Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Systematic Review Article

Medicinal Plants and Natural Antioxidants Effective Against Corona: A Systematic Review

Author(s): Damoun Razmjoue, Mohadeseh Pirhadi and Mahmoud Bahmani*

Volume 6, Issue 1, 2025

Published on: 29 February, 2024

Article ID: e290224227549 Pages: 8

DOI: 10.2174/0126667975292612240219084431

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Coronavirus disease 2019 or COVID-19 is a type of acute respiratory syndrome caused by a virus from the family of coronaviruses that has affected all the countries of the world in a short period.

Objective: The purpose of this review is to identify and report medicinal plants effective against COVID-19. In this study, the keywords containing medicinal plants and "corona disease" i.e. COVID-19, MERS, SARS-CoV-2, and medicinal plants or natural antioxidants were used.

Methods: Search databases including ISI, Scopus, Science Direct, Google Scholar, Mag Iran, and SID were used. Relevant articles were selected and unrelated articles were excluded.

Results: Based on the obtained results, medicinal plants such as Isatis indigotica Fortune, Bupleurum spp., Curcuma longa L., Cibotium barometz (L.), Rheum palmatum L., Rheum palmatum L., Sprag, Scutettaria baicalensis Georg, Alnus japonica (Thunb.) Steud, Camellia sinensis (L.) Kuntze, Salvia miltiorrhiza Bunge, Paulownia tomentosa (Thunb.) Steud. Salvia miltiorrhiza Bunge, Tribulus terrestris L, Broussonetia papyrifera (L.) Vent., Stephania tetrandra S. Moore and related species, Sambucus formosana Nakai, Strobilanthes cusia, Lycoris radiata, E. purpurea, Lobelia inflata, Eupatorium perfoliatum, and Achyranthes aspera are the most important medicinal plants that are used in the treatment of COVID-19.

Conclusion: Due to having secondary metabolites and antioxidant activity, medicinal plants have a favorable effect in improving corona symptoms in patients with COVID-19.

Keywords: Virus, COVID-19, medicinal plants, SARS-CoV-2, respiratory syndrome, single-stranded RNA.

[1]
Widoyo, H.; Mohammed, Z.Y.; Ramírez-Coronel, A.A.; Iswanto, A.H.; Thattarauthodiyil, U. Herbal therapy in COVID-19: A systematic review of medicinal plants effective against COVID-19. Caspian J. Environ. Sci., 2022, 1-10.
[http://dx.doi.org/10.22124/cjes.2022.6062]
[2]
Rafsanjani, M.H.; Nouri, M.; Nava, A.O.; Darvishi, M. Barriers and motivating factors in receiving COVID-19 vaccination among the healthcare workers of tehran military hospitals. Coronaviruses, 2023, 4(4), e150923221106.
[http://dx.doi.org/10.2174/2666796704666230915090714]
[3]
Saeed, S.; Ahmad, S.; Tareen, A.; Iqbal, A. Emergence of SARS-CoV-2: Insight in genomics to possible therapeutics. Adv. Life Sci., 2023, 10(1), 5-16.
[http://dx.doi.org/10.37185/LnS.1.1.407]
[4]
Pellokila, M.R.; Nendissa, D.R.; Kapa, M.M.J. Environmental challenges due to COVID-19: Implications of altered distribution patterns and rice price dynamics in surplus and deficit areas of Indonesia. Caspian J. Env. Sci., 2023, 21(5), 1159-1170.
[http://dx.doi.org/10.22124/cjes.2023.7406]
[5]
Pullen, M.F.; Skipper, C.P.; Hullsiek, K.H. Symptoms of COVID-19 outpatients in the United States. Open Forum Infect. Dis., 2020, 7(7), ofaa271.
[6]
Hassanzadeh Khanmiri, H.; Mohammad, A.A.; Yousif, R.S. SARS-CoV2 neuroinvasive potential in respiratory failure in COVID-19 patients. Caspian J. Env. Sci., 2023, 21(2), 467-472.
[http://dx.doi.org/10.22124/cjes.2023.6635]
[7]
Stasi, C.; Fallani, S.; Voller, F.; Silvestri, C. Treatment for COVID-19: An overview. Eur. J. Pharmacol., 2020, 889, 173644.
[8]
Aygün, İ.; Kaya, M.; Alhajj, R. Identifying side effects of commonly used drugs in the treatment of COVID 19. Sci. Rep., 2020, 10(1), 21508.
[9]
Mohammad Zadeh, N.; Mashinchi Asl, N.S.; Forouharnejad, K. Mechanism and adverse effects of COVID-19 drugs: A basic review. Int. J. Physiol. Pathophysiol. Pharmacol., 2021, 13(4), 102-109.
[PMID: 34540130]
[10]
Abbasi, N.; Ghaneialvar, H.; Moradi, R.; Zangeneh, M.M.; Zangeneh, A. Formulation and characterization of a novel cutaneous wound healing ointment by silver nanoparticles containing Citrus lemon leaf: A chemobiological study. Arab. J. Chem., 2021, 14(7), 103246.
[http://dx.doi.org/10.1016/j.arabjc.2021.103246]
[11]
Mohebodini, M.; Fathi, R. Effect of iron oxide nanoparticles on hairy root induction and antioxidant activity in Purslane (Portulaca oleracea). Agr Biotechnol J, 2021, 13(3), 69-90.
[http://dx.doi.org/10.22103/jab.2021.17438.1311]
[12]
Karimi, E.; Abbasi, S.H.; Abbasi, N. Thymol polymeric nanoparticle synthesis and its effects on the toxicity of high glucose on OEC cells: involvement of growth factors and integrin-linked kinase. Drug Des. Devel. Ther., 2019, 13, 2513-2532.
[13]
Abyari, M. The effect of titanium oxide nanoparticles on the gene expression involved in the secondary metabolite production of the medicinal plant periwinkle (Catharanthus roseus). Agri Biotechnol J, 2023, 15(2), 83-100.
[http://dx.doi.org/10.22103/jab.2023.20229.1430]
[14]
Karimi, M; Gholami-Ahangaran, M. A brief report of current evidence of traditional chinese medicine in the treatment of patients infected with SARS-CoV-2. Plant Biotechnology Persa, 2021, 3(1), 0.
[http://dx.doi.org/10.52547/pbp.3.1.1]
[15]
Hanifi, E.; Ahmadifard, N.; Atashbar, B.; Meshkini, S. Effects of zinc oxide nanoparticles on photosynthetic pigments, zinc accumulation, and activity of antioxidant enzymes of Dunalilla salina. Aquatic Animals Nutr, 2022, 8(4), 31-42.
[http://dx.doi.org/10.22124/janb.2023.24071.1189]
[16]
Abbasi, N.; Akhavan, M.M.; Rahbar-Roshandel, N.; Shafiei, M. The effects of low and high concentrations of luteolin on cultured human endothelial cells under normal and glucotoxic conditions: Involvement of integrin-linked kinase and cyclooxygenase-2. Phytother. Res., 2014, 28(9), 1301-1307.
[http://dx.doi.org/10.1002/ptr.5128] [PMID: 25201753]
[17]
Hassanzadeh Khanmiri, H.; Mohammad, A.A.; Yousif, R.S. SARS-CoV2 neuroinvasive potential in respiratory failure in COVID-19 patients. Caspian J. Environ. Sci., 2023, 21(2), 467-472.
[http://dx.doi.org/10.22124/cjes.2023.6635]
[18]
Shahsavari, S.; Sarkar, S.; Sen, D.J.; Mandal, S.K. Determination of total antioxidant activity of methanolic extract of Falcaria vulgaris. J Biochemi Phytomedi, 2022, 1(1), 8-12.
[http://dx.doi.org/10.34172/jbp.2022.3]
[19]
Luo, W.; Su, X.; Gong, S. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Biosci. Trends, 2009, 3(4), 124-126.
[PMID: 20103835]
[20]
Nile, S.H.; Keum, Y.S.; Nile, A.S.; Jalde, S.S.; Patel, R.V. Antioxidant, anti‐inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J. Biochem. Mol. Toxicol., 2018, 32(1), e22002.
[http://dx.doi.org/10.1002/jbt.22002] [PMID: 28972678]
[21]
Wu, C.; Liu, Y.; Yang, Y. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[22]
Roh, C. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide. Int. J. Nanomedicine, 2012, 7, 2173-2179.
[http://dx.doi.org/10.2147/IJN.S31379] [PMID: 22619553]
[23]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[24]
Wen, C.C.; Kuo, Y.H.; Jan, J.T. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[25]
Park, J.Y.; Yuk, H.J.; Ryu, H.W. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-512.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[26]
Song, Y.H.; Kim, D.W.; Curtis-Long, M.J. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol. Pharm. Bull., 2014, 37(6), 1021-1028.
[http://dx.doi.org/10.1248/bpb.b14-00026] [PMID: 24882413]
[27]
Weng, J.R.; Lin, C.S.; Lai, H.C. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res., 2019, 273, 197767.
[http://dx.doi.org/10.1016/j.virusres.2019.197767] [PMID: 31560964]
[28]
Shen, L.; Niu, J.; Wang, C. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J. Virol., 2019, 93(12), e00023-e19.
[http://dx.doi.org/10.1128/JVI.00023-19] [PMID: 30918074]
[29]
Tsai, Y.C.; Lee, C.L.; Yen, H.R. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules, 2020, 10(3), 366.
[http://dx.doi.org/10.3390/biom10030366] [PMID: 32120929]
[30]
Suryanarayana, L.; Banavath, D. A review on identification of antiviral potential medicinal plant compounds against with COVID-19. Int J Res Eng Sci Manag, 2020, 3, 675-679.
[31]
Sharma, M.; Anderson, S.A.; Schoop, R.; Hudson, J.B. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Res., 2009, 83(2), 165-170.
[http://dx.doi.org/10.1016/j.antiviral.2009.04.009] [PMID: 19409931]
[32]
Chevallier, A. Encyclopedia of herbal medicine: 550 herbs and remedies for common ailments; Penguin, 2016.
[33]
Abascal, K.; Yarnell, E. Herbal treatments for pandemic influenza: Learning from the eclectics’ experience. Altern. Complement. Ther., 2006, 12(5), 214-221.
[http://dx.doi.org/10.1089/act.2006.12.214]
[34]
Mukherjee, H.; Ojha, D.; Bag, P. Anti-herpes virus activities of Achyranthes aspera: An Indian ethnomedicine, and its triterpene acid. Microbiol. Res., 2013, 168(4), 238-244.
[http://dx.doi.org/10.1016/j.micres.2012.11.002] [PMID: 23218996]
[35]
Jantan, I.; Ahmad, W.; Bukhari, S.N.A. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front Plant Sci, 2015, 6, 655.
[http://dx.doi.org/10.3389/fpls.2015.00655] [PMID: 26379683]
[36]
Babich, O.; Sukhikh, S.; Prosekov, A.; Asyakina, L.; Ivanova, S. Review: Medicinal plants to strengthen immunity during a pandemic. Pharmaceuticals, 2020, 13(10), 313.
[http://dx.doi.org/10.3390/ph13100313] [PMID: 33076514]
[37]
Behl, T.; Kumar, K.; Brisc, C. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed. Pharmacother., 2021, 133, 110959.
[http://dx.doi.org/10.1016/j.biopha.2020.110959] [PMID: 33197758]
[38]
Akram, M.; Tahir, I.M.; Shah, S.M.A. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res., 2018, 32(5), 811-822.
[http://dx.doi.org/10.1002/ptr.6024] [PMID: 29356205]
[39]
Dhama, K.; Karthik, K.; Khandia, R. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects. Curr. Drug Metab., 2018, 19(3), 236-263.
[http://dx.doi.org/10.2174/1389200219666180129145252] [PMID: 29380697]
[40]
Maheswari, K.S.; Sridevi Sangeetha, S.; Umamaheswari, C.U.; Reddy, M.; Kalkura, S.N. Flavonoids: therapeutic potential of natural pharmacological agents. Int. J. Pharm. Sci. Res., 2016, 7, 3924-3930.
[41]
Yao, L.H.; Jiang, Y.M.; Shi, J. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[42]
Manuel, R.L.; Colunga, M.; Berrill, J.D.; Catravas, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS- CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1-11.
[43]
Kaul, T.N.; Middleton, E., Jr; Ogra, P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol., 1985, 15(1), 71-79.
[http://dx.doi.org/10.1002/jmv.1890150110] [PMID: 2981979]
[44]
Takahashi, T.; Kokubo, R.; Sakaino, M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Lett. Appl. Microbiol., 2004, 39(1), 60-64.
[http://dx.doi.org/10.1111/j.1472-765X.2004.01538.x] [PMID: 15189289]
[45]
Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising natural compounds against viral infections. Arch. Virol., 2017, 162(9), 2539-2551.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[46]
Hamdani, F.Z.; Houari, N. Phytothérapie et COVID-19. Une étude fondée sur une enquête dans le nord de l’Algérie. Phytotherapie, 2020, 18(5), 248-254.
[http://dx.doi.org/10.3166/phyto-2020-0241]
[47]
Vimalanathan, S.; Hudson, J. Anti-influenza virus activity of essential oils and vapors. Am J Essent Oil Natur Product, 2014, 2(1), 47-53.
[48]
Da Silva, R.J.K.; Baia Figueiredo, B.L. Essential oils as antiviral agents, potential of essential oils to treat SARS-CoV-2 Infection: An in silico investigation. Int. J. Sci., 2020, 21(10), 3426.
[49]
Ahmad, A.; Rehman, M.U.; Alkharfy, K.M. An alternative approach to minimize the risk of coronavirus (COVID-19) and similar infections. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 4030-4034.
[PMID: 32329879]
[50]
Mani, J.S.; Johnson, J.B.; Steel, J.C. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284, 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989]
[51]
Peñaloza, E.M.C.; Costa, S.S.; Herrera-Calderon, O. Medicinal plants in peru as a source of immunomodulatory drugs potentially useful against COVID-19. Rev. Bras. Farmacogn., 2023, 33(2), 237-258.
[http://dx.doi.org/10.1007/s43450-023-00367-w]
[52]
Chang, S.J.; Chang, Y.C.; Lu, K.Z.; Tsou, Y.Y.; Lin, C.W. Antiviral activity of Isatis indigotica extract and its derived indirubin against Japanese encephalitis virus. Evid. Based Complement. Alternat. Med., 2012, 2012, 925830.
[53]
Kim, H.J.; Yoo, H.S.; Kim, J.C. Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J. Ethnopharmacol., 2009, 124(2), 189-196.
[http://dx.doi.org/10.1016/j.jep.2009.04.046] [PMID: 19409970]
[54]
Chang, S.J.; Huang, S.H.; Lin, Y.J.; Tsou, Y.Y.; Lin, C.W. Antiviral activity of Rheum palmatum methanol extract and chrysophanol against Japanese encephalitis virus. Arch. Pharm. Res., 2014, 37(9), 1117-1123.
[http://dx.doi.org/10.1007/s12272-013-0325-x] [PMID: 24395532]
[55]
Park, J.S.; Bae, J.; Jung, J.; Kim, J.S.; Park, S.J. In vitro antiviral activity of abietane diterpenoids isolated from Torreya nucifera against rotavirus infection. Acta Virol., 2023, 67, 11630.
[http://dx.doi.org/10.3389/av.2023.11630]
[56]
Ji, S.; Li, R.; Wang, Q. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. J. Ethnopharmacol., 2015, 176, 475-484.
[http://dx.doi.org/10.1016/j.jep.2015.11.018] [PMID: 26578185]
[57]
Tung, N.H.; Kwon, H.J.; Kim, J.H. Anti-influenza diarylheptanoids from the bark of Alnus japonica. Bioorg. Med. Chem. Lett., 2010, 20(3), 1000-1003.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.057] [PMID: 20045319]
[58]
Karimi, A.; Moradi, M.T.; Alidadi, S.; Hashemi, L. Anti-adenovirus activity, antioxidant potential, and phenolic content of black tea (Camellia sinensis Kuntze) extract. J. Complement. Integr. Med., 2016, 13(4), 357-363.
[http://dx.doi.org/10.1515/jcim-2016-0050] [PMID: 27567600]
[59]
Wu, B.W.; Pan, T.L.; Leu, Y.L. Antiviral effects of Salvia miltiorrhiza (Danshen) against enterovirus 71. Am. J. Chin. Med., 2007, 35(1), 153-168.
[http://dx.doi.org/10.1142/S0192415X07004709] [PMID: 17265559]
[60]
Malik, A.; Mehmood, M.D.; Anwar, H.; Sultan, U. In vivo antiviral potential of crude extracts derived from Tribulus terrestris against newcastle disease virus. J. Drug Deliv. Ther., 2018, 8(6), 149-154.
[61]
Han, X.; Jin, L.; Zhao, Z. Combining the in silico and in vitro assays to identify strobilanthes cusia kuntze bioactives against penicillin-resistant Streptococcus pneumoniae. Pharmaceuticals, 2023, 16(1), 105.
[http://dx.doi.org/10.3390/ph16010105]
[62]
Ghaemi, A.; Soleimanjahi, H.; Moghaddam, F.M.; Yazdani, N. Evaluation of antiviral activity of aerial part of Echinacea purpurea extract against herpes simplex virus type 1. Hakim Res J, 2007, 9(4), 59-64.
[63]
Derksen, A.; Kühn, J.; Hafezi, W. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus. J. Ethnopharmacol., 2016, 188, 144-152.
[http://dx.doi.org/10.1016/j.jep.2016.05.016] [PMID: 27178637]
[64]
Raimi, I.O.; Musyoki, A.M.; Olatunji, O.A.; Jimoh, M.O.; Dube, W.V.; Olowoyo, J.O. Potential medicinal, nutritive and antiviral food plants: Africa’s plausible answer to the low COVID-19 mortality. J HerbMed Pharmacol, 2021, 11(1), 20-34.
[http://dx.doi.org/10.34172/jhp.2022.03]
[65]
Karimi, M; Gholami-Ahangaran, M. A brief report of current evidence of traditional chinese medicine in the treatment of patients infected with SARS-CoV-2. PBP, 2021, 3(1), 0.
[http://dx.doi.org/10.52547/pbp.3.1.1]
[66]
Mehboob, R.; Ahmad, F.J.; Qayyum, A. Neurokinin 1 receptor antagonist along with dexamethasone reduces the inflammation in COVID-19 patients: a novel therapeutic approach. Adv. Life Sci., 2023, 10(3), 426-433.
[67]
Eftekhari, Z.; Patra, I.; Hamza, T.A. Evaluation of the total antioxidant capacity of bitter and sweet varieties of Ferula assa-foetida and Bunium persicum. Adv. Life Sci., 2022, 9(3), 363-367.
[68]
Aidy, A.; Karimi, E.; Ghaneialvar, H.; Mohammadpour, S.; Abbasi, N. Protective effect of Nectaroscordum tripedale extract and its bioactive component tetramethylpyrazine against acetaminophen-induced hepatotoxicity in rats. ADTM, 2020, 20(3), 471-477.
[http://dx.doi.org/10.1007/s13596-020-00431-z]
[69]
Zolfaghari, S.; Sharafdini, R.; Ghaedi, M. Synthesis of a coordination polymer based on Zn (DMF)(Tp) as a novel adsorbent for the simultaneous removal of quinoline yellow and azure B. J. Mol. Struct., 2023, 1294, 136572.
[70]
Shi, Z.; Mahdavian, Y.; Mahdavian, Y. Cu immobilized on chitosan-modified iron oxide magnetic nanoparticles: Preparation, characterization and investigation of its anti-lung cancer effects. Arab. J. Chem., 2021, 14(8), 103224.
[71]
Tahan, A.; Jafari, M.; Razmjoue, D. Relationship among some ecological factors and chemical composition of Ajuga chamaecistus Ging. plant species. Acta Ecol. Sin., 2020, 40(4), 268-276.
[72]
Hekmat Zadeh, S.F.; Gharaghani, M.; Nouripour-Sisakht, S.; Razmjoue, D. Chemical composition of Prangos ferulacea (L.) Lindl., and Prangos uloptera DC. essential oils and their antifungal activities. J HerbMed Pharmacol, 2022, 11(4), 585-591.
[http://dx.doi.org/10.34172/jhp.2022.67]
[73]
Mousavi, S.; Vakili, S.; Zal, F. Quercetin potentiates the anti-osteoporotic effects of alendronate through modulation of autophagy and apoptosis mechanisms in ovariectomy-induced bone loss rat model. Mol. Biol. Rep., 2023, 50(4), 3693-3703.
[http://dx.doi.org/10.1007/s11033-023-08311-w] [PMID: 36829081]
[74]
Doostmohammadian, F.; Shomali, T.; Mosleh, N.; Mohammadi, M. In Ovo evaluation of antiviral effects of aqueous garlic (Allium sativum) extract against a velogenic strain of Newcastle disease virus. J HerbMed Pharmacol, 2020, 9(3), 232-238.
[http://dx.doi.org/10.34172/jhp.2020.30]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy