Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

The Use of the Titanium Tetrachloride (TiCl4) Catalysts as a Reagent for Organic Synthesis

Author(s): Sharwan Hudda, Pankaj Wadhwa*, Mukta Gupta*, Manish Chaudhary and Lakhan Lakhujani

Volume 11, Issue 4, 2024

Published on: 07 February, 2024

Page: [279 - 300] Pages: 22

DOI: 10.2174/0122133372288854240129052155

Price: $65

Abstract

TiCl4 is a widely utilized reagent in organic synthesis, often functioning through Lewis’s acid-promoted transformations. This review explores the potential for TiCl4 to catalyse various examples, adhering to the classic catalyst definition and allowing for the use of sub-stoichiometric quantities of the catalyst relative to the substrate. The use of metal catalysts in organic synthesis has witnessed a surge in interest due to their ability to facilitate a wide range of chemical reactions. This review article highlights the significance of titanium metal catalysts via comparison with other metal catalysts like Pd (NO3)2, IrO4, Au/Fe2O3, SnCl2, and AlCl3. Among these catalysts, titanium tetrachloride (TiCl4) has gained considerable popularity for its cost-effectiveness, eco-friendliness, enhancing reaction efficiency, and ability to accelerate reactions while reducing reaction times. This comparison helps in determining the most suitable catalyst for different chemical processes, considering efficiency, safety, and economic factors. TiCl4 operates as a non-consumable catalyst, allowing for the use of sub-stoichiometric quantities relative to the substrate.

This review discusses TiCl4's applications, efficiency, and mechanisms in organic synthesis. It distinguishes itself by presenting new applications and comparative efficiencies of TiCl4, delving into detailed reaction mechanisms, and discussing its environmental, economic, and safety aspects. TiCl4's role in pivotal chemical reactions, such as Friedel-Crafts acylation and alkylation, epoxidation, cyclization, Mannich reactions, Suzuki-Miyaura reactions, Pechmann condensation, Knoevenagel condensation, anti-Markovnikov hydration, pinacol coupling, and Diels-Alder reactions. These reactions have led to the synthesis of biologically active compounds like zolmitriptan, ropinirole, risperidone, and rivastigmine. TiCl4-catalyzed reactions are characterized by their mild conditions, high efficiency, and selectivity, making them an attractive choice for modern organic cyclic, acyclic, and heterocyclic synthesis.

Keywords: Organic synthesis, metal catalyst, heterocyclic synthesis, titanium tetrachloride (TiCl4), organotitanium reagents.

Graphical Abstract
[1]
Comandè, A.; Greco, M.; Belsito, E.L.; Liguori, A.; Leggio, A. A titanium tetrachloride-based effective methodology for the synthesis of dipeptides. RSC Advances, 2019, 9(38), 22137-22142.
[http://dx.doi.org/10.1039/C9RA04058G] [PMID: 35518841]
[2]
Mane, P.; Shinde, B.; Mundada, P.; Gawade, V.; Karale, B.; Burungale, A. Sodium acetate/MWI: A green protocol for the synthesis of tetrahydrobenzo(α)xanthen-11-ones with biological screening. Res. Chem. Intermed., 2020, 46(1), 231-241.
[http://dx.doi.org/10.1007/s11164-019-03945-7]
[3]
Arianpour, F.; Jahangiri, M.; Abedi, S.; Vafaee, F.; Yousif, Q.A.; Salavati-Niasari, M. In-situ polymerization of silica/polyethylene using bisupported Ziegler-Natta catalyst of nanosilica/BOM/TiCl4/TEAL: Study of thermo-mechanical properties system. Inorg. Chem. Commun., 2022, 143, 109726.
[http://dx.doi.org/10.1016/j.inoche.2022.109726]
[4]
Manßen, M.; Schafer, L.L. Titanium catalysis for the synthesis of fine chemicals – development and trends. Chem. Soc. Rev., 2020, 49(19), 6947-6994.
[http://dx.doi.org/10.1039/D0CS00229A] [PMID: 32852007]
[5]
Zahnoune, R.; Asserne, F.; Ourhriss, N.; Ouled Aitouna, A.; Barhoumi, A.; Hakmaoui, Y.; Belghiti, M.E.; Abouricha, S. El ajlaoui, R.; Zeroual, A. Theoretical survey of Diels-Alder between acrylic acid and isoprene catalyzed by the titanium tetrachloride and titanium tertafluoride. J. Mol. Struct., 2022, 1269, 133630.
[http://dx.doi.org/10.1016/j.molstruc.2022.133630]
[6]
Jiao, N. Nitrogenation Strategy for the Synthesis of N-containing Compounds; Springer, 2017.
[http://dx.doi.org/10.1007/978-981-10-2813-7]
[7]
Yan, T.H.; Ananthan, B.; Chang, S.H. A new entry of highly selective and nucleophilic BrH 2 C‐ and ClH 2 C‐titanium complexes for carbonyl coupling. Eur. J. Org. Chem., 2019, 2019(4), 778-787.
[http://dx.doi.org/10.1002/ejoc.201801438]
[8]
Khodaei, M.M.; Nazari, E. Synthesis of diarylmethanes via a Friedel–Crafts benzylation using arenes and benzyl alcohols in the presence of triphenylphosphine ditriflate. Tetrahedron Lett., 2012, 53(38), 5131-5135.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.051]
[9]
Mukaiyama, T. Titanium tetrachloride in organic synthesis. Angew. Chem. Int. Ed. Engl., 1977, 16(12), 817-826.
[http://dx.doi.org/10.1002/anie.197708171]
[10]
Liu, H.; Yang, W.; Zheng, S.; He, Y.; Wang, G.; Qin, H.; Zhu, F.; Jiang, X.; Shen, J.; Gong, X. Stereoselective synthesis of 2-deoxy-2-disubstituted ribonolactones through a TiCl4-mediated Evans-Aldol reaction. Tetrahedron Lett., 2022, 95, 153728.
[http://dx.doi.org/10.1016/j.tetlet.2022.153728]
[11]
Li, M.; Xia, D.; Yang, Y.; Du, X.; Dong, G.; Jiang, A.; Fan, R. Doping of (In 2 (phen) 3 Cl 6)·CH 3 CN·2H 2 O indium‐based metal–organic framework into hole transport layer for enhancing perovskite solar cell efficiencies. Adv. Energy Mater., 2018, 8(10), 1702052.
[http://dx.doi.org/10.1002/aenm.201702052]
[12]
Xiang, M.; Zhou, C.; Yang, X.L.; Chen, B.; Tung, C.H.; Wu, L.Z. Visible light-catalyzed benzylic C–H bond chlorination by a combination of organic dye (Acr+-Mes) and N-chlorosuccinimide. J. Org. Chem., 2020, 85(14), 9080-9087.
[http://dx.doi.org/10.1021/acs.joc.0c01000] [PMID: 32434320]
[13]
Moloney, J; Moloney, M. Nucleophilic aliphatic substitution. organic reaction mechanisms 2017: An annual survey covering the literature dated january to december 2017. Org. Chem., 2020, 317-341.
[http://dx.doi.org/10.1002/9781119426295.ch7]
[14]
Magauer, T.; Rode, A.; Wurst, K. A general entry to ganoderma meroterpenoids: Synthesis of lingzhiol via photoredox catalysis; Organic Chemistry, 2022.
[15]
Lan, Y. Computational Methods in Organometallic Catalysis: From Elementary Reactions to Mechanisms; John Wiley & Sons, 2021.
[http://dx.doi.org/10.1002/9783527346028]
[16]
Hunnur, R.; Kamble, R.; Dorababu, A.; Sunil Kumar, B.; Bathula, C. TiCl4: An efficient catalyst for one-pot synthesis of 1,2-dihydro-1-aryl-naphtho-(1,2-e)(1,3)oxazin-3-one derivatives and their drug score analysis. Arab. J. Chem., 2017, 10, S1760-S1764.
[http://dx.doi.org/10.1016/j.arabjc.2013.06.028]
[17]
Kashiwa, N. The discovery and progress of MgCl 2 ‐supported TiCl4 catalysts. J. Polym. Sci. A Polym. Chem., 2004, 42(1), 1-8.
[http://dx.doi.org/10.1002/pola.10962]
[18]
Rahmatpour, A.; Mohammadian, S. Polystyrene-supported TiCl4 as a novel, efficient and reusable polymeric Lewis acid catalyst for the chemoselective synthesis and deprotection of 1,1-diacetates under eco-friendly conditions. C. R. Chim., 2013, 16(10), 912-919.
[http://dx.doi.org/10.1016/j.crci.2013.01.012]
[19]
Bordbar, H.; Yousefi, A.A.; Abedini, H. Production of titanium tetrachloride (TiCl4) from titanium ores: A review. Polyolefins J., 2017, 4(2), 149-173.
[20]
Quirk, R.P.; Pickel, D.L.G. Polymerization: Elastomer Synthesis. Science and Technology of Rubber; Elsevier, 2005, pp. 29-104.
[21]
Choudhary, K.; Biswas, R.G.; Manna, A.; Singh, V.K. Kinetic resolution of electron-deficient bromohydrins via copper(II)-catalyzed C–C bond cleavage. J. Org. Chem., 2023, 88(16), 12041-12053.
[http://dx.doi.org/10.1021/acs.joc.3c01368] [PMID: 37533192]
[22]
Pongchan, T.; Tumawong, P.; Phiwkliang, W.; Samingprai, S.; Praserthdam, P.; Jongsomjit, B. The effect of different prepared TiCl4-MgCl2 catalysts on the behavior of gas-phase ethylene/1-hexene copolymerization. S. Afr. J. Chem. Eng., 2023, 46, 56-64.
[http://dx.doi.org/10.1016/j.sajce.2023.07.012]
[23]
Baek, J.; Nam, K.; Park, J.; Cha, J. Adsorption selectivity of TiCl4 precursor on Pt surfaces for atomic layer deposition via density functional theory. Appl. Surf. Sci., 2022, 606, 154695.
[http://dx.doi.org/10.1016/j.apsusc.2022.154695]
[24]
MOHAMED, AH.; MASURIER, N. MASURIER N. Recent advances in Aza Friedel-Crafts reaction: Strategies for achiral and stereoselective synthesis. Org. Chem. Front., 2023, 10, 1847-1866.
[25]
Imane, B.K.; Regadia, A.; Ali, B.; Boualem, L.M.; Ahcene, H.; Abedelkader, N. synthesis of novel system spiro-heterocyclic by diels-alder reaction catalysed with TiCl4 For (4+ 2) cycloaddion. J. Pharm. Negat. Results, 2023, 3569-3576.
[26]
Rahmatpour, A.; Eeimen, R.; Goodarzi, N. Titanium tetrachloride incorporated crosslinked polystyrene copolymer as an efficient and recyclable polymeric Lewis acid catalyst for the synthesis of B -amino carbonyl compounds at room temperature. Synth. Commun., 2019, 49(21), 1-16.
[http://dx.doi.org/10.1080/00397911.2019.1650379]
[27]
Karimi Zarchi, M.A.; Behboodi, K.; Mirjalili, B.F. Synthesis and characterization of a new polymeric catalyst and used for the synthesis of imidazole derivatives. Res. Chem. Intermed., 2021, 47(12), 4929-4942.
[http://dx.doi.org/10.1007/s11164-021-04577-6]
[28]
Nisa, R.U.; Maria, M.; Wasim, F.; Mahmood, T.; Ludwig, R.; Ayub, K. Mechanistic insight of TiCl 4 catalyzed formal (3 + 3) cyclization of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles. RSC Advances, 2015, 5(114), 94304-94314.
[http://dx.doi.org/10.1039/C5RA19238B]
[29]
Patel, C.; Sunoj, R.B. TiCl4-promoted Baylis-Hillman reaction: Mechanistic rationale toward product distribution and stereoselectivity. J. Org. Chem., 2010, 75(2), 359-367.
[http://dx.doi.org/10.1021/jo902123x] [PMID: 20000733]
[30]
Taylor, P. Nucleophilic attack at the carbonyl group. In: Mechanism and Synthesis; The Royal Society of Chemistry, 2003; pp. 21-55.
[31]
e, T.; Xing, Z.; Yang, S. Efficient removal of VOCl3 from crude TiCl4 by organic reagent: Reaction mechanism, kinetics and thermodynamics. Hydrometallurgy, 2020, 196, 105424.
[http://dx.doi.org/10.1016/j.hydromet.2020.105424]
[32]
Ramachandran, P.V.; Alawaed, A.A.; Hamann, H.J. TiCl 4 -catalyzed hydroboration of ketones with ammonia borane. J. Org. Chem., 2022, 87(19), 13259-13269.
[http://dx.doi.org/10.1021/acs.joc.2c01744] [PMID: 36094411]
[33]
Fringuelli, F.; Pizzo, F.; Vaccaro, L. Lewis-acid catalyzed organic reactions in water. The case of AlCl(3), TiCl4, and SnCl4 believed to be unusable in aqueous medium. J. Org. Chem., 2001, 66(13), 4719-4722.
[http://dx.doi.org/10.1021/jo010373y] [PMID: 11421799]
[34]
Rahiminezhad-Soltani, M.; Saberyan, K.; Simchi, A. New insight into reaction mechanisms of TiCl4 for the synthesis of TiO2 nanoparticles in H2O-assisted atmospheric-pressure CVS process. Mater. Sci. Eng. B, 2021, 264, 114958.
[http://dx.doi.org/10.1016/j.mseb.2020.114958]
[35]
Sogani, N.K.; Bansal, R.; Sinha, P. Enantioselective hetero-diels-alder reaction of aromatic aldehydes catalyzed by ((R)-1, 1´-Bi-2-naphthoxy) titanium dichloride: Experimental and theoretical results. Curr. Catal., 2016, 5(1), 25-34.
[http://dx.doi.org/10.2174/2211544705666151229193044]
[36]
Titanium tetrachloride - Wikipedia. Available from: https://en.wikipedia.org/wiki/Titanium_tetrachloride
[37]
Ghosh, A.K.; Xu, C.X.; Kulkarni, S.S.; Wink, D. TiCl4-promoted multicomponent reaction: A new entry to functionalized α-amino acids. Org. Lett., 2005, 7(1), 7-10.
[http://dx.doi.org/10.1021/ol048302j] [PMID: 15624964]
[38]
Ahmed, N.; Pathe, G.K.; Jheeta, S. SnCl4 or TiCl4: Highly efficient catalysts for the detetrahydropyranylation and demethoxymethylation of phenolic ethers and sequential one-pot asymmetric synthesis of 3-aryl-2-hydroxy-2,3-dihydroindan-1-ones from chalcone epoxides. RSC Advances, 2015, 5(77), 63095-63103.
[http://dx.doi.org/10.1039/C5RA10499H]
[39]
Ruan, Z.; Zhu, L.; Zheng, K.; Hong, R. Reinventing the wheel for enabling the synthesis of hinckdentine A. Tetrahedron Lett., 2021, 67, 152880.
[http://dx.doi.org/10.1016/j.tetlet.2021.152880]
[40]
Roy, S. Prins-friedel-crafts cyclization: Synthesis of diversely functionalized six-membered oxacycles. Curr. Org. Chem., 2021, 25(5), 635-651.
[http://dx.doi.org/10.2174/1385272825666210114105020]
[41]
Pajkert, R.; Kolomeitsev, A.A.; Milewska, M.; Röschenthaler, G.V.; Koroniak, H. TiCl4 and grignard reagent-promoted ring-opening reactions of various epoxides: Synthesis of γ-hydroxy-α,α-difluoromethylenephosphonates. Tetrahedron Lett., 2008, 49(42), 6046-6049.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.146]
[42]
Okabe, T.H.; Takeda, O. Fundamentals of thermochemical reduction of TiCl4. In: Extractive Metallurgy of Titanium; Elsevier, 2020; pp. 65-95.
[http://dx.doi.org/10.1016/B978-0-12-817200-1.00005-3]
[43]
Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials, 2020, 10(2), 387.
[http://dx.doi.org/10.3390/nano10020387] [PMID: 32102185]
[44]
Li, W.; Dong, C.; Wang, X.; Wang, J.; Yang, Y. POSS@TiCl4 nanoparticles: A minimalism styled Ziegler-Natta catalytic system. J. Catal., 2023, 421, 384-392.
[http://dx.doi.org/10.1016/j.jcat.2023.03.037]
[45]
Vineeth, V.N.; Unni, G.E.; Srikrishnarka, P.; Nandan, S.; Nair, A.S. Surface modification of electrospun nanofibers of TiO2 in TiCl4 treatment for cactus-like TiO2 nanostructures. Mater. Today Proc., 2020, 33, 1351-1355.
[http://dx.doi.org/10.1016/j.matpr.2020.04.237]
[46]
Albright, R. Cleanup of chemical and explosive munitions: Location, identification and environmental remediation; William Andrew, 2011.
[47]
RIANT, O. Development of new copper-catalyzed cross-coupling reactions; Catholic University of Louvain, 2024.
[48]
Nikoohemmat, M.A.; Mazaheri, H.; Joshaghani, A.H.; Joudaki, E. Development of a novel super-active ziegler-natta polyethylene catalyst: Study on structure, performance and application. Int. J. Eng., 2024, 37(1), 14-24.
[http://dx.doi.org/10.5829/IJE.2024.37.01A.02]
[49]
Keskiväli, L.; Seppänen, T.; Porri, P.; Pääkkönen, E.; Ketoja, J.A. Atomic layer deposited TiO2 on a foam-formed cellulose fibre network – Effect on hydrophobicity and physical properties. BioResources, 2023, 18(4), 7923-7942.
[http://dx.doi.org/10.15376/biores.18.4.7923-7942]
[50]
Kim, S; Parasuraman, V; Sheraz, M; Azizar, GAB; Hong, JW; Lee, WR Photocatalytic self-cleaning eco-friendly paint: A unique approach for efficient indoor air pollutant removal and surface disinfection., 2023.
[http://dx.doi.org/10.2139/ssrn.4570556]
[51]
Bhatti, T.M.; Yasmin, E.; Kumar, A. Akshai; Goldman, AS. Historical perspective and mechanistic aspects of c–h bond functionalization. In: Transition‐metal‐catalyzed c‐h functionalization of heterocycles; , 2023; pp. 1-60.
[52]
Li, F-B. Chemical reactivity and addition pattern on C60 and C70. In: Handbook of Fullerene Science and Technology; Springer, 2022; pp. 273-312.
[53]
Brigatti, S. A comparative study over differently produced titanium dioxide photocatalyst. In: Materials Engineering and Nanotechnology; , 2022.
[54]
Clark, J.H.; Jardine, A.; Matharu, A.S.; Stevens, C.V. Greener Organic Transformations; Royal Society of Chemistry, 2022.
[http://dx.doi.org/10.1039/9781837670895]
[55]
AlSalka, Y. Photocatalytic water splitting for solar hydrogen production and simultaneous decontamination of organic pollutants., 2020.
[56]
Fuchs, P.L.; Charette, A.B.; Rovis, T.; Bode, J.W. Essential reagents for organic synthesis; John Wiley & Sons, 2016.
[57]
Levchuk, I. Titanium dioxide based nanomaterials for photocatalytic water treatment; Advanced Water Treat, 2016, pp. 1-56.
[58]
Keet, B.J. Techno-economic evaluation of demilitarized TiCl4 recycling processes; North-West University: South Africa, 2019.
[59]
Mahlambi, M.M.; Ngila, C.J.; Mamba, B.B. Recent developments in environmental photocatalytic degradation of organic pollutants: The case of titanium dioxide nanoparticles—a review. J. Nanomater., 2015, 2015, 1-29.
[http://dx.doi.org/10.1155/2015/790173]
[60]
Fang, Z.Z.; Froes, F.; Zhang, Y. Extractive metallurgy of titanium. In: Conventional and recent advances in extraction and production of titanium metal; , 2019.
[61]
Thomas, M.; Bąk, J.; Królikowska, J. Efficiency of titanium salts as alternative coagulants in water and wastewater treatment: Short review. Desalination Water Treat., 2020, 208, 261-272.
[http://dx.doi.org/10.5004/dwt.2020.26689]
[62]
Raza, G. Titanium dioxide nanomaterials, synthesis, stability and mobility in natural and synthetic porous media; University of Birmingham, 2017.
[63]
Kapias, T.; Griffiths, R. Accidental releases of titanium tetrachloride (TiCl) in the context of major hazards?spill behaviour using REACTPOOL. J. Hazard. Mater., 2005, 119(1-3), 41-52.
[http://dx.doi.org/10.1016/j.jhazmat.2004.12.001] [PMID: 15752847]
[64]
Ghosh, S.; Banerjee, S.; Kotha, S.; Halder, S.; Sreenivasachary, N. ARKIVOC Volume 2002 part (vii): Commemorative issue in honor of Prof. Satinde V. In: Kessar on the occasion of his 70th anniversary; , 2002.
[65]
Caiuby, C.A.D.; de Jesus, M.P.; Burtoloso, A.C.B. α-imino iridium carbenes from imidoyl sulfoxonium ylides: Application in the one-step synthesis of indoles. J. Org. Chem., 2020, 85(11), 7433-7445.
[http://dx.doi.org/10.1021/acs.joc.0c00833] [PMID: 32342687]
[66]
Bi Fatemeh Mirjalili, B.; Bamoniri, A.; Zamani, L. Nano-TiCl4/SiO2: An efficient and reusable catalyst for the synthesis of tetrahydrobenzo (a) xanthenes-11-ones. Lett. Org. Chem., 2012, 9(5), 338-343.
[http://dx.doi.org/10.2174/157017812801264700]
[67]
Jones, S.; Selitsianos, D. A simple and effective method for phosphoryl transfer using TiCl4 catalysis. Org. Lett., 2002, 4(21), 3671-3673.
[http://dx.doi.org/10.1021/ol026618q] [PMID: 12375915]
[68]
Rahmatpour, A.; Sajjadinezhad, S.M. Cross‐linked poly(N ‐vinylpyrrolidone)‐titanium tetrachloride complex: A novel stable solid TiCl 4 equivalent as a recyclable polymeric Lewis acid catalyst for regioselective ring‐opening alcoholysis of epoxides. Appl. Organomet. Chem., 2021, 35(11), e6385.
[http://dx.doi.org/10.1002/aoc.6385]
[69]
Dehghani Ashkzari, A.; Sadeghi, B.; Zavar, S. TiCl 4/nano sawdust as a biocatalyst for the synthesis of Ethyl 2-Amino-5-Oxo-4 H, 5 H -Pyrano(4,3- b)Pyran-3-carboxylates. Polycycl. Aromat. Compd., 2020, 40(4), 954-959.
[http://dx.doi.org/10.1080/10406638.2018.1517100]
[70]
Zhang, Q.; Luo, J.; Wang, B.; Xiao, X.; Gan, Z.; Tang, Q. Titanium tetrachloride promoted cyclodehydration of aryloxyketones: Facile synthesis of benzofurans and naphthofurans with high regioselectivity. Tetrahedron Lett., 2019, 60(19), 1337-1340.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.020]
[71]
Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C.; Marianetti, G.A.; Perego, L. Recent applications of phosphane-based palladium catalysts in Suzuki-Miyaura reactions involved in total syntheses of natural products. Curr. Org. Chem., 2015, 19(14), 1302-1409.
[http://dx.doi.org/10.2174/1385272819666150506230050]
[72]
Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent advances in the suzuki–miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem., 2019, 21(3), 381-405.
[http://dx.doi.org/10.1039/C8GC02860E]
[73]
Shi, Z.; Xiao, Q.; Yin, D. Synthesis of tetrahydroisoquinolines through TiCl4-mediated cyclization and Et3SiH reduction. Chin. Chem. Lett., 2020, 31(3), 729-732.
[http://dx.doi.org/10.1016/j.cclet.2019.09.023]
[74]
Li, J.; Peng, Y.; Song, G. Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueous media. Catal. Lett., 2005, 102(3-4), 159-162.
[http://dx.doi.org/10.1007/s10562-005-5849-3]
[75]
Rahmatpour, A.; Emen, R.; Amini, G. Cross-linked polystyrene/titanium tetrachloride as a tightly bound complex catalyzed the modified Mannich reaction for the synthesis of piperidin-4-ones. J. Organomet. Chem., 2019, 892, 24-33.
[http://dx.doi.org/10.1016/j.jorganchem.2019.04.004]
[76]
Kabalka, G.W.; Ju, Y.; Wu, Z. A new titanium tetrachloride mediated annulation of α-aryl-substituted carbonyl compounds with alkynes: A simple and highly efficient method for the regioselective synthesis of polysubstituted naphthalene derivatives. J. Org. Chem., 2003, 68(20), 7915-7917.
[http://dx.doi.org/10.1021/jo034330o] [PMID: 14510580]
[77]
Valizadeh, H.; Shockravi, A. An efficient procedure for the synthesis of coumarin derivatives using TiCl4 as catalyst under solvent-free conditions. Tetrahedron Lett., 2005, 46(20), 3501-3503.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.124]
[78]
Alheety, K.A.; Jamel, N.M.; Ahmed, B.J. Synthesis of coumarin by Pechman reaction- a review. J. Pharm. Sci. Res., 2019, 11(9), 3344-3347.
[79]
Periasamy, M. New synthetic methods using the TiCl4-NR3 reagent system. ARKIVOC, 2002, 2002(7), 151-166.
[http://dx.doi.org/10.3998/ark.5550190.0003.717]
[80]
Periasamy, M.; Jayakumar, K.N.; Bharathi, P. Simple and efficient methods of synthesis of 3,3-diarylcyclobutanone and 3,3-diarylcyclobutylamine derivatives using the TiCl4/R3N reagent system. J. Org. Chem., 2005, 70(14), 5420-5425.
[http://dx.doi.org/10.1021/jo0504215] [PMID: 15989322]
[81]
Ackermann, L.; Kaspar, L.T. TiCl4-catalyzed indirect anti-Markovnikov hydration of alkynes: Application to the synthesis of benzo(b)furans. J. Org. Chem., 2007, 72(16), 6149-6153.
[http://dx.doi.org/10.1021/jo070887i] [PMID: 17629343]
[82]
Escorihuela, J.; Lledós, A.; Ujaque, G. Anti-Markovnikov intermolecular hydroamination of alkenes and alkynes: A mechanistic view. Chem. Rev., 2023, 123(15), 9139-9203.
[http://dx.doi.org/10.1021/acs.chemrev.2c00482] [PMID: 37406078]
[83]
Abyar, E.; Sadeghi, B.; Mosslemin, M. Nano-kaolin-TiCl4 as a new, green and effective nano-catalyst for one-pot synthesis of tetrahydrobenzo (B) pyrans. Izv. Him., 2018, 50, 29-32.
[84]
Tsuritani, T.; Ito, S.; Shinokubo, H.; Oshima, K. TiCl4-n-Bu4 NI as a reducing reagent: Pinacol coupling and enolate formation from α-haloketones. J. Org. Chem., 2000, 65(16), 5066-5068.
[http://dx.doi.org/10.1021/jo0004254] [PMID: 10956498]
[85]
Aly, A.A. Triple self-condensation of fused cycloalkanonylparacyclophanes promoted by titanium tetrachloride and triethylamine. Tetrahedron Lett., 2005, 46(3), 443-446.
[http://dx.doi.org/10.1016/j.tetlet.2004.11.100]
[86]
Labidi, A.; Yacin-Ali, A. Total enantioselective synthesis of a norbornene derivative via lewis acid catalyzed asymmetric diels-alder reaction using the oppolzer’s camphorsultam as a chiral auxilary; Organic Chemistry, 2023.
[87]
Fu, Q.; Wang, Y.; Nan, F. Construction of the hexacyclic core of dispirocochlearoids A—C via a diels−alder reaction. Chin. J. Chem., 2022, 40(13), 1566-1570.
[http://dx.doi.org/10.1002/cjoc.202200100]
[88]
Sun, Z.; Hu, S.; Huo, Y.; Wang, Z. Titanium tetrachloride-mediated synthesis of N-aryl-substituted azacycles from cyclic ethers. RSC Advances, 2017, 7(8), 4363-4367.
[http://dx.doi.org/10.1039/C6RA27325D]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy