Abstract
Background: MCRs are one of the most significant tools in the synthesis of organic compounds. MCR is a rapid chemical technique that uses three or more reactants to produce products that sustain all structural and substructural properties of the initial components. MCRs are useful in all fields of synthetic chemistry because of their rapid rate of reaction, simple procedure and excellent yields. We reported an efficient and environmentally friendly domino approach for the synthesis of spiroheterocycles spiro annulated with indeno[1,2-b]quinoline.
Method: The spiroheterocycles with privileged heterocyclic substructures have been synthesized using taurine (2-aminoethanesulfonic acid) as a green, sustainable, bio-organic and recyclable catalyst in a three-component reaction of isatins, 1,3-diketones, and 1-napthylamine in aqueous media. The present synthetic method is probably the first report to synthesize spiroheterocycles, spiroannulated with indeno[1,2-b]quinoline. Furthermore, the approach is valuable because of the excellent yield that results from the reaction in 15-20 min.
Result: The optimization of reaction conditions is an important case of efficient synthesis. The solvent, temperature, time and catalyst loading were all examined. The reusability of the catalyst was also investigated experimentally. The used catalyst taurine has a high activity as well as good reusability. The present synthetic protocol will be extended to synthesise a library of hybrid compounds. The present synthetic approach is cost-effective, and time-efficient with an easy-workup methodology that gives outstanding yields (80–95%) in 15–20 min.
Conclusion: Taurine-catalyzed multicomponent reaction is a novel and efficient method for the synthesis of spiroannulated indeno[1,2-b]quinolines. The high catalytic activity of taurine as a catalyst with water as a green solvent makes the process environmentally friendly. The special features of the synthetic protocol include synthetic efficiency, operational simplicity, and reusability of the catalyst and it is expected to make significant contributions not only to drug discovery studies but also to pharmaceutical and therapeutic chemistry in view of introducing molecular diversity in the synthesized molecules.
Keywords: Multicomponent reactions, environmentally friendly, green and sustainable bio-organic catalyst, taurine (2-aminoethanesulfonic acid), spiroheterocycles, indenoquinolines, NK-1 receptor.
[http://dx.doi.org/10.1039/c2ra01056a]
[http://dx.doi.org/10.1039/C6RA09874F]
[http://dx.doi.org/10.1039/C4RA04654D]
[http://dx.doi.org/10.1039/D1RA03874E] [PMID: 35479579]
[http://dx.doi.org/10.1039/D2RA04452H] [PMID: 36128541]
[http://dx.doi.org/10.1039/D1QO00220A]
[http://dx.doi.org/10.1007/s11030-019-09999-4] [PMID: 31598819]
[http://dx.doi.org/10.1039/D0RA01378A] [PMID: 35498463]
[http://dx.doi.org/10.1039/D0RA03763J] [PMID: 35517753]
[http://dx.doi.org/10.1039/D2RA02896D] [PMID: 35873320]
[http://dx.doi.org/10.1007/s00044-012-0060-8]
[http://dx.doi.org/10.1016/j.ejmech.2019.07.019] [PMID: 31344615]
[http://dx.doi.org/10.1007/s00044-011-9915-7]
[http://dx.doi.org/10.1021/jm00077a003] [PMID: 8258822]
[http://dx.doi.org/10.1016/j.ejmech.2009.10.042] [PMID: 19926172]
[http://dx.doi.org/10.1038/s41467-020-19249-z]
[http://dx.doi.org/10.1016/j.ejmech.2011.01.053] [PMID: 21334792]
[http://dx.doi.org/10.1016/j.bmc.2004.09.025] [PMID: 15556770]
[http://dx.doi.org/10.1038/nrmicro3138] [PMID: 24217412]
[http://dx.doi.org/10.1007/s002800050913] [PMID: 10100595]
[http://dx.doi.org/10.1021/jm970004n] [PMID: 9191970]
[http://dx.doi.org/10.1124/mol.54.1.50] [PMID: 9658189]
[http://dx.doi.org/10.1039/C4GC00013G]
[http://dx.doi.org/10.33263/LIANBS93.13071312]
[http://dx.doi.org/10.1021/acs.joc.2c01403] [PMID: 36184942]
[http://dx.doi.org/10.1021/acsomega.1c07258] [PMID: 35382311]
[http://dx.doi.org/10.1021/acsomega.1c04773] [PMID: 34805701]
[http://dx.doi.org/10.1080/00397911.2019.1619772]
[http://dx.doi.org/10.1080/10406638.2020.1781212]
[http://dx.doi.org/10.1021/acsomega.2c05361] [PMID: 36249391]
[http://dx.doi.org/10.1007/s12039-013-0552-1]
[http://dx.doi.org/10.1007/s11164-014-1787-2]
[http://dx.doi.org/10.1038/s41598-023-27777-z] [PMID: 36717728]
(b) Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq., 2016, 215, 345-386.
[http://dx.doi.org/10.1016/j.molliq.2015.12.015];
(c) Rajawat, A.; Khandelwal, S.; Kumar, M. Deep eutectic solvent promoted efficient and environmentally benign four-component domino protocol for synthesis of spirooxindoles. RSC Advances, 2014, 4(10), 5105-5112.
[http://dx.doi.org/10.1039/c3ra44600j];
(d) Tailor, Y.K.; Khandelwal, S.; Kumari, Y.; Awasthi, K.; Kumar, M. An efficient one pot three-component nanocatalyzed synthesis of spiroheterocycles using TiO 2 nanoparticles as a heterogeneous catalyst. RSC Advances, 2015, 5(57), 46415-46422.
[http://dx.doi.org/10.1039/C5RA04863J];
(e) Tailor, Y.K.; Khandelwal, S.; Verma, K.; Gopal, R.; Kumar, M. Diversity‐oriented synthesis of spirooxindoles using surface‐modified TiO2 nanoparticles as heterogeneous acid catalyst. ChemistrySelect, 2017, 2(21), 5933-5941.
[http://dx.doi.org/10.1002/slct.201700648];
(f) Verma, K.; Tailor, Y.K.; Khandelwal, S.; Agarwal, M.; Rushell, E.; Kumari, Y.; Awasthi, K.; Kumar, M. An efficient and environmentally sustainable domino protocol for the synthesis of structurally diverse spiroannulated pyrimidophenazines using erbium doped TiO2 nanoparticles as a recyclable and reusable heterogeneous acid catalyst. RSC Advances, 2018, 8(53), 30430-30440.
[http://dx.doi.org/10.1039/C8RA04919J] [PMID: 35546857 ];
(g) Verma, A.; Arya, D.K.; Kumar, S.; Pathak, G.; Khatri, V. An efficient three-component synthetic protocol for the synthesis of structurally diverse spiroannulated benzothiazolopyrimidines catalyzed by l-proline in aqueous media. Res. Chem. Intermed., 2023, 49(11), 4865-4877.
[http://dx.doi.org/10.1007/s11164-023-05120-5];
(h) Verma, A.; Kumar, S.; Khatri, V.; Pathak, G.; Arya, D.K. Multicomponent synthesis of spiroannulated hybrid molecules with preferred substructures using indium triflate as a sustainable catalyst. Res. Chem. Intermed., 2023, 50(1), 1-14.
[http://dx.doi.org/10.1007/s11164-023-05177-2]