Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Advances in Nanoparticulate Therapeutics for Acute Lung Injury: Addressing Unmet Clinical Needs through Targeted Therapy and Controlled Delivery of Drug

Author(s): Piyushkumar Sadhu*, Mamta Kumari, Hemraj Singh Rajput, Vipul P. Patel, Falguni Rathod, Nirmal Shah and Avinash Kumar Seth

Volume 15, Issue 2, 2025

Published on: 28 February, 2024

Page: [142 - 156] Pages: 15

DOI: 10.2174/0124681873285123240206094443

Price: $65

Abstract

Background: Acute lung injury (ALI) is a life-threatening condition characterized by severe invasion of inflammatory cells, lung edema, and the development of intestinal fibrosis. The activation of proinflammatory cytokines like TNF-α, IL-6, and others results in the development of several risk factors for ALI. It has been observed that no viable therapies for lung injuries exist. Therefore, there is a significant need for healthcare requirements. However, few effective nonpharmacological and pharmacological treatments are available, which may have assisted doctors in reducing the likelihood of illness development. Still, not much progress has been made in illness management.

Objective: This review aimed to briefly discuss pharmacological and non-pharmacological approaches for treating ALI.

Methods: Nowadays, drug delivery and illness diagnosis are the most advanced areas of modern nanotechnology research, particularly concerning the lungs. So, we focused on various novel approaches, viz., organic nanoparticles, inorganic nanoparticles, metal nanoparticles, and bio nanoparticles, that combat ALI and improve lung functions. This review discussed many studies and the advancement of different nanomaterials as novel drug carriers in the lungs that can influence the immune system, suppressing proinflammatory cytokines and improving lung functions.

Results: Another aspect of studying nanotechnology is the release kinetics of nanoparticles and safety when administered to a targeted tissue.

Conclusion: The higher uptake of nanomaterials and, thus, the drugs is another advancement in nanotechnology. Herein, we explored different approaches to improving and curing acute lung injury.

Keywords: Acute lung injury, acute respiratory distress syndrome, nanotechnology, targeted drug delivery, gold nanoparticles, polymeric nanoparticles.

Graphical Abstract
[1]
Chakravarthy KV, Boehm FJ, Christo PJ. Nanotechnology: A promising new paradigm for the control of pain. Pain Med 2018; 19(2): 232-43.
[http://dx.doi.org/10.1093/pm/pnx131] [PMID: 29036629]
[2]
Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther 2003; 3(4): 655-63.
[http://dx.doi.org/10.1517/14712598.3.4.655] [PMID: 12831370]
[3]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[4]
Luo MX, Hua S, Shang QY. Application of nanotechnology in drug delivery systems for respiratory diseases (Review). Mol Med Rep 2021; 23(5): 325.
[http://dx.doi.org/10.3892/mmr.2021.11964] [PMID: 33760125]
[5]
Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly SC. Nanotechnology based therapeutics for lung disease. Thorax 2019; 74(10): 965-76.
[http://dx.doi.org/10.1136/thoraxjnl-2019-213037] [PMID: 31285360]
[6]
Sadikot RT, Kolanjiyil AV, Kleinstreuer C. Nanomedicine for treatment of acute lung injury and acute respiratory distress syndrome. Biomed Hub 2017; 27(2): 1-12.
[http://dx.doi.org/10.1159/000477086]
[7]
Qiao Q, Liu X, Yang T, et al. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm Sin B 2021; 11(10): 3060-91.
[http://dx.doi.org/10.1016/j.apsb.2021.04.023] [PMID: 33977080]
[8]
Fröhlich E, Salar-Behzadi S. Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex-vivo, in vitro, and in silico studies. Int J Mol Sci 2014; 15(3): 4795-822.
[http://dx.doi.org/10.3390/ijms15034795]
[9]
Omlor AJ, Nguyen J, Bals R. Nanotechnology in respiratory medicine. Respir Res 2015; 16: 64.
[http://dx.doi.org/10.1186/s12931-015-0223-5]
[10]
Myerson JW, Patel PN, Rubey KM, et al. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat Nanotechnol 2022; 17(1): 86-97.
[http://dx.doi.org/10.1038/s41565-021-00997-y] [PMID: 34795440]
[11]
Bian S, Cai H, Cui Y. Nanomedicine-based therapeutics to combat acute lung injury. Int J Nanomedicine 2021; 16: 2247-69.
[http://dx.doi.org/10.2147/IJN.S300594]
[12]
Borm PJA, Kreyling W. Toxicological hazards of inhaled nanoparticles--potential implications for drug delivery. J Nanosci Nanotechnol 2004; 4(5): 521-31.
[http://dx.doi.org/10.1166/jnn.2004.081] [PMID: 15503438]
[13]
Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: A review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res 2018; 8(5): 1527-44.
[http://dx.doi.org/10.1007/s13346-018-0550-4] [PMID: 29881970]
[14]
Patra JK, Das G, Fraceto LF. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8]
[15]
Mokrá D. Acute lung injury - from pathophysiology to treatment. Physiol Res 2021; 69(4): S353-66.
[http://dx.doi.org/10.33549/physiolres.934602] [PMID: 33464919]
[16]
Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 2016; 315(8): 788-800.
[http://dx.doi.org/10.1001/jama.2016.0291] [PMID: 26903337]
[17]
Ragaller M, Richter T. Acute lung injury and acute respiratory distress syndrome. J Emerg Trauma Shock 2010; 3(1): 43-51.
[http://dx.doi.org/10.4103/0974-2700.58663]
[18]
Wang Y, Zhu C, Li P, et al. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome. Front Immunol 2023; 14: 1112196.
[http://dx.doi.org/10.3389/fimmu.2023.1112196] [PMID: 36891309]
[19]
Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA 2008; 299(6): 637-45.
[http://dx.doi.org/10.1001/jama.299.6.637] [PMID: 18270352]
[20]
Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342(18): 1301-8.
[http://dx.doi.org/10.1056/NEJM200005043421801] [PMID: 10793162]
[21]
Bernard GR. Acute respiratory distress syndrome: A historical perspective. Am J Respir Crit Care Med 2005; 172(7): 798-806.
[http://dx.doi.org/10.1164/rccm.200504-663OE] [PMID: 16020801]
[22]
Brower RG, Ware LB, Berthiaume Y, Matthay MA. Treatment of ARDS. Chest 2001; 120(4): 1347-67.
[http://dx.doi.org/10.1378/chest.120.4.1347] [PMID: 11591581]
[23]
Petrucci N, Iacovelli W. Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev 2007; (3): CD003844.
[http://dx.doi.org/10.1002/14651858.CD003844.pub3] [PMID: 17636739]
[24]
Plötz FB, Slutsky AS, van Vught AJ, Heijnen CJ. Ventilator-induced lung injury and multiple system organ failure: A critical review of facts and hypotheses. Intensive Care Med 2004; 30(10): 1865-72.
[http://dx.doi.org/10.1007/s00134-004-2363-9] [PMID: 15221129]
[25]
Johnson ER, Matthay MA. Acute lung injury: Epidemiology, pathogenesis, and treatment J Aerosol Med Pulm Drug Deliv 2010; 23(4): 243-52.
[http://dx.doi.org/10.1089/jamp.2009.0775]
[26]
Guérin C, Mancebo J. Prone positioning and neuromuscular blocking agents are part of standard care in severe ARDS patients: Yes. Intensive Care Med 2015; 41(12): 2195-7.
[http://dx.doi.org/10.1007/s00134-015-3918-7] [PMID: 26399890]
[27]
Sweeney RM, McAuley DF. Acute respiratory distress syndrome. Lancet 2016; 388(10058): 2416-30.
[http://dx.doi.org/10.1016/S0140-6736(16)00578-X] [PMID: 27133972]
[28]
Neto AS, Pereira VG, Espósito DC. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: A summary of the current evidence from three randomized controlled trials. Ann Intensive Care 2012; 2(1): 33.
[http://dx.doi.org/10.1186/2110-5820-2-33]
[29]
Mokra D, Mikolka P, Kosutova P. Corticosteroids in acute lung injury: The dilemma continues. Int J Mol Sci 2019; 20(19): 2765.
[http://dx.doi.org/10.3390/ijms20194765]
[30]
Meduri GU, Annane D, Chrousos GP, Marik PE, Sinclair SE. Activation and regulation of systemic inflammation in ARDS: Rationale for prolonged glucocorticoid therapy. Chest 2009; 136(6): 1631-43.
[http://dx.doi.org/10.1378/chest.08-2408] [PMID: 19801579]
[31]
Rossaint R, Falke KJ, López F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993; 328(6): 399-405.
[http://dx.doi.org/10.1056/NEJM199302113280605] [PMID: 8357359]
[32]
Mikolka P, Kopincová J, Košútová P, Čierny D, Čalkovská A, Mokrá D. Lung inflammatory and oxidative alterations after exogenous surfactant therapy fortified with budesonide in rabbit model of meconium aspiration syndrome. Physiol Res 2016; 65 (Suppl. 5): S653-62.
[http://dx.doi.org/10.33549/physiolres.933529] [PMID: 28006947]
[33]
Festic E, Carr GE, Cartin-Ceba R, et al. Randomized clinical trial of a combination of an inhaled corticosteroid and beta agonist in patients at risk of developing the acute respiratory distress syndrome. Crit Care Med 2017; 45(5): 798-805.
[http://dx.doi.org/10.1097/CCM.0000000000002284] [PMID: 28240689]
[34]
Mokra D, Drgova A, Pullmann R Sr, Calkovska A. Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury. Pulm Pharmacol Ther 2012; 25(3): 216-22.
[http://dx.doi.org/10.1016/j.pupt.2012.02.007] [PMID: 22387424]
[35]
Kosutova P, Mikolka P, Kolomaznik M, et al. Reduction of lung inflammation, oxidative stress and apoptosis by the PDE4 inhibitor roflumilast in experimental model of acute lung injury. Physiol Res 2018; 67(4): S645-54.
[http://dx.doi.org/10.33549/physiolres.934047] [PMID: 30607971]
[36]
Zielińska A, Carreiró F, Oliveira AM. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731]
[37]
Zhang CY, Lin W, Gao J. pH-Responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Appl Mater Interfaces 2019; 11(18): 16380-90.
[http://dx.doi.org/10.1021/acsami.9b04051]
[38]
Olivier KN, Griffith DE, Eagle G. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med 2017; 195(6): 814-23.
[http://dx.doi.org/10.1164/rccm.201604-0700OC]
[39]
Liu D, Long M, Gao L, et al. Nanomedicines targeting respiratory injuries for pulmonary disease management. Adv Funct Mater 2022; 32(22): 2112258.
[http://dx.doi.org/10.1002/adfm.202112258]
[40]
Karimi Zarchi AA, Faramarzi MA, Gilani K, Ghazi-Khansari M, Ghamami G, Amani A. N -acetylcysteine-loaded PLGA nanoparticles outperform conventional N -acetylcysteine in acute lung injuries in vivo. Int J Polym Mater 2017; 66(9): 443-54.
[http://dx.doi.org/10.1080/00914037.2016.1236339]
[41]
Pham DT, Chokamonsirikun A, Phattaravorakarn V, Tiyaboonchai W. Polymeric micelles for pulmonary drug delivery: A comprehensive review. J Mater Sci 2021; 56(3): 2016-36.
[http://dx.doi.org/10.1007/s10853-020-05361-4]
[42]
Lim SB, Rubinstein I, Sadikot RT, Artwohl JE, Önyüksel H. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharm Res 2011; 28(3): 662-72.
[http://dx.doi.org/10.1007/s11095-010-0322-4] [PMID: 21108040]
[43]
Zhu T, Wu X, Zhang W, Xiao M. Glucagon like peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a protein kinase A (PKA)-dependent nuclear factor-κB (NF-κB) signaling pathway in mice. Int J Mol Sci 2015; 16(9): 20195-211.
[http://dx.doi.org/10.3390/ijms160920195] [PMID: 26343632]
[44]
Nasr M, Najlah M, D’Emanuele A, Elhissi A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int J Pharm 2014; 461(1-2): 242-50.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.023] [PMID: 24275446]
[45]
Bohr A, Tsapis N, Andreana I, et al. Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules 2017; 18(8): 2379-88.
[http://dx.doi.org/10.1021/acs.biomac.7b00572] [PMID: 28639789]
[46]
Rytting E, Nguyen J, Wang X, Kissel T. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 2008; 5(6): 629-39.
[http://dx.doi.org/10.1517/17425247.5.6.629] [PMID: 18532919]
[47]
Kulikov OA, Ageev VP, Marochkina EE, Dolgacheva IS, Minayeva OV, Inchina VI. Efficacy of liposomal dosage forms and hyperosmolar salines in experimental pharmacotherapy of acute lung injury. Res Results Pharmacol 2019; 5(2): 23-41.
[http://dx.doi.org/10.3897/rrpharmacology.5.35529]
[48]
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem Soc Rev 2018; 47(23): 8572-610.
[http://dx.doi.org/10.1039/C8CS00162F] [PMID: 30177983]
[49]
Duan Y, Dhar A, Patel C. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv 2020; 10(47): 26777-91.
[http://dx.doi.org/10.1039/D0RA03491F]
[50]
Zuglianello C, Lemos-Senna E. The nanotechnological approach for nasal delivery of peptide drugs: A comprehensive review. J Microencapsul 2022; 39(2): 156-75.
[http://dx.doi.org/10.1080/02652048.2022.2051626] [PMID: 35262455]
[51]
Jiang S, Li S, Hu J, et al. Combined delivery of angiopoietin-1 gene and simvastatin mediated by anti-intercellular adhesion molecule-1 antibody-conjugated ternary nanoparticles for acute lung injury therapy. Nanomedicine 2019; 15(1): 25-36.
[http://dx.doi.org/10.1016/j.nano.2018.08.009] [PMID: 30193816]
[52]
Li SJ, Wang XJ, Hu JB, et al. Targeting delivery of simvastatin using ICAM-1 antibody-conjugated nanostructured lipid carriers for acute lung injury therapy. Drug Deliv 2017; 24(1): 402-13.
[http://dx.doi.org/10.1080/10717544.2016.1259369] [PMID: 28165814]
[53]
Ou L, Song B, Liang H. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13(1): 1-24.
[http://dx.doi.org/10.1186/s12989-016-0168-y]
[54]
Zhang Y, Deng J, Zhang Y, et al. Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice. J Mol Med (Berl) 2013; 91(1): 117-28.
[http://dx.doi.org/10.1007/s00109-012-0940-x] [PMID: 22878607]
[55]
Heister E, Neves V, Tîlmaciu C, et al. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 2009; 47(9): 2152-60.
[http://dx.doi.org/10.1016/j.carbon.2009.03.057]
[56]
Yan J, Tang Z, Li Y, et al. Molybdenum nanodots for acute lung injury therapy. ACS Nano 2023; 17(23): 23872-88.
[http://dx.doi.org/10.1021/acsnano.3c08147] [PMID: 38084420]
[57]
Cortajarena AL, Ortega D, Ocampo SM. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine (Rij) 2014; 1: 2.
[http://dx.doi.org/10.5772/58841]
[58]
Nishimoto K, Mimura A, Aoki M, Banura N, Murase K. Application of magnetic particle imaging to pulmonary imaging using nebulized magnetic nanoparticles. Open J Med Imag 2015; 5(2): 49-55.
[http://dx.doi.org/10.4236/ojmi.2015.52008]
[59]
Brzoska M, Langer K, Coester C, Loitsch S, Wagner TOF, Mallinckrodt C. Incorporation of biodegradable nanoparticles into human airway epithelium cells—in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochem Biophys Res Commun 2004; 318(2): 562-70.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.067] [PMID: 15120637]
[60]
Wiley JA, Richert LE, Swain SD, et al. Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses. PLoS One 2009; 4(9): e7142.
[http://dx.doi.org/10.1371/journal.pone.0007142] [PMID: 19774076]
[61]
Zhang L, Laug L, Münchgesang W, et al. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett 2010; 10(1): 219-23.
[http://dx.doi.org/10.1021/nl903313r] [PMID: 20017497]
[62]
Serebrovska Z, Swanson RJ, Portnichenko V, et al. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia. Biomed Pharmacother 2017; 92: 69-77.
[http://dx.doi.org/10.1016/j.biopha.2017.05.064] [PMID: 28531802]
[63]
Zhu Y, Deng G, Ji A, et al. Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress. Int J Nanomedicine 2017; 12: 7143-52.
[http://dx.doi.org/10.2147/IJN.S143192] [PMID: 29026307]
[64]
Stoehr LC, Gonzalez E, Stampfl A. Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 2011; 8: 1-15.
[http://dx.doi.org/10.1186/1743-8977-8-36]
[65]
Valodkar M, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S. in vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater Sci Eng C 2011; 31(8): 1723-8.
[http://dx.doi.org/10.1016/j.msec.2011.08.001]
[66]
Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci 2017; 8(3): 1719-35.
[http://dx.doi.org/10.1201/b22465-5]
[67]
Caballero-Díaz E, Valcárcel M. Toxicity of gold nanoparticles.Gold nanoparticles in analytical chemistry. Elsevier 2014; 66: pp. 207-54.
[http://dx.doi.org/10.1016/B978-0-444-63285-2.00005-5]
[68]
Jia YP, Ma BY, Wei XW. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett 2017; 28(4): 691-702.
[http://dx.doi.org/10.1016/j.cclet.2017.01.021]
[69]
Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci 2020; 11(4): 923-36.
[http://dx.doi.org/10.1039/C9SC06497D]
[70]
(a) Xiong Y, Gao W, Xia F, et al. Peptide–Gold nanoparticle hybrids as promising anti-inflammatory nanotherapeutics for acute lung injury: in vivo efficacy, biodistribution, and clearance. Adv Healthc Mater 2018; 7(19): 1800510.
[http://dx.doi.org/10.1002/adhm.201800510] [PMID: 30101578];
(b) Codullo V, Cova E, Pandolfi L, et al. Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. J Control Release 2019; 310: 198-208.
[http://dx.doi.org/10.1016/j.jconrel.2019.08.015] [PMID: 31430501]
[71]
Draz MS, Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics 2018; 8(7): 1985-2017.
[http://dx.doi.org/10.7150/thno.23856] [PMID: 29556369]
[72]
Madl AK, Plummer LE, Carosino C, Pinkerton KE. Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 2014; 76(1): 447-65.
[http://dx.doi.org/10.1146/annurev-physiol-030212-183735] [PMID: 24215442]
[73]
Wang D, Pu J, Liao Y, Liu J, Hu G. Pulmonary protective effects of ultrasonic green synthesis of gold nanoparticles mediated by pectin on Methotrexate-induced acute lung injury in lung BEAS-2B, WI-38, CCD-19Lu, IMR-90, MRC-5, and HEL 299 cell lines. Arab J Chem 2022; 15(1): 103533.
[http://dx.doi.org/10.1016/j.arabjc.2021.103533]
[74]
Sadhu PK, Rajput A, Seth AK. A Combined approach of gold nanoparticles with cannabinoids for the treatment of cancer – a review. Int J Pharmaceut Res 2020; 12(SP1): 393-405.
[http://dx.doi.org/10.31838/ijpr/2020.SP1.077]
[75]
Wang L, Zhang H, Sun L. Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury. J Nanobiotechnology 2020; 18: 1-16.
[http://dx.doi.org/10.1186/s12951-020-00593-7]
[76]
Griffiths G, Nyström B, Sable SB. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat Rev Microbiol 2010; 8(11): 827-34.
[http://dx.doi.org/10.1038/nrmicro2437]
[77]
Muralidharan P, Hayes D, Black SM. Microparticulate/nanoparticulate powders of a novel Nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung Nrf2/Keap-1 pathway. Mol Syst Des Eng 2016; 1(1): 48-65.
[http://dx.doi.org/10.1039/C5ME00004A]
[78]
Konduri KS, Nandedkar S, Düzgünes N, et al. Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol 2003; 111(2): 321-7.
[http://dx.doi.org/10.1067/mai.2003.104] [PMID: 12589352]
[79]
Ng ZY, Wong JY, Panneerselvam J. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf B Biointerfaces 2018; 172: 51-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.027]
[80]
Chen X, Huang W, Wong BC. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int J Nanomedicine 2012; 7: 1139-48.
[http://dx.doi.org/10.2147/IJN.S28011]
[81]
Ji WJ, Ma YQ, Zhang X, et al. Inflammatory monocyte/macrophage modulation by liposome-entrapped spironolactone ameliorates acute lung injury in mice. Nanomedicine (Lond) 2016; 11(11): 1393-406.
[http://dx.doi.org/10.2217/nnm-2016-0006] [PMID: 27221077]
[82]
Li N, Weng D, Wang SM, et al. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Deliv 2017; 24(1): 1770-81.
[http://dx.doi.org/10.1080/10717544.2017.1402217] [PMID: 29160134]
[83]
Li S, Chen L, Wang G. Anti-ICAM-1 antibody-modified nanostructured lipid carriers: A pulmonary vascular endothelium-targeted device for acute lung injury therapy. J Nanobiotechnology 2018; 16(1): 1-14.
[http://dx.doi.org/10.1186/s12951-018-0431-5]
[84]
Kardara M, Hatziantoniou S, Sfika A, et al. Caveolar uptake and endothelial-protective effects of nanostructured lipid carriers in acid aspiration murine acute lung injury. Pharm Res 2013; 30(7): 1836-47.
[http://dx.doi.org/10.1007/s11095-013-1027-2] [PMID: 23549752]
[85]
D’Almeida APL, de Oliveira MTP, de Souza ÉT. α-bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice. Int J Nanomedicine 2017; 12: 4479-91.
[http://dx.doi.org/10.2147/IJN.S130798]
[86]
Esmaeili M, Aghajani M, Abbasalipourkabir R, Amani A. Budesonide-loaded solid lipid nanoparticles for pulmonary delivery: Preparation, optimization, and aerodynamic behavior. Artif Cells Nanomed Biotechnol 2016; 44(8): 1964-71.
[http://dx.doi.org/10.3109/21691401.2015.1129614] [PMID: 26758698]
[87]
Liu FC, Yu HP, Lin CY, Elzoghby AO, Hwang TL, Fang JY. Use of cilomilast-loaded phosphatiosomes to suppress neutrophilic inflammation for attenuating acute lung injury: The effect of nanovesicular surface charge. J Nanobiotechnology 2018; 16(1): 35.
[http://dx.doi.org/10.1186/s12951-018-0364-z] [PMID: 29602314]
[88]
Inapagolla R, Guru BR, Kurtoglu YE, et al. In vivo efficacy of dendrimer–methylprednisolone conjugate formulation for the treatment of lung inflammation. Int J Pharm 2010; 399(1-2): 140-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.030] [PMID: 20667503]
[89]
Jin F, Liu D, Yu H, et al. Sialic acid-functionalized PEG–PLGA microspheres loading mitochondrial-targeting-modified curcumin for acute lung injury therapy. Mol Pharm 2019; 16(1): 71-85.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00861] [PMID: 30431285]
[90]
Zhu L, Li M, Dong J, Jin Y. Dimethyl silicone dry nanoemulsion inhalations: Formulation study and anti-acute lung injury effect. Int J Pharm 2015; 491(1-2): 292-8.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.041] [PMID: 26142249]
[91]
Michailidou G, Ainali NM, Xanthopoulou E, et al. Effect of poly(vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability. Polymers (Basel) 2020; 12(5): 1101.
[http://dx.doi.org/10.3390/polym12051101] [PMID: 32408557]
[92]
Ding Y, Lv B, Zheng J, et al. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J Control Release 2022; 341: 702-15.
[http://dx.doi.org/10.1016/j.jconrel.2021.12.018] [PMID: 34933051]
[93]
Yang H, Fung SY, Xu S, et al. Amino acid-dependent attenuation of toll-like receptor signaling by peptide-gold nanoparticle hybrids. ACS Nano 2015; 9(7): 6774-84.
[http://dx.doi.org/10.1021/nn505634h] [PMID: 26083966]
[94]
Muralidharan P, Jones B, Allaway G, Biswal SS, Mansour HM. Design and development of innovative microparticulate/nanoparticulate inhalable dry powders of a novel synthetic trifluorinated chalcone derivative and Nrf2 agonist. Sci Rep 2020; 10(1): 19771.
[http://dx.doi.org/10.1038/s41598-020-76585-2] [PMID: 33188247]
[95]
Melina R. The University of North Carolina at Chapel Hill, assignee. Nanomaterials for targeted treatment of pulmonary tissue. WIPO patent 2021155355A1, 2021.
[96]
Wang Z. Compositions and methods for diagnosing or treating neutrophil-mediated inflammatory disease. US patent 20230048872A1, 2023.
[97]
Qin S, Ling C, Liu X. Application method of nanoparticle-based targeted Piezo1 protein in acute lung injury. CN patent 113975376A, 2022.
[98]
Hsia C, Hong Y, Moe OW. Nanoparticles containing extracellular matrix for drug delivery. US patent 11491115B2, 2022.
[99]
Chen QuanJ, Malinin F. Compositions and methods for treating lung disease and lung injury. JP Patent 6884714B2, 2021.
[100]
Goswami N, Farheen F, Keshamma E. Polymer based nano-carriers for treating lung cancer using drug delivery system. IN Patent 202221053282, 2022.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy