Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Non-receptor Type PTPases and their Role in Controlling Pathways Related to Diabetes and Liver Cancer Signalling

Author(s): Nidhee Chaudhary* and Bellam Kiranmayee

Volume 26, Issue 5, 2025

Published on: 28 February, 2024

Page: [654 - 664] Pages: 11

DOI: 10.2174/0113892010288624240213072415

Price: $65

Abstract

The role of non-receptor type Protein Tyrosine Phosphatase (PTPases) in controlling pathways related to diabetes and Hepatocellular Carcinoma (HCC) is significant. The insulin signal transduction pathway is regulated by the steady-state phosphorylation of tyrosyl residues of the insulin receptor and post-receptor substrates. PTPase has been shown to have a physiological role in the regulation of reversible tyrosine phosphorylation. There are several non-receptor type PTPases. PTPase containing the SH-2 domain (SHP-2) and the non-receptor type PTPase (PTP1B; encoded by the PTPN1 gene) are involved in negative regulation of the insulin signaling pathway, thereby indicating that the pathway can be made more efficient by the reduction in the activity of specific PTPases. Reduction in insulin resistance may be achieved by drugs targeting these specific enzymes. The modifications in the receptor and post-receptor events of insulin signal transduction give rise to insulin resistance, and a link between insulin-resistant states and HCC has been established. The cancer cells thrive on higher levels of energy and their growth gets encouraged since insulin-resistant states lead to greater glucose levels. Cancer, hyperglycemia, and hypoglycemia are highly linked through various pathways hence, clarifying the molecular mechanisms through which non-receptor type PTPase regulates the insulin signal transduction is necessary to find an effective target for cancer. Targeting the pathways related to PTPases; both receptor and non-receptor types, may lead to an effective candidate to fight against diabetes and HCC.

Keywords: Cancer, diabetes, HCC, insulin signalling pathway, protein tyrosine phosphatase, therapeutic target.

Graphical Abstract
[1]
Lizcano, J.M.; Alessi, D.R. The insulin signalling pathway. Curr. Biol., 2002, 12(7), R236-R238.
[http://dx.doi.org/10.1016/S0960-9822(02)00777-7] [PMID: 11937037]
[2]
Vecchio, I.; Tornali, C.; Bragazzi, N.L.; Martini, M. The discovery of insulin: An important milestone in the history of medicine. Front. Endocrinol., 2018, 9, 613.
[http://dx.doi.org/10.3389/fendo.2018.00613] [PMID: 30405529]
[3]
Björnholm, M.; Zierath, J.R. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem. Soc. Trans., 2005, 33(2), 354-357.
[http://dx.doi.org/10.1042/BST0330354] [PMID: 15787605]
[4]
Clemmons, D.R. Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol. Metab. Clin. North Am., 2012, 41(2), 425-443. vii-viii.
[http://dx.doi.org/10.1016/j.ecl.2012.04.017] [PMID: 22682639]
[5]
Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; Vigneri, R. Diabetes and cancer. Endocr. Relat. Cancer, 2009, 16(4), 1103-1123.
[http://dx.doi.org/10.1677/ERC-09-0087] [PMID: 19620249]
[6]
Leto, D.; Saltiel, A.R. Regulation of glucose transport by insulin: Traffic control of GLUT4. Nat. Rev. Mol. Cell Biol., 2012, 13(6), 383-396.
[http://dx.doi.org/10.1038/nrm3351] [PMID: 22617471]
[7]
Solomon-Zemler, R.; Basel-Vanagaite, L.; Steier, D.; Yakar, S.; Mel, E.; Phillip, M.; Bazak, L.; Bercovich, D.; Werner, H.; de Vries, L. A novel heterozygous IGF-1 receptor mutation associated with hypoglycemia. Endocr. Connect., 2017, 6(6), 395-403.
[http://dx.doi.org/10.1530/EC-17-0038] [PMID: 28649085]
[8]
Duan, W; Shen, X; Lei, J Hyperglycemia, a neglected factor during cancer progression. 2014, 10
[http://dx.doi.org/10.1155/2014/461917]
[9]
Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Invest., 2016, 126(1), 12-22.
[http://dx.doi.org/10.1172/JCI77812] [PMID: 26727229]
[10]
Werner, H.; Weinstein, D.; Bentov, I. Similarities and differences between insulin and IGF-I: Structures, receptors, and signalling pathways. Arch. Physiol. Biochem., 2008, 114(1), 17-22.
[http://dx.doi.org/10.1080/13813450801900694] [PMID: 18465355]
[11]
Denduluri, S.K.; Idowu, O.; Wang, Z.; Liao, Z.; Yan, Z.; Mohammed, M.K.; Ye, J.; Wei, Q.; Wang, J.; Zhao, L.; Luu, H.H. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis., 2015, 2(1), 13-25.
[http://dx.doi.org/10.1016/j.gendis.2014.10.004] [PMID: 25984556]
[12]
Alonso, A.; Sasin, J.; Bottini, N. PTPases in the human genome. Cell, 2004, 117(6), 699-711.
[http://dx.doi.org/10.1016/j.cell.2004.05.018] [PMID: 15186772]
[13]
Jeong, H.; Koh, A.; Lee, J.; Park, D.; Lee, J.O.; Lee, M.N.; Jo, K.J.; Tran, H.N.K.; Kim, E.; Min, B.S.; Kim, H.S.; Berggren, P.O.; Ryu, S.H. Inhibition of C1-Ten PTPase activity reduces insulin resistance through IRS-1 and AMPK pathways. Sci. Rep., 2017, 7(1), 17777.
[http://dx.doi.org/10.1038/s41598-017-18081-8] [PMID: 29259227]
[14]
Yuen, M.F.; Wu, P.C.; Lai, V.C. Expression of c‐Myc, c‐Fos, and c‐Jun in HCC. Cancer, 2001, 91(1), 106-112.
[http://dx.doi.org/10.1002/1097-0142(20010101)91:1<106:AID-CNCR14>3.0.CO;2-2] [PMID: 11148566]
[15]
Patel, J.H.; Loboda, A.P.; Showe, M.K.; Showe, L.C.; McMahon, S.B. Analysis of genomic targets reveals complex functions of MYC. Nat. Rev. Cancer, 2004, 4(7), 562-568.
[http://dx.doi.org/10.1038/nrc1393] [PMID: 15229481]
[16]
D’Andrilli, G.; Kumar, C.; Scambia, G.; Giordano, A. Cell cycle genes in ovarian cancer: Steps toward earlier diagnosis and novel therapies. Clin. Cancer Res., 2004, 10(24), 8132-8141.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0886] [PMID: 15623586]
[17]
Fabregat, I. Dysregulation of apoptosis in HCC cells. World J. Gastroenterol., 2009, 15(5), 513.
[http://dx.doi.org/10.3748/wjg.15.513] [PMID: 19195051]
[18]
Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[19]
Goldstein, B.J.; Ahmad, F.; Ding, W.; Li, P.M.; Zhang, W.R. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol. Cell. Biochem., 1998, 182(1/2), 91-99.
[http://dx.doi.org/10.1023/A:1006812218502] [PMID: 9609118]
[20]
Goldstein, B.J.; Mahadev, K.; Wu, X.; Zhu, L.; Motoshima, H. Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid. Redox Signal., 2005, 7(7-8), 1021-1031.
[http://dx.doi.org/10.1089/ars.2005.7.1021] [PMID: 15998257]
[21]
Koh, A.; Lee, M.N.; Yang, Y.R.S.H. C1-Ten is a PTPase of insulin receptor substrate 1 (IRS-1), regulating IRS-1 stability and muscle atrophy. Mol. Cell. Biol., 2013, 33(8), 1608-1620.
[http://dx.doi.org/10.1128/MCB.01447-12] [PMID: 23401856]
[22]
Wolf, G.; Trüb, T.; Ottinger, E.; Groninga, L.; Lynch, A.; White, M.F.; Miyazaki, M.; Lee, J.; Shoelson, S.E. PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J. Biol. Chem., 1995, 270(46), 27407-27410.
[http://dx.doi.org/10.1074/jbc.270.46.27407] [PMID: 7499194]
[23]
Haj, F.G.; Verveer, P.J.; Squire, A.; Neel, B.G.; Bastiaens, P.I.H. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science, 2002, 295(5560), 1708-1711.
[http://dx.doi.org/10.1126/science.1067566] [PMID: 11872838]
[24]
Zhang, S.; Zhang, Z. PTP1B as a drug target: Recent developments in PTP1B inhibitor discovery. Drug Discov. Today, 2007, 12(9-10), 373-381.
[http://dx.doi.org/10.1016/j.drudis.2007.03.011] [PMID: 17467573]
[25]
Shimizu, S.; Takehara, T.; Hikita, H. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human HCC. J. Hepatol., 2010, 52(5), 698-704.
[http://dx.doi.org/10.1016/j.jhep.2009.12.024] [PMID: 20347499]
[26]
Ivanova, S.A.; Semke, V.Y.; Vetlugina, T.P.; Rakitina, N.M.; Kudyakova, T.A.; Simutkin, G.G. Signs of apoptosis of immunocompetent cells in patients with depression. Neurosci. Behav. Physiol., 2007, 37(5), 527-530.
[http://dx.doi.org/10.1007/s11055-007-0047-y] [PMID: 17505807]
[27]
El‐Serag, H.B. Epidemiology of HCC. The Liver. Biol Path., 2020, 12, 758-772.
[28]
Hung, C.H.; Wang, J.H.; Hu, T.H. Insulin resistance is associated with HCC in chronic hepatitis C infection. World J. Gastroenterol., 2010, 16(18), 2265.
[http://dx.doi.org/10.3748/wjg.v16.i18.2265] [PMID: 20458764]
[29]
Kumar, R.; Goh, B.B.; Kam, J.W. Comparisons between non-alcoholic steatohepatitis and alcohol-related HCC. Clin. Mol. Hepatol., 2020, 26(2), 196.
[http://dx.doi.org/10.3350/cmh.2019.0012] [PMID: 31914720]
[30]
Breuhahn, K.; Longerich, T.; Schirmacher, P. Dysregulation of growth factor signaling in human HCC. Oncogene, 2006, 25(27), 3787-3800.
[http://dx.doi.org/10.1038/sj.onc.1209556] [PMID: 16799620]
[31]
Li, X.; Wang, X.; Gao, P. Diabetes mellitus and risk of HCC. BioMed Res. Int., 2017, 5202684.
[PMID: 29379799]
[32]
Regimbeau, J.M.; Colombat, M.; Mognol, P. Obesity and diabetes as a risk factor for HCC. Liver Transpl., 2004, 10(S2), S69-S73.
[http://dx.doi.org/10.1002/lt.20033] [PMID: 14762843]
[33]
Hansen, L.; Dieckmann, N.F.; Kolbeck, K.J. Symptom distress in patients with HCC toward the end of life. Oncol Nurs Forum, 2017, 655-673.
[34]
Rawla, P.; Sunkara, T.; Muralidharan, P. Update in global trends and aetiology of HCC. Contemp. Oncol., 2018, 22(3), 141.
[35]
Nagano, H.; Noguchi, T.; Inagaki, K. Downregulation of stomach cancer-associated PTPase-1 (SAP-1) in advanced human HCC. Oncogene, 2003, 22(30), 4656-4663.
[http://dx.doi.org/10.1038/sj.onc.1206588] [PMID: 12879010]
[36]
Silver, B.; Ramaiya, K.; Andrew, S.B.; Fredrick, O.; Bajaj, S.; Kalra, S.; Charlotte, B.M.; Claudine, K.; Makhoba, A. EADSG guidelines: Insulin therapy in diabetes. Diabetes Ther., 2018, 9(2), 449-492.
[http://dx.doi.org/10.1007/s13300-018-0384-6] [PMID: 29508275]
[37]
Macdonald, I.A. A review of recent evidence relating to sugars, insulin resistance and diabetes. Eur. J. Nutr., 2016, 55(S2), 17-23.
[http://dx.doi.org/10.1007/s00394-016-1340-8] [PMID: 27882410]
[38]
Khan, S.; Zaki, H. Crosstalk between NLRP12 and JNK during HCC. Int. J. Mol. Sci., 2020, 21(2), 496.
[http://dx.doi.org/10.3390/ijms21020496] [PMID: 31941025]
[39]
Liu, P.; Terradillos, O.; Renard, C.A.; Feldmann, G.; Buendia, M.A.; Bernuau, D. Hepatocarcinogenesis in woodchuck hepatitis virus/c-myc mice: Sustained cell proliferation and biphasic activation of insulin-like growth factor II. Hepatology, 1997, 25(4), 874-883.
[http://dx.doi.org/10.1002/hep.510250415] [PMID: 9096591]
[40]
Kane, R.C.; Farrell, A.T.; Madabushi, R. Sorafenib for the treatment of unresectable HCC. Oncologist, 2009, 14(1), 95-100.
[http://dx.doi.org/10.1634/theoncologist.2008-0185] [PMID: 19144678]
[41]
Li, F.; Fernandez, P.P.; Rajendran, P. Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human HCC cells. Cancer Lett., 2010, 292(2), 197-207.
[http://dx.doi.org/10.1016/j.canlet.2009.12.003] [PMID: 20053498]
[42]
Pawson, T. Specificity in signal transduction: From phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell, 2004, 116(2), 191-203.
[http://dx.doi.org/10.1016/S0092-8674(03)01077-8] [PMID: 14744431]
[43]
Rosen, M.K.; Yamazaki, T.; Gish, G.D.; Kay, C.M.; Pawson, T.; Kay, L.E. Direct demonstration of an intramolecular SH2—phosphotyrosine interaction in the Crk protein. Nature, 1995, 374(6521), 477-479.
[http://dx.doi.org/10.1038/374477a0] [PMID: 7700361]
[44]
Yip, S.C.; Saha, S.; Chernoff, J. PTP1B: A double agent in metabolism and oncogenesis. Trends Biochem. Sci., 2010, 35(8), 442-449.
[http://dx.doi.org/10.1016/j.tibs.2010.03.004] [PMID: 20381358]
[45]
Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 613-619.
[http://dx.doi.org/10.1016/j.bbapap.2009.09.018]
[46]
Fan, L.C.; Shiau, C.W.; Tai, W.T. SHP-1 is a negative regulator of epithelial–mesenchymal transition in HCC. Oncogene, 2015, 34(41), 5252-5263.
[http://dx.doi.org/10.1038/onc.2014.445] [PMID: 25619838]
[47]
Han, T.; Xiang, D.M.; Sun, W.; Liu, N.; Sun, H.L.; Wen, W.; Shen, W.F.; Wang, R.Y.; Chen, C.; Wang, X.; Cheng, Z.; Li, H.Y.; Wu, M.C.; Cong, W.M.; Feng, G.S.; Ding, J.; Wang, H.Y. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J. Hepatol., 2015, 63(3), 651-660.
[http://dx.doi.org/10.1016/j.jhep.2015.03.036] [PMID: 25865556]
[48]
Zhan, H.; Jiang, J.; Luo, C. Tumour-suppressive role of PTPN13 in HCC and its clinical significance. Tumour Biol., 2016, 37(7), 9691-9698.
[http://dx.doi.org/10.1007/s13277-016-4843-2] [PMID: 26801674]
[49]
Luo, R.Z.; Cai, P.Q.; Li, M. Decreased expression of PTPN12 correlates with tumor recurrence and poor survival of patients with HCC. PLoS One, 2014, 9(1), e85592.
[http://dx.doi.org/10.1371/journal.pone.0085592] [PMID: 24475046]
[50]
Hu, B.; Yan, X.; Liu, F. Downregulated expression of PTPN9 contributes to human HCC growth and progression. Pathol. Oncol. Res., 2016, 22(3), 555-565.
[http://dx.doi.org/10.1007/s12253-015-0038-1] [PMID: 26715439]
[51]
Zabolotny, J.M.; Bence-Hanulec, K.K.; Stricker-Krongrad, A.; Haj, F.; Wang, Y.; Minokoshi, Y.; Kim, Y.B.; Elmquist, J.K.; Tartaglia, L.A.; Kahn, B.B.; Neel, B.G. PTP1B regulates leptin signal transduction in vivo. Dev. Cell, 2002, 2(4), 489-495.
[http://dx.doi.org/10.1016/S1534-5807(02)00148-X] [PMID: 11970898]
[52]
Chen, D.; Li, Z.; Cheng, Q. Genetic alterations and expression of PTEN and its relationship with cancer stem cell markers to investigate pathogenesis and to evaluate prognosis in HCC. J. Clin. Pathol., 2019, 72(9), 588-596.
[http://dx.doi.org/10.1136/jclinpath-2019-205769] [PMID: 31126975]
[53]
Maheshwari, N.; Karthikeyan, C.; Trivedi, P. Recent advances in PTPase 1B targeted drug discovery for type II diabetes and obesity. Curr. Drug Targets, 2018, 19(5), 551-575.
[http://dx.doi.org/10.2174/1389450118666170222143739] [PMID: 28228082]
[54]
Cox, A.D.; Fesik, S.W.; Kimmelman, A.C.; Luo, J.; Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov., 2014, 13(11), 828-851.
[http://dx.doi.org/10.1038/nrd4389] [PMID: 25323927]
[55]
Wu, D.; Hu, D.; Chen, H.; Shi, G.; Fetahu, I.S.; Wu, F.; Rabidou, K.; Fang, R.; Tan, L.; Xu, S.; Liu, H.; Argueta, C.; Zhang, L.; Mao, F.; Yan, G.; Chen, J.; Dong, Z.; Lv, R.; Xu, Y.; Wang, M.; Ye, Y.; Zhang, S.; Duquette, D.; Geng, S.; Yin, C.; Lian, C.G.; Murphy, G.F.; Adler, G.K.; Garg, R.; Lynch, L.; Yang, P.; Li, Y.; Lan, F.; Fan, J.; Shi, Y.; Shi, Y.G. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature, 2018, 559(7715), 637-641.
[http://dx.doi.org/10.1038/s41586-018-0350-5] [PMID: 30022161]
[56]
Khan, S.; Bjij, I.; Soliman, M.E.S. Selective covalent inhibition of “allosteric cys121” distort the binding of ptp1b enzyme: A novel therapeutic approach for cancer treatment. Cell Biochem. Biophys., 2019, 77(3), 203-211.
[http://dx.doi.org/10.1007/s12013-019-00882-5] [PMID: 31446553]
[57]
Cui, W.; Cheng, Y.H.; Geng, L.L.; Liang, D.S.; Hou, T.J.; Ji, M.J. Unraveling the allosteric inhibition mechanism of PTP1B by free energy calculation based on umbrella sampling. J. Chem. Inf. Model., 2013, 53(5), 1157-1167.
[http://dx.doi.org/10.1021/ci300526u] [PMID: 23621621]
[58]
Eleftheriou, P.; Geronikaki, A.; Petrou, A. PTP1B inhibition, a promising approach for the treatment of diabetes type II. Curr. Top. Med. Chem., 2019, 19(4), 246-263.
[http://dx.doi.org/10.2174/1568026619666190201152153] [PMID: 30714526]
[59]
Liu, Y.F.; Paz, K.; Herschkovitz, A.; Alt, A.; Tennenbaum, T.; Sampson, S.R.; Ohba, M.; Kuroki, T.; LeRoith, D.; Zick, Y. Insulin stimulates PKCzeta -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J. Biol. Chem., 2001, 276(17), 14459-14465.
[http://dx.doi.org/10.1074/jbc.M007281200] [PMID: 11278339]
[60]
Pearson, G.; Robinson, F.; Beers Gibson, T.; Xu, B.E.; Karandikar, M.; Berman, K.; Cobb, M.H. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev., 2001, 22(2), 153-183.
[PMID: 11294822]
[61]
Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci., 2011, 36(6), 320-328.
[http://dx.doi.org/10.1016/j.tibs.2011.03.006] [PMID: 21531565]
[62]
Feng, Z.; Rong, P.; Wang, W. HCC risk in patients with NASH cirrhosis and diabetes: Insufficient for individual management. Hepatology, 2020, 72(1)
[http://dx.doi.org/10.1002/hep.31100] [PMID: 31903611]
[63]
El-serag, H.B.; Tran, T.; Everhart, J.E. Diabetes increases the risk of chronic liver disease and HCC. Gastroenterology, 2004, 126(2), 460-468.
[http://dx.doi.org/10.1053/j.gastro.2003.10.065] [PMID: 14762783]
[64]
Caldwell, S.H.; Crespo, D.M.; Kang, H.S. Obesity and HCC. Gastroenterology, 2004, 127(5), S97-S103.
[http://dx.doi.org/10.1053/j.gastro.2004.09.021] [PMID: 15508109]
[65]
Lagergren, J.; Mattsson, F.; El-Serag, H. Increased risk of HCC after cholecystectomy. Br. J. Cancer, 2011, 105(1), 154-156.
[http://dx.doi.org/10.1038/bjc.2011.181] [PMID: 21610710]
[66]
Cascón, A.; Robledo, M. MAX and MYC: A heritable breakup. Cancer Res., 2012, 72(13), 3119-3124.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3891] [PMID: 22706201]
[67]
Moghaddam, S.J.; Haghighi, E.N.; Samiee, S. Immunohistochemical analysis of p53, cyclinD1, RB1, c-fos and N-ras gene expression in HCC in Iran. World J. Gastroenterol., 2007, 13(4), 588.
[http://dx.doi.org/10.3748/wjg.v13.i4.588] [PMID: 17278226]
[68]
Nevins, J.R. The Rb/E2F pathway and cancer. Hum. Mol. Genet., 2001, 10(7), 699-703.
[http://dx.doi.org/10.1093/hmg/10.7.699] [PMID: 11257102]
[69]
Garcia-Garcia, A.; Rodriguez-Rocha, H.; Tseng, M.T.; Montes de Oca-Luna, R.; Zhou, H.S.; McMasters, K.M.; Gomez-Gutierrez, J.G. E2F-1 lacking the transcriptional activity domain induces autophagy. Cancer Biol. Ther., 2012, 13(11), 1091-1101.
[http://dx.doi.org/10.4161/cbt.21143] [PMID: 22825328]
[70]
Dimova, D.K.; Stevaux, O.; Frolov, M.V.; Dyson, N.J. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes Dev., 2003, 17(18), 2308-2320.
[http://dx.doi.org/10.1101/gad.1116703] [PMID: 12975318]
[71]
Daldorff, S.; Mathiesen, R.M.R.; Yri, O.E.; Ødegård, H.P.; Geisler, J. Cotargeting of CYP-19 (aromatase) and emerging, pivotal signalling pathways in metastatic breast cancer. Br. J. Cancer, 2017, 116(1), 10-20.
[http://dx.doi.org/10.1038/bjc.2016.405] [PMID: 27923036]
[72]
Tak, K.Y.; Nam, H.C.; Choi, J.Y. Effectiveness of sorafenib dose modifications on treatment outcome of HCC: Analysis in real‐life settings. Int. J. Cancer, 2020, 147(7), 1970-1978.
[http://dx.doi.org/10.1002/ijc.32964] [PMID: 32167170]
[73]
Yang, J.; Cai, X.; Lu, W. Evodiamine inhibits STAT3 signaling by inducing phosphatase shatterproof 1 in HCC cells. Cancer Lett., 2013, 328(2), 243-251.
[http://dx.doi.org/10.1016/j.canlet.2012.09.019] [PMID: 23032719]
[74]
Lin, Y.W.; Chen, C.H.; Huang, G.T. Infrequent mutations and no methylation of CDKN2A (P16/MTS1) and CDKN2B (p15/MTS2) in HCC in Taiwan. Eur. J. Cancer, 1998, 34(11), 1789-1795.
[http://dx.doi.org/10.1016/S0959-8049(98)00189-0] [PMID: 9893670]
[75]
Baek, M.J.; Piao, Z.; Kim, N.G. p16 is a major inactivation target in HCC. Cancer, 2000, 89(1), 60-68.
[http://dx.doi.org/10.1002/1097-0142(20000701)89:1<60:AID-CNCR9>3.0.CO;2-3] [PMID: 10897001]
[76]
Hsu, L.S.; Lee, H.C.; Chau, G.Y. Aberrant methylation of EDNRB and p16 genes in HCC (HCC) in Taiwan. Oncol. Rep., 2006, 15(2), 507-511.
[http://dx.doi.org/10.3892/or.15.2.507] [PMID: 16391877]
[77]
Dang, C.V. MYC on the path to cancer. Cell, 2012, 149(1), 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003] [PMID: 22464321]
[78]
Dhanasekaran, R.; Gabay-Ryan, M.; Baylot, V. Anti-miR-17 therapy delays tumorigenesis in MYC-driven HCC (HCC). Oncotarget, 2018, 9(5), 5517.
[http://dx.doi.org/10.18632/oncotarget.22342] [PMID: 29464015]
[79]
Bera, R.; Chiou, C.Y.; Yu, M.C. Functional genomics identified a novel PTPase receptor type f‐mediated growth inhibition in hepatocarcinogenesis. Hepatology, 2014, 59(6), 2238-2250.
[http://dx.doi.org/10.1002/hep.27030] [PMID: 24470239]
[80]
Zhang, D.; Qi, J.; Liu, R. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human HCC cells. Am. J. Cancer Res., 2015, 5(3), 1076.
[PMID: 26045987]
[81]
Jin, S.; Wang, K.; Xu, K. Oncogenic function and prognostic significance of PTPase PRL-1 in HCC. Oncotarget, 2014, 5(11), 3685.
[http://dx.doi.org/10.18632/oncotarget.1986] [PMID: 25003523]
[82]
Huang, J.M.; Nagatomo, I.; Suzuki, E. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type PTPase 14. Oncogene, 2013, 32(17), 2220-2229.
[http://dx.doi.org/10.1038/onc.2012.231] [PMID: 22689061]
[83]
Balsamo, J.; Arregui, C.; Leung, T. The nonreceptor PTPase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin–actin linkage. J. Cell Biol., 1998, 143(2), 523-532.
[http://dx.doi.org/10.1083/jcb.143.2.523] [PMID: 9786960]
[84]
Gazon, H.; Barbeau, B.; Mesnard, J.M.; Peloponese, J.M., Jr Hijacking of the AP-1 signaling pathway during development of ATL. Front. Microbiol., 2018, 8, 2686.
[http://dx.doi.org/10.3389/fmicb.2017.02686] [PMID: 29379481]
[85]
Koo, J.H.; Plouffe, S.W.; Meng, Z.; Lee, D.H.; Yang, D.; Lim, D.S.; Wang, C.Y.; Guan, K.L. Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes Dev., 2020, 34(1-2), 72-86.
[http://dx.doi.org/10.1101/gad.331546.119] [PMID: 31831627]
[86]
Wang, Z.Q.; Liang, J.; Schellander, K.; Wagner, E.F.; Grigoriadis, A.E. c-fos-induced osteosarcoma formation in transgenic mice: Cooperativity with c-jun and the role of endogenous c-fos. Cancer Res., 1995, 55(24), 6244-6251.
[PMID: 8521421]
[87]
Ahn, S.; Kwon, A.; Oh, Y.; Rhee, S.; Song, W.K. Microtubule acetylation-specific inhibitors induce cell death and mitotic arrest via JNK/AP-1 activation in triple-negative breast cancer cells. Mol. Cells, 2023, 46(6), 387-398.
[88]
David, M.; Chen, H.E.; Goelz, S.; Larner, A.C.; Neel, B.G. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol., 1995, 15(12), 7050-7058.
[http://dx.doi.org/10.1128/MCB.15.12.7050] [PMID: 8524272]
[89]
Tartaglia, M.; Mehler, E.L.; Goldberg, R. Mutations in PTPN11, encoding the PTPase SHP-2, cause Noonan syndrome. Nat. Genet., 2001, 29(4), 465-468.
[http://dx.doi.org/10.1038/ng772] [PMID: 11704759]
[90]
Lin, L.; Amin, R.; Gallicano, G.I.; Glasgow, E.; Jogunoori, W.; Jessup, J.M.; Zasloff, M.; Marshall, J.L.; Shetty, K.; Johnson, L.; Mishra, L.; He, A.R. The STAT3 inhibitor NSC 74859 is effective in hepatocellular cancers with disrupted TGF-β signaling. Oncogene, 2009, 28(7), 961-972.
[http://dx.doi.org/10.1038/onc.2008.448] [PMID: 19137011]
[91]
He, G.; Karin, M. NF-κB and STAT3 – key players in liver inflammation and cancer. Cell Res., 2011, 21(1), 159-168.
[http://dx.doi.org/10.1038/cr.2010.183] [PMID: 21187858]
[92]
Sanchez, A.; Nagy, P. Thorgeirsson, S.S. STAT-3 activity in chemically induced HCC. Eur. J. Cancer, 2003, 39(14), 2093-2098.
[http://dx.doi.org/10.1016/S0959-8049(03)00393-9] [PMID: 12957465]
[93]
Yang, B.; Guo, M.; Herman, J.G. Aberrant promoter methylation profiles of tumor suppressor genes in HCC. Am. J. Pathol., 2003, 163(3), 1101-1107.
[http://dx.doi.org/10.1016/S0002-9440(10)63469-4] [PMID: 12937151]
[94]
Zhu, Z.; He, X.; Johnson, C.; Stoops, J.; Eaker, A.E.; Stoffer, D.S.; Bell, A.; Zarnegar, R.; DeFrances, M.C. PI3K is negatively regulated by PIK3IP1, a novel p110 interacting protein. Biochem. Biophys. Res. Commun., 2007, 358(1), 66-72.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.096] [PMID: 17475214]
[95]
Zheng, L.Y.; Zhou, D.X.; Lu, J. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in HCC. Biochem. Biophys. Res. Commun., 2012, 420(3), 680-684.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.066] [PMID: 22450318]
[96]
Chen, C.K.; Yang, C.Y.; Hua, K.T. Leukocyte cell‐derived chemotaxin 2 antagonizes MET receptor activation to suppress HCC vascular invasion by PTPase 1B recruitment. Hepatology, 2014, 59(3), 974-985.
[http://dx.doi.org/10.1002/hep.26738] [PMID: 24114941]
[97]
Huang, Y.; Zhang, Y.; Ge, L.; Lin, Y.; Kwok, H. The roles of protein tyrosine phosphatases in hepatocellular carcinoma. Cancers , 2018, 10(3), 82.
[http://dx.doi.org/10.3390/cancers10030082] [PMID: 29558404]
[98]
Ran, G.; Feng, X.; Xie, Y.; Zheng, Q.; Guo, P.; Yang, M.; Feng, Y.; Ling, C.; Zhu, L.; Zhong, C. The use of miR122 and its target sequence in adeno-associated virus-mediated trichosanthin gene therapy. J. Integr. Med., 2021, 19(6), 515-525.
[http://dx.doi.org/10.1016/j.joim.2021.09.004] [PMID: 34538767]
[99]
Fan, F.T.; Shen, C.S.; Tao, L.; Tian, C.; Liu, Z.G.; Zhu, Z.J.; Liu, Y.P.; Pei, C.S.; Wu, H.Y.; Zhang, L.; Wang, A.Y.; Zheng, S.Z.; Huang, S.L.; Lu, Y. PKM2 regulates hepatocellular carcinoma cell epithelial-mesenchymal transition and migration upon EGFR activation. Fa Journal of Cancer Prevention: APJCP., 2014, 15(5), 1961-1970.
[PMID: 24716919]
[100]
Galun, D.; Srdic-Rajic, T.; Bogdanovic, A.; Loncar, Z.; Zuvela, M. Targeted therapy and personalized medicine in hepatocellular carcinoma: drug resistance, mechanisms, and treatment strategies. J. Hepatocell. Carcinoma, 2017, 4, 93-103.
[http://dx.doi.org/10.2147/JHC.S106529] [PMID: 28744453]
[101]
Nakatsuka, T.; Tateishi, R. Development and prognosis of hepatocellular carcinoma in patients with diabetes. Clin. Mol. Hepatol., 2023, 29(1), 51-64.
[http://dx.doi.org/10.3350/cmh.2022.0095] [PMID: 35903020]
[102]
Vashishta, P.; Chaudhary, N.; Sharma, C.B. Plant protein tyrosine phosphatases: An overview. Proc. Natl. Acad. Sci. India, 2006, 75, 207-215.
[103]
Selvaraj, K.; Chand, S.; Katare, D.P.; Chaudhary, N. Ribes nigrum and Juglans regia, potential functional foods as a source of protein tyrosine phosphatase enzyme: Biochemical and kinetic studies. Biointerface Res. Appl. Chem., 2023, 13(1), 61.
[104]
Selvaraj, K.; Chand, S.; Katare, D.P.; Chaudhary, N. Trachyspermum ammi and cinnamomum verum as nutraceuticals: Spices rich in therapeutically significant protein tyrosine phosphatases. Journal of Food Biochemistry, 2021, 45, 13750.
[105]
Cho, H.; Lee, D.Y.; Shrestha, S.; Shim, Y.S.; Kim, K.C.; Kim, M.K.; Lee, K.H.; Won, J.; Kang, J.S. Aurintricarboxylic acid translocates across the plasma membrane, inhibits protein tyrosine phosphatase and prevents apoptosis in PC12 cells. Mol. Cells, 2004, 18(1), 46-52.
[http://dx.doi.org/10.1016/S1016-8478(23)13080-9] [PMID: 15359123]
[106]
Bottini, N.; Otsu, A.; Borgiani, P.; Saccucci, P.; Stefanini, L.; Greco, E.; Fontana, L.; Hopkins, J.M.; Mao, X-Q. Genetic control of serum IgE levels: A study of low molecular weight protein tyrosine phosphatase. Clin. Genet., 2003, 63(3), 228-231.
[http://dx.doi.org/10.1034/j.1399-0004.2003.00002.x] [PMID: 12694235]
[107]
Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet, 2022, 400(10360), 1345-1362.
[http://dx.doi.org/10.1016/S0140-6736(22)01200-4] [PMID: 36084663]
[108]
Dhir, M.; Melin, A.A.; Douaiher, J.; Lin, C.; Zhen, W.K.; Hussain, S.M.; Geschwind, J.F.H.; Doyle, M.B.M.; Abou-Alfa, G.K.; Are, C. A review and update of treatment options and controversies in the management of hepatocellular carcinoma. Ann. Surg., 2016, 263(6), 1112-1125.
[http://dx.doi.org/10.1097/SLA.0000000000001556] [PMID: 26813914]
[109]
Park, M; Moon, B; Kim, JH; Park, SJ; Kim, SK; Park, K; Kim, J; Kim, SY; Kim, JH; Kim, JA Downregulation of SETD5 suppresses the tumorigenicity of hepatocellular carcinoma cells. mol cells, 2022, 45(8), 550-563.
[110]
Altundag, O. Recent Advances in systemic therapy for hepatocellular carcinoma. Exp. Clin. Transplant., 2022.
[PMID: 35867011]
[111]
Garcia-Lezana, T.; Lopez-Canovas, J.L.; Villanueva, A. Signaling pathways in hepatocellular carcinoma. Adv. Cancer Res., 2021, 149, 63-101.
[http://dx.doi.org/10.1016/bs.acr.2020.10.002] [PMID: 33579428]
[112]
Fauser, J.; Huyot, V.; Matsche, J.; Szynal, B.N.; Alexeev, Y.; Kota, P.; Karginov, A.V. Dissecting protein tyrosine phosphatase signaling by engineered chemogenetic control of its activity. J. Cell Biol., 2022, 221(8), e202111066.
[http://dx.doi.org/10.1083/jcb.202111066] [PMID: 35829702]
[113]
Kambaru, A.; Chaudhary, N. Role of protein tyrosine phosphatase in regulation of cell signaling cascades affecting tumor cell growth: A future perspective as anti-cancer drug target. Curr. Pharm. Biotechnol., 2022, 23(7), 920-931.
[http://dx.doi.org/10.2174/1389201022666210810094739] [PMID: 34375185]
[114]
Chang, Y.S.; Chou, Y.P.; Chung, C.C.; Lee, Y.T.; Yen, J.C.; Jeng, L.B.; Chang, J.G. Molecular classification of hepatocellular carcinoma using wnt–hippo signaling pathway-related genes. Cancers, 2022, 14(19), 4580.
[http://dx.doi.org/10.3390/cancers14194580] [PMID: 36230503]
[115]
Bourayou, E.; Golub, R. Signaling pathways tuning innate lymphoid cell response to hepatocellular carcinoma. Front. Immunol., 2022, 13, 846923.
[http://dx.doi.org/10.3389/fimmu.2022.846923] [PMID: 35281021]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy