-023-41793-z] [PMID: 37696928]
[57]
Moradi, Z.; Ghorbani-Choghamarani, A. Design and synthesis of Fe3O4@SiO2@KIT-6@DTZ-Pd0 as a new and efficient mesoporous magnetic catalyst in carbon–carbon cross-coupling reactions. Sci. Rep., 2021, 11(1), 23967.
[http://dx.doi.org/10.1038/s41598-021-03485-4] [PMID: 34907281]
[58]
Dhameliya, T.M.; Donga, H.A.; Vaghela, P.V.; Panchal, B.G.; Sureja, D.K.; Bodiwala, K.B.; Chhabria, M.T. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Advances, 2020, 10(54), 32740-32820.
[http://dx.doi.org/10.1039/D0RA02272A] [PMID: 35516511]
[59]
Kumar, A.; Dewan, M.; Saxena, A.; De, A.; Mozumdar, S. Knoevenagel condensation catalyzed by chemo-selective Ni-nanoparticles in neutral medium. Catal. Commun., 2010, 11(8), 679-683.
[http://dx.doi.org/10.1016/j.catcom.2010.01.017]
[60]
Xiao, J.; Zhang, H.; Ejike, A.C.; Wang, L.; Tao, M.; Zhang, W. Phenanthroline functionalized polyacrylonitrile fiber with Pd(0) nanoparticles as a highly active catalyst for the Heck reaction. React. Funct. Polym., 2021, 161, 104843.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2021.104843]
[61]
Heravi, M.M.; Bakhtiari, K.; Taheri, S.; Oskooie, H.A. A straightforward method for the synthesis of functionalized trisubstituted alkenes through Na 2 S/Al 2 O 3 catalyzed knoevenagel condensation. J. Chin. Chem. Soc., 2007, 54(6), 1557-1560.
[http://dx.doi.org/10.1002/jccs.200700219]
[62]
Shiri, L.; Zarei, S.; Kazemi, M.; Sheikh, D. Sulfuric acid heterogenized on magnetic Fe 3 O 4 nanoparticles: A new and efficient magnetically reusable catalyst for condensation reactions. Appl. Organomet. Chem., 2018, 32(1), e3938.
[http://dx.doi.org/10.1002/aoc.3938]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy