Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Managing Postharvest Losses of Vegetables and Fruits: A Methodological Review

Author(s): Sourav De, Subhasis Banerjee and Sabyasachi Banerjee*

Volume 15, Issue 2, 2024

Published on: 26 January, 2024

Page: [138 - 162] Pages: 25

DOI: 10.2174/012772574X280698231221203313

Price: $65

conference banner
Abstract

Vegetables and fruits are highly perishable agricultural commodities cultivated all over the world. However, inadequate handling practices have led to significant postharvest losses of these agricultural commodities, as well as the wastage of valuable resources, such as time and money. Hence, it can be observed that cultivators often experience significant financial setbacks as a result of inadequate comprehension regarding the nature and origins of these losses, insufficient preservation practices, and ineffective approaches to transportation and marketing. In addition, the utilization of suitable chemical agents during both the pre- and postharvest phases has the potential to prolong the shelf life of agricultural products. This preservation technique safeguards vegetables and fruits from pathogenic organisms and other forms of environmental harm, thereby enabling their availability for an extended duration. Therefore, this review proposes a methodology for managing fruits and vegetables postharvest to minimize losses and optimize returns.

Keywords: Post-harvest, fruits, vegetables, ionizing radiation, shelf life, heat treatment, wax coating, agricultural commodities.

« Previous
Graphical Abstract
[1]
Yahaya, S.; Fagwalawa, L.; Ali, M.; Lawan, M.; Mahmud, S. Isolation and identification of pathogenic fungi causing deterioration of lettuce plant (Lactuca sativa). A case study of Yankaba and Sharada vegetables markets. J. Plant Sci. Res., 2016, 3.
[2]
Waghmare, G.; Gawade, R.N.; Pavhane, S.B. Chapter-7 Post- Harvest Losses of Fruits. Chief Editor Dr. RK Naresh. , 2022, pp. 92-155.
[3]
Pokhrel, B. Review on post-harvest handling to reduce loss of fruits and vegetables. International Journal of Horticulture and Food Science, 2020, 2(2), 48-52.
[http://dx.doi.org/10.33545/26631067.2020.v2.i2a.52]
[4]
Mustapha, Y.; Yahaya, S. Isolation and identification of post-harvest fungi of tomato (L. esculentum) and pepper (Capsicum annum) sample from selected irrigated sites in Kano. Biological and Environmental Science Journal for the Tropics, 2006, 3, 139-141.
[5]
Paltrinieri, G.; Staff, F. Handling of fresh fruits, vegetables and root crops: A training manual for grenada; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014.
[6]
Sibomana, M.S.; Workneh, T.S.; Audain, K. A review of postharvest handling and losses in the fresh tomato supply chain: A focus on Sub-Saharan Africa. Food Secur., 2016, 8(2), 389-404.
[http://dx.doi.org/10.1007/s12571-016-0562-1]
[7]
Sowley, E.N.K.; Dewey, F.M.; Shaw, M.W. Persistent, symptomless, systemic, and seed-borne infection of lettuce by Botrytis cinerea. Eur. J. Plant Pathol., 2010, 126(1), 61-71.
[http://dx.doi.org/10.1007/s10658-009-9524-1]
[8]
Yahaya, S.; Mardiyya, A. Review of post-harvest losses of fruits and vegetables. Biomed. J. Sci. Tech. Res., 2019, 13, 10192-10200.
[9]
Kromhout, D.; Keys, A.; Aravanis, C.; Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic, S.; Pekkarinen, M. Food consumption patterns in the 1960s in seven countries. Am. J. Clin. Nutr., 1989, 49(5), 889-894.
[http://dx.doi.org/10.1093/ajcn/49.5.889] [PMID: 2718924]
[10]
Opadokun, J. Reduction of post harvest losses in fruits and vegetables. Proceedings of the Joint National Crop Protection Workshop, 1987, pp. 3-26.
[11]
Hayatu, M. Post-Harvest physiological studies of some selected members of family Solanaceae., Unpublished M.Sc. Thesis. Department of Biological Sciences Bayero University: Kano 2000, 2-25.
[12]
Sani, M.; Alao, S. Assessment of post-harvest fungi of Tomato (Lycopersicon esculentum) and Pepper (Capsicum annum) from selected irrigated areas of Kano State. J. Biosci., 2006, 2, 53-56.
[13]
Williams, C.; Uzo, J.; Peregrine, W. Vegetable production in the tropics; Longman Scientific and Technical, 1991.
[14]
Yahaya, S. Contribution of harvest to pathogenic and nonpathogenic losses of vegetables in Kano State, Nigeria., Unpublished, M.Sc Thesis Bayero University Kano, 2005.
[15]
Lobo, M.G. Montero‐Calderón, M. Harvesting and postharvest technology of banana. In: Handbook of banana production, postharvest science, processing technology, and nutrition;; , 2020; pp. 61-80.
[16]
Simmons, S.; Hofman, P.; Hetherington, S. The effects of water stress on mango fruit quality. Proceedings of the Proceedings of Mango 2000 marketing seminar and production workshop, Brisbane, Australia1995, pp. 191-197.
[17]
Garcia-Luis, A.; Agusti, M.; Almela, V.; Romero, E.; Guardiola, J.L. Effect of gibberellic acid on ripening and peel puffing in ‘Satsuma’ mandarin. Sci. Hortic., 1985, 27(1-2), 75-86.
[http://dx.doi.org/10.1016/0304-4238(85)90057-3]
[18]
De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and table grapes: A review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods, 2020, 9(9), 1138.
[http://dx.doi.org/10.3390/foods9091138] [PMID: 32824971]
[19]
Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 2022, 2(1), 100122.
[http://dx.doi.org/10.1016/j.afres.2022.100122]
[20]
Albornoz, K.; Zhou, J.; Yu, J.; Beckles, D.M. Dissecting postharvest chilling injury through biotechnology. Curr. Opin. Biotechnol., 2022, 78, 102790.
[http://dx.doi.org/10.1016/j.copbio.2022.102790] [PMID: 36116331]
[21]
Wike, N.Y.; Olaniyan, O.T.; Adetunji, C.O.; Adetunji, J.B.; Gloria, O.; Dauda, W.P.; Ogundolie, F.A. Key contributors to postharvest losses and the scale of the problem; Evaporative Coolers for the Postharvest Management of Fruits and Vegetables, 2023, pp. 1-15.
[http://dx.doi.org/10.1016/B978-0-323-89864-5.00026-6]
[22]
Cho, J.J. Winter diseases of lettuce, 1986.
[23]
Al-Selwey, W.; Alsadon, A.; Al-Doss, A.; Solieman, T.; Dewir, Y.; Ibrahim, A. Effect of deficit irrigation on total yield, fruit physical characteristics and nutritional value in four drought tolerant tomato (Solanum lycopersicum L.) genotypes. J. Agric. Sci. Technol., 2021, 23, 1105-1118.
[24]
Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol., 2017, 62, 119-132.
[http://dx.doi.org/10.1016/j.tifs.2017.02.017]
[25]
Quastel, J.H.; Hewitt, E.J.; Nicholas, D.J.D. The control of manganese deficiency in soils: I. The effects of sulphur and thiosulphates on crops growing on manganese-deficient soils. J. Agric. Sci., 1948, 38(3), 315-322.
[http://dx.doi.org/10.1017/S0021859600006092]
[26]
Gibbs, M.; Steele, P. Post harvest technology of horticultural crops; Scientific e-Resources, 2018.
[27]
Lambert, P.A. Radiation sterilization. Principles and Practice of Disinfection, Preservation and Sterilization; Wiley-Blackwell: Oxford, United Kingdom, 2013, p. 294.
[28]
Malik, A.U.; Amin, M.; Jabbar, A.; Saleem, B. Packaging material and ripening methods affect mango fruit quality. Int. J. Agric. Biol., 2008, 10, 35-41.
[29]
Kader, A.A. Postharvest technology of horticultural crops; University of California Agriculture and Natural Resources, 2002, Vol. 3311, .
[30]
Liu, F. Storage systems for horticultural crops. Proceedings of the Memorias Simposio Nacional Fisiologia y Tecnologia Postcosecha de Productos Horticolas en Mexico, 1991, pp. 241-247.
[31]
Kitinoja, L. Use of cold chains for reducing food losses in developing countries. Population, 2013, 6, 5-60.
[32]
Prasad, K. Postharvest quality assurance of fruits: Practical approaches for developing countries. Postharvest Biology and Technology of Horticultural Crops; CRC Press: Boca Raton, 2015, pp. 1-50.
[33]
Yahia, E.M. Mango (Mangifera indica L.).Postharvest biology and technology of tropical and subtropical fruits; Elsevier, 2011, pp. 492-567e.
[http://dx.doi.org/10.1533/9780857092885.492]
[34]
Technology, I.I. Hand Book of Grape Pulp Processing; Ministry of Food Processing Industries, Government of India: Tamil Nadu, India, 2019.
[35]
Watada, A.E.; Qi, L. Quality of fresh-cut produce. Postharvest Biol. Technol., 1999, 15(3), 201-205.
[http://dx.doi.org/10.1016/S0925-5214(98)00085-4]
[36]
Hofman, P.; Bower, J.; Woolf, A. Harvesting, packing, postharvest technology, transport and processing.The avocado: botany, production and uses; CABI Wallingford UK, 2013, pp. 489-540.
[http://dx.doi.org/10.1079/9781845937010.0489]
[37]
Rahman, M.S.; Velez-Ruiz, J.F. Food preservation by freezing.Handbook of food preservation; CRC press, 2007, pp. 653-684.
[http://dx.doi.org/10.1201/9781420017373-35]
[38]
Ben-Yehoshua, S.; Beaudry, R.M.; Fishman, S.; Jayanty, S.; Mir, N. Modified atmosphere packaging and controlled atmosphere storage. Environmentally friendly technologies for agricultural produce quality. Ben-Yehoshua, S;; Ed. Taylor and Francis Group LLC: Boca Raton, FL, USA, 2005, pp. 51-73.
[39]
Eckert, J.W.; Sommer, N.F. Control of diseases of fruits and vegetables by postharvest treatment. Annu. Rev. Phytopathol., 1967, 5(1), 391-428.
[http://dx.doi.org/10.1146/annurev.py.05.090167.002135]
[40]
Ippolito, A.; Lattanzio, V.; Nigro, F.; Di Venere, D.; Lima, G.; Castellano, M.; Salerno, M. Improvement of kiwifruit resistance to Botrytis storage rot by curing. Phytopathol. Mediterr., 1994, 132-136.
[41]
Sommer, N.F. Role of controlled environments in suppression of postharvest diseases. Can. J. Plant Pathol., 1985, 7(3), 331-339.
[http://dx.doi.org/10.1080/07060668509501700]
[42]
Barkai-Golan, R. Postharvest diseases of fruits and vegetables: Development and control; Elsevier, 2001.
[43]
Reeves, M. Prevention of post-harvest food losses: A training manual; Food & Agriculture Org, 1985.
[44]
Kader, A.A. Increasing food availability by reducing postharvest losses of fresh produce. Proceedings of the V International Postharvest Symposium, 6822004, pp. 2169-2176.
[45]
Kimaro, E.; Msogoya, T.; Municipality, T.; Salaam-Tanzania, D.E. Postharvest losses of mangro fruit (Mangifera indica) in Morogoro Region. Proceedings of the Proceedings of the RUFORUM 3rd Biennial Conference, Entebbe, Uganda2012, pp. 24-28.
[46]
Agona, A.; Muyinza, H. An overview of horticulture in Uganda; Postharvest Programme NARO Uganda, 2008.
[47]
Kang, S-C.; Kim, M-J.; Choi, U-K. Shelf-life extension of fresh-cut iceberg lettuce (Lactuca sativa L) by different antimicrobial films. J. Microbiol. Biotechnol., 2007, 17(8), 1284-1290.
[PMID: 18051596]
[48]
Rodov, V. Ben‐Yehoshua, S.; Aharoni, N.; Cohen, S. Modified humidity packaging of fresh produce. Hortic. Rev. (Am. Soc. Hortic. Sci.), 2010, 37, 281-329.
[49]
Jacobi, K.K.; MacRae, E.A.; Hetherington, S.E. Postharvest heat disinfestation treatments of mango fruit. Sci. Hortic., 2001, 89(3), 171-193.
[http://dx.doi.org/10.1016/S0304-4238(00)00240-5]
[50]
Sivakumar, D.; Fallik, E. Influence of heat treatments on quality retention of fresh and fresh-cut produce. Food Rev. Int., 2013, 29(3), 294-320.
[http://dx.doi.org/10.1080/87559129.2013.790048]
[51]
Lay-Yee, M.; Ball, S.; Forbes, S.K.; Woolf, A.B. Hot-water treatment for insect disinfestation and reduction of chilling injury of ‘Fuyu’ persimmon. Postharvest Biol. Technol., 1997, 10(1), 81-87.
[http://dx.doi.org/10.1016/S0925-5214(97)87277-8]
[52]
Feng, X.; Hansen, J.D.; Biasi, B.; Tang, J.; Mitcham, E.J. Use of hot water treatment to control codling moths in harvested California ‘Bing’ sweet cherries. Postharvest Biol. Technol., 2004, 31(1), 41-49.
[http://dx.doi.org/10.1016/S0925-5214(03)00139-X]
[53]
Fallik, E. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biol. Technol., 2004, 32(2), 125-134.
[http://dx.doi.org/10.1016/j.postharvbio.2003.10.005]
[54]
Hofman, P.J.; Stubbings, B.A.; Adkins, M.F.; Meiburg, G.F.; Woolf, A.B. Hot water treatments improve ‘Hass’ avocado fruit quality after cold disinfestation. Postharvest Biol. Technol., 2002, 24(2), 183-192.
[http://dx.doi.org/10.1016/S0925-5214(01)00131-4]
[55]
Fallik, E.; Grinberg, S.; Alkalai, S.; Yekutieli, O.; Wiseblum, A.; Regev, R.; Beres, H.; Bar-Lev, E. A unique rapid hot water treatment to improve storage quality of sweet pepper. Postharvest Biol. Technol., 1999, 15(1), 25-32.
[http://dx.doi.org/10.1016/S0925-5214(98)00066-0]
[56]
Alvindia, D.G.; Acda, M.A. Revisiting the efficacy of hot water treatment in managing anthracnose and stem-end rot diseases of mango cv. ‘Carabao’. Crop Prot., 2015, 67, 96-101.
[http://dx.doi.org/10.1016/j.cropro.2014.09.016]
[57]
Bompeix, G.; Coureau, C. Practical use of thermotherapy against apple parasitic disorders. Proceedings of the International Congress, Bologna, Italy2007, pp. 149-155.
[58]
Maxin, P.; Weber, R.W.S.; Pedersen, H.L.; Williams, M. Control of a wide range of storage rots in naturally infected apples by hot-water dipping and rinsing. Postharvest Biol. Technol., 2012, 70, 25-31.
[http://dx.doi.org/10.1016/j.postharvbio.2012.04.001]
[59]
Spadoni, A.; Neri, F.; Bertolini, P.; Mari, M. Control of Monilinia rots on fruit naturally infected by hot water treatment in commercial trials. Postharvest Biol. Technol., 2013, 86, 280-284.
[http://dx.doi.org/10.1016/j.postharvbio.2013.07.011]
[60]
Vigneault, C.; Leblanc, D.I.; Goyette, B.; Jenni, S. Invited review: Engineering aspects of physical treatments to increase fruit and vegetable phytochemical content. Can. J. Plant Sci., 2012, 92(3), 373-397.
[http://dx.doi.org/10.4141/cjps2011-222]
[61]
Casals, C.; Teixidó, N.; Viñas, I.; Silvera, E.; Lamarca, N.; Usall, J. Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to control postharvest brown rot on peaches and nectarines. Eur. J. Plant Pathol., 2010, 128(1), 51-63.
[http://dx.doi.org/10.1007/s10658-010-9628-7]
[62]
Karabulut, O.A.; Smilanick, J.L.; Crisosto, C.H.; Palou, L. Control of brown rot of stone fruits by brief heated water immersion treatments. Crop Prot., 2010, 29(8), 903-906.
[http://dx.doi.org/10.1016/j.cropro.2010.03.010]
[63]
Spadoni, A.; Guidarelli, M.; Sanzani, S.M.; Ippolito, A.; Mari, M. Influence of hot water treatment on brown rot of peach and rapid fruit response to heat stress. Postharvest Biol. Technol., 2014, 94, 66-73.
[http://dx.doi.org/10.1016/j.postharvbio.2014.03.006]
[64]
Neri, F.; Mari, M.; Brigati, S.; Bertolini, P. Control of Neofabraea alba by plant volatile compounds and hot water. Postharvest Biol. Technol., 2009, 51(3), 425-430.
[http://dx.doi.org/10.1016/j.postharvbio.2008.08.006]
[65]
Spadoni, A.; Guidarelli, M.; Phillips, J.; Mari, M.; Wisniewski, M. Transcriptional profiling of apple fruit in response to heat treatment: Involvement of a defense response during Penicillium expansum infection. Postharvest Biol. Technol., 2015, 101, 37-48.
[http://dx.doi.org/10.1016/j.postharvbio.2014.10.009]
[66]
Margosan, D.A.; Smilanick, J.L.; Simmons, G.F.; Henson, D.J. Combination of hot water and ethanol to control postharvest decay of peaches and nectarines. Plant Dis., 1997, 81(12), 1405-1409.
[http://dx.doi.org/10.1094/PDIS.1997.81.12.1405] [PMID: 30861793]
[67]
Porat, R.; Daus, A.; Weiss, B.; Cohen, L.; Fallik, E.; Droby, S. Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment. Postharvest Biol. Technol., 2000, 18(2), 151-157.
[http://dx.doi.org/10.1016/S0925-5214(99)00065-4]
[68]
Palou, L.; Smilanick, J.L.; Usall, J.; Viñas, I. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Dis., 2001, 85(4), 371-376.
[http://dx.doi.org/10.1094/PDIS.2001.85.4.371] [PMID: 30831968]
[69]
Zhang, H.; Wang, S.; Huang, X.; Dong, Y.; Zheng, X. Integrated control of postharvest blue mold decay of pears with hot water treatment and Rhodotorula glutinis. Postharvest Biol. Technol., 2008, 49(2), 308-313.
[http://dx.doi.org/10.1016/j.postharvbio.2008.01.004]
[70]
Schirra, M.; D’Aquino, S.; Cabras, P.; Angioni, A. Control of postharvest diseases of fruit by heat and fungicides: Efficacy, residue levels, and residue persistence. A review. J. Agric. Food Chem., 2011, 59(16), 8531-8542.
[http://dx.doi.org/10.1021/jf201899t] [PMID: 21755982]
[71]
Karabulut, O.A.; Cohen, L.; Wiess, B.; Daus, A.; Lurie, S.; Droby, S. Control of brown rot and blue mold of peach and nectarine by short hot water brushing and yeast antagonists. Postharvest Biol. Technol., 2002, 24(2), 103-111.
[http://dx.doi.org/10.1016/S0925-5214(01)00132-6]
[72]
Barkai-Golan, R. Postharvest heat treatment to control Alternaria tenuis Auct. rot in tomato. Phytopathol. Mediterr., 1973.
[73]
El-Ramady, H.R.; Domokos-Szabolcsy, É.; Abdalla, N.A.; Taha, H.S.; Fári, M. Postharvest management of fruits and vegetables storage. Sustain. Agric. Res., 2015, 15, 65-152.
[74]
Maxin, P. Improving apple quality by hot water treatment; Aarhus University, Department of Agroecology, 2012.
[75]
Spadoni, A.; Cappellin, L.; Neri, F.; Algarra Alarcon, A.; Romano, A.; Guidarelli, M.; Gasperi, F.; Biasioli, F.; Mari, M. Effect of hot water treatment on peach volatile emission and Monilinia fructicola development. Plant Pathol., 2015, 64(5), 1120-1129.
[http://dx.doi.org/10.1111/ppa.12353]
[76]
Ben-Yehoshua, S.; Porat, R. Heat treatments to reduce decay; Environmentally Friendly Technologies of Agricultural Produce Quality, 2005, pp. 11-42.
[77]
Hopkins, E.; Loucks, K.W. A curing procedure for the reduction of mold decay in citrus fruits; Florida Agriculture Experiment Station Bulletin, 1948.
[78]
Stange, R.R., Jr; Eckert, J. Influence of postharvest handling and surfactants on control of green mold of lemons by curing. Phytopathology, 1994, 84(6), 612-616.
[http://dx.doi.org/10.1094/Phyto-84-612]
[79]
Plaza, P.; Usall, J.; Torres, R.; Lamarca, N.; Asensio, À.; Viñas, I. Control of green and blue mould by curing on oranges during ambient and cold storage. Postharvest Biol. Technol., 2003, 28(1), 195-198.
[http://dx.doi.org/10.1016/S0925-5214(02)00127-8]
[80]
Plaza, P.; Usall, J.; Smilanick, J.L.; Lamarca, N.; Viñas, I. Combining Pantoea agglomerans (CPA-2) and curing treatments to control established infections of Penicillium digitatum on lemons. J. Food Prot., 2004, 67(4), 781-786.
[http://dx.doi.org/10.4315/0362-028X-67.4.781] [PMID: 15083731]
[81]
Pérez, A.G.; Luaces, P.; Olmo, M.; Sanz, C.; García, J.M. Effect of intermittent curing on mandarin quality. J. Food Sci., 2005, 70(1), M64-M68.
[http://dx.doi.org/10.1111/j.1365-2621.2005.tb09048.x]
[82]
Nunes, C.; Usall, J.; Manso, T.; Torres, R.; Olmo, M.; García, J.M. Effect of high temperature treatments on growth of Penicillium spp. and their development on ‘Valencia’oranges. Food Sci. Technol. Int., 2007, 13(1), 63-68.
[http://dx.doi.org/10.1177/1082013207075601]
[83]
Plaza, P.; Usall, J.; Torres, R.; Abadias, M.; Smilanick, J.L.; Viñas, I. The use of sodium carbonate to improve curing treatments against green and blue moulds on citrus fruits. Pest Manag. Sci., 2004, 60(8), 815-821.
[http://dx.doi.org/10.1002/ps.880] [PMID: 15307674]
[84]
Venditti, T.; Dore, A.; Molinu, M.G.; Agabbio, M.; D’hallewin, G. Combined effect of curing followed by acetic acid vapour treatments improves postharvest control of Penicillium digitatum on mandarins. Postharvest Biol. Technol., 2009, 54(2), 111-114.
[http://dx.doi.org/10.1016/j.postharvbio.2009.06.002]
[85]
Montesinos-Herrero, C.; del Río, M.Á.; Rojas-Argudo, C.; Palou, L. Short exposure to high CO2 and O2 at curing temperature to control postharvest diseases of citrus fruit. Plant Dis., 2012, 96(3), 423-430.
[http://dx.doi.org/10.1094/PDIS-07-11-0595] [PMID: 30727139]
[86]
Porritt, S.W.; Lidster, P.D. The effect of pre-storage heating on ripening and senescence of apples during cold storage1. J. Am. Soc. Hortic. Sci., 1978, 103(5), 584-587.
[http://dx.doi.org/10.21273/JASHS.103.5.584]
[87]
Leverentz, B.; Janisiewicz, W.J.; Conway, W.S.; Saftner, R.A.; Fuchs, Y.; Sams, C.E.; Camp, M.J. Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of ‘Gala’ apples. Postharvest Biol. Technol., 2000, 21(1), 87-94.
[http://dx.doi.org/10.1016/S0925-5214(00)00167-8]
[88]
Shao, X.F.; Tu, K.; Zhao, Y.Z.; Chen, L.; Chen, Y.Y.; Wang, H. Effects of pre-storage heat treatment on fruit ripening and decay development in different apple cultivars. J. Hortic. Sci. Biotechnol., 2007, 82(2), 297-303.
[http://dx.doi.org/10.1080/14620316.2007.11512232]
[89]
Janisiewicz, W.J.; Leverentz, B.; Conway, W.S.; Saftner, R.A.; Reed, A.N.; Camp, M.J. Control of bitter rot and blue mold of apples by integrating heat and antagonist treatments on 1-MCP treated fruit stored under controlled atmosphere conditions. Postharvest Biol. Technol., 2003, 29(2), 129-143.
[http://dx.doi.org/10.1016/S0925-5214(03)00040-1]
[90]
Conway, W.S.; Leverentz, B.; Janisiewicz, W.J.; Blodgett, A.B.; Saftner, R.A.; Camp, M.J. Integrating heat treatment, biocontrol and sodium bicarbonate to reduce postharvest decay of apple caused by Colletotrichum acutatum and Penicillium expansum. Postharvest Biol. Technol., 2004, 34(1), 11-20.
[http://dx.doi.org/10.1016/j.postharvbio.2004.05.011]
[91]
Shao, X.F.; Tu, K.; Tu, S.; Tu, J. A combination of heat treatment and chitosan coating delays ripening and reduces decay in “Gala” apple fruit. J. Food Qual., 2012, 35(2), 83-92.
[http://dx.doi.org/10.1111/j.1745-4557.2011.00429.x]
[92]
Casals, C.; Teixidó, N.; Viñas, I.; Cambray, J.; Usall, J. Control of Monilinia spp. on stone fruit by curing treatments. Part II: The effect of host and Monilinia spp. variables on curing efficacy. Postharvest Biol. Technol., 2010, 56(1), 26-30.
[http://dx.doi.org/10.1016/j.postharvbio.2009.11.009]
[93]
Casals, C.; Teixidó, N.; Viñas, I.; Llauradó, S.; Usall, J. Control of Monilinia spp. on stone fruit by curing treatments. Postharvest Biol. Technol., 2010, 56(1), 19-25.
[http://dx.doi.org/10.1016/j.postharvbio.2009.11.008]
[94]
Casals, C.; Elmer, P.A.G.; Viñas, I.; Teixidó, N.; Sisquella, M.; Usall, J. The combination of curing with either chitosan or Bacillus subtilis CPA-8 to control brown rot infections caused by Monilinia fructicola. Postharvest Biol. Technol., 2012, 64(1), 126-132.
[http://dx.doi.org/10.1016/j.postharvbio.2011.06.004]
[95]
Zhang, H.; Wang, L.; Zheng, X.; Dong, Y. Effect of yeast antagonist in combination with heat treatment on postharvest blue mold decay and Rhizopus decay of peaches. Int. J. Food Microbiol., 2007, 115(1), 53-58.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.10.002] [PMID: 17140691]
[96]
Amer, M.A.; El-Abd, S.M.; Mansour, F.G. Enzyme activity and effect of heat treatment on some fungal diseases of postharvest tomato fruits. Commun. Agric. Appl. Biol. Sci., 2013, 78(3), 585-598.
[PMID: 25151835]
[97]
Zhao, Y.; Tu, K.; Tu, S.; Liu, M.; Su, J.; Hou, Y. A combination of heat treatment and Pichia guilliermondii prevents cherry tomato spoilage by fungi. Int. J. Food Microbiol., 2010, 137(1), 106-110.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.11.002] [PMID: 19923029]
[98]
Ketsa, S.; Chidtragool, S.; Lurie, S. Preharvest heat treatment and poststorage quality of mango fruit. HortScience, 2000, 35(2), 247-249.
[http://dx.doi.org/10.21273/HORTSCI.35.2.247]
[99]
Mansour, F.; Abd-El-Aziz, S.; Helal, G. Effect of fruit heat treatment in three mango varieties on incidence of postharvest fungal disease. J. Plant Pathol., 2006, 141-148.
[100]
Nishijima, K.; Miura, C.; Armstrong, J.; Brown, S.; Hu, B. Effect of forced, hot-air treatment of papaya fruit on fruit quality and incidence of postharvest diseases. Plant Dis., 1992, 76(7), 723-727.
[http://dx.doi.org/10.1094/PD-76-0723]
[101]
Pérez-Carrillo, E.; Yahia, E.M. Effect of postharvest hot air and fungicide treatments on the quality of ‘Maradol’papaya (Carica papaya L.). J. Food Qual., 2004, 27(2), 127-139.
[http://dx.doi.org/10.1111/j.1745-4557.2004.tb00643.x]
[102]
Marra, F.; Zhang, L.; Lyng, J.G. Radio frequency treatment of foods: Review of recent advances. J. Food Eng., 2009, 91(4), 497-508.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.10.015]
[103]
Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing-a review. Food Res. Int., 2013, 52(1), 243-261.
[http://dx.doi.org/10.1016/j.foodres.2013.02.033]
[104]
Casals, C.; Viñas, I.; Landl, A.; Picouet, P.; Torres, R.; Usall, J. Application of radio frequency heating to control brown rot on peaches and nectarines. Postharvest Biol. Technol., 2010, 58(3), 218-224.
[http://dx.doi.org/10.1016/j.postharvbio.2010.07.003]
[105]
Sisquella, M.; Viñas, I.; Picouet, P.; Torres, R.; Usall, J. Effect of host and Monilinia spp. variables on the efficacy of radio frequency treatment on peaches. Postharvest Biol. Technol., 2014, 87, 6-12.
[http://dx.doi.org/10.1016/j.postharvbio.2013.07.042]
[106]
Sisquella, M.; Casals, C.; Picouet, P.; Viñas, I.; Torres, R.; Usall, J. Immersion of fruit in water to improve radio frequency treatment to control brown rot in stone fruit. Postharvest Biol. Technol., 2013, 80, 31-36.
[http://dx.doi.org/10.1016/j.postharvbio.2013.01.010]
[107]
Zhang, H.; Fu, C.; Zheng, X.; Xi, Y.; Jiang, W.; Wang, Y. Control of postharvest Rhizopus rot of peach by microwave treatment and yeast antagonist. Eur. Food Res. Technol., 2004, 218(6), 568-572.
[http://dx.doi.org/10.1007/s00217-004-0902-9]
[108]
Zhang, H.; Zheng, X.; Su, D. Postharvest control of blue mold rot of pear by microwave treatment and Cryptococcus laurentii. J. Food Eng., 2006, 77(3), 539-544.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.06.066]
[109]
Sisquella, M.; Viñas, I.; Teixidó, N.; Picouet, P.; Usall, J. Continuous microwave treatment to control postharvest brown rot in stone fruit. Postharvest Biol. Technol., 2013, 86, 1-7.
[http://dx.doi.org/10.1016/j.postharvbio.2013.06.012]
[110]
Sisquella, M.; Picouet, P.; Viñas, I.; Teixidó, N.; Segarra, J.; Usall, J. Improvement of microwave treatment with immersion of fruit in water to control brown rot in stone fruit. Innov. Food Sci. Emerg. Technol., 2014, 26, 168-175.
[http://dx.doi.org/10.1016/j.ifset.2014.06.010]
[111]
Guan, D.; Plotka, V.C.F.; Clark, S.; Tang, J. Sensory evaluation of microwave treated macaroni and cheese. J. Food Process. Preserv., 2002, 26(5), 307-322.
[http://dx.doi.org/10.1111/j.1745-4549.2002.tb00487.x]
[112]
Tang, J.; Ikediala, J.N.; Wang, S.; Hansen, J.D.; Cavalieri, R.P. High-temperature-short-time thermal quarantine methods. Postharvest Biol. Technol., 2000, 21(1), 129-145.
[http://dx.doi.org/10.1016/S0925-5214(00)00171-X]
[113]
Phillips, D. Postharvest heat treatment of fresh fruits and vegetables for decay control. Plant Dis., 1991.
[114]
Couey, H.M.; Alvarez, A.; Nelson, M. Comparison of hot-water spray and immersion treatments for control of postharvest decay of papaya. Plant Dis., 1984, 68(5), 436-437.
[http://dx.doi.org/10.1094/PD-69-436]
[115]
Alvindia, D.G. Revisiting hot water treatments in controlling crown rot of banana cv. Buñgulan. Crop Prot., 2012, 33, 59-64.
[http://dx.doi.org/10.1016/j.cropro.2011.09.023]
[116]
Michailides, T.J.; Ogawa, J.M. Effects of high temperatures on the survival and pathogenicity of propagules of Mucor piriformis. Phytopathology, 1989, 79(5), 547-554.
[http://dx.doi.org/10.1094/Phyto-79-547]
[117]
Fallik, E.; Aharoni, Y.; Copel, A.; Rodov, V.; Tuvia-Alkalai, S.; Horev, B.; Yekutieli, O.; Wiseblum, A.; Regev, R. Reduction of postharvest losses of Galia melon by a short hot-water rinse. Plant Pathol., 2000, 49(3), 333-338.
[http://dx.doi.org/10.1046/j.1365-3059.2000.00467.x]
[118]
Lurie, S.; Pedreschi, R. Fundamental aspects of postharvest heat treatments. Hortic. Res., 2014, 1, 14030.
[http://dx.doi.org/10.1038/hortres.2014.30] [PMID: 26504541]
[119]
Pavoncello, D.; Lurie, S.; Droby, S.; Porat, R. A hot water treatment induces resistance to Penicillium digitatum and promotes the accumulation of heat shock and pathogenesis-related proteins in grapefruit flavedo. Physiol. Plant., 2001, 111(1), 17-22.
[http://dx.doi.org/10.1034/j.1399-3054.2001.1110103.x]
[120]
Wang, H.; Zhang, Z.; Xu, L.; Huang, X.; Pang, X. The effect of delay between heat treatment and cold storage on alleviation of chilling injury in banana fruit. J. Sci. Food Agric., 2012, 92(13), 2624-2629.
[http://dx.doi.org/10.1002/jsfa.5676] [PMID: 22495636]
[121]
Aghdam, M.S.; Sevillano, L.; Flores, F.B.; Bodbodak, S. Heat shock proteins as biochemical markers for postharvest chilling stress in fruits and vegetables. Sci. Hortic., 2013, 160, 54-64.
[http://dx.doi.org/10.1016/j.scienta.2013.05.020]
[122]
Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Tian, S.; Norelli, J.; Hershkovitz, V. Effect of heat treatment on inhibition of Monilinia fructicola and induction of disease resistance in peach fruit. Postharvest Biol. Technol., 2012, 65, 61-68.
[http://dx.doi.org/10.1016/j.postharvbio.2011.11.002]
[123]
Sripong, K.; Jitareerat, P.; Tsuyumu, S.; Uthairatanakij, A.; Srilaong, V.; Wongs-Aree, C.; Ma, G.; Zhang, L.; Kato, M. Combined treatment with hot water and UV-C elicits disease resistance against anthracnose and improves the quality of harvested mangoes. Crop Prot., 2015, 77, 1-8.
[http://dx.doi.org/10.1016/j.cropro.2015.07.004]
[124]
Lurie, S. Heat treatment for enhancing postharvest quality; Postharvest Biology and Technology of Fruits, Vegetables, and Flowers, 2008, pp. 246-259.
[125]
Romanazzi, G.; Nigro, F.; Ippolito, A.; Salerno, M. Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biol. Technol., 2001, 22(1), 1-6.
[http://dx.doi.org/10.1016/S0925-5214(00)00188-5]
[126]
Goyette, B.; Charles, M.T.; Vigneault, C.; Raghavan, G.V. Pressure treatment for increasing fruit and vegetable qualities. Stewart Postharvest Rev., 2007, 3, 1-6.
[127]
Burg, S.P.; Burg, E.A. Fruit storage at subatmospheric pressures. Science, 1966, 153(3733), 314-315.
[http://dx.doi.org/10.1126/science.153.3733.314] [PMID: 17780008]
[128]
Hashmi, M.S.; East, A.R.; Palmer, J.S.; Heyes, J.A. Pre-storage hypobaric treatments delay fungal decay of strawberries. Postharvest Biol. Technol., 2013, 77, 75-79.
[http://dx.doi.org/10.1016/j.postharvbio.2012.11.008]
[129]
Hashmi, M.S.; East, A.R.; Palmer, J.S.; Heyes, J.A. Hypobaric treatment stimulates defence-related enzymes in strawberry. Postharvest Biol. Technol., 2013, 85, 77-82.
[http://dx.doi.org/10.1016/j.postharvbio.2013.05.002]
[130]
Romanazzi, G.; Nigro, F.; Ippolito, A. Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biol. Technol., 2003, 29(1), 73-80.
[http://dx.doi.org/10.1016/S0925-5214(02)00239-9]
[131]
Hashmi, M.; East, A.; Palmer, J.; Heyes, J. Hypobaric treatment reduces fungal rots in blueberries. Proceedings of the VII International Postharvest Symposium, 2012, pp. 609-614.
[132]
Apelbaum, A.; Barkai-Golan, R. Spore germination and mycelial growth of postharvest pathogens under hypobaric pressure. Phytopathology, 1977, 77(3), 400-403.
[http://dx.doi.org/10.1094/Phyto-67-400]
[133]
Burg, S.P. Postharvest physiology and hypobaric storage of fresh produce; Cabi, 2004.
[http://dx.doi.org/10.1079/9780851998015.0000]
[134]
Thompson, A.K. Fruit and vegetable storage: Hypobaric, hyperbaric and controlled atmosphere; Springer, 2015.
[135]
Romanazzi, G.; Nigro, F.; Ippolito, A. Effectiveness of a short hyperbaric treatment to control postharvest decay of sweet cherries and table grapes. Postharvest Biol. Technol., 2008, 49(3), 440-442.
[http://dx.doi.org/10.1016/j.postharvbio.2008.01.021]
[136]
Spalding, D.H.; Reeder, W.F. Low Pressure (Hypobaric) Storage of Mangos1. J. Am. Soc. Hortic. Sci., 1977, 102(3), 367-369.
[http://dx.doi.org/10.21273/JASHS.102.3.367]
[137]
Tovar, B.; Montalvo, E.; Damián, B.M.; García, H.S.; Mata, M. Application of vacuum and exogenous ethylene on Ataulfo mango ripening. Lebensm. Wiss. Technol., 2011, 44(10), 2040-2046.
[http://dx.doi.org/10.1016/j.lwt.2011.06.005]
[138]
Wang, J.; You, Y.; Chen, W.; Xu, Q.; Wang, J.; Liu, Y.; Song, L.; Wu, J. Optimal hypobaric treatment delays ripening of honey peach fruit via increasing endogenous energy status and enhancing antioxidant defence systems during storage. Postharvest Biol. Technol., 2015, 101, 1-9.
[http://dx.doi.org/10.1016/j.postharvbio.2014.11.004]
[139]
Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol., 2016, 113, 69-76.
[http://dx.doi.org/10.1016/j.postharvbio.2015.11.003]
[140]
Luckey, T.D. Hormesis with ionizing radiation; CRC press, 2019.
[http://dx.doi.org/10.1201/9780429276552]
[141]
Mercier, J.; Baka, M.; Reddy, B.; Corcuff, R.; Arul, J. Shortwave ultraviolet irradiation for control of decay caused by Botrytis cinerea in bell pepper: induced resistance and germicidal effects. J. Am. Soc. Hortic. Sci., 2001, 126(1), 128-133.
[http://dx.doi.org/10.21273/JASHS.126.1.128]
[142]
Nigro, F.; Ippolito, A.; Lattanzio, V.; Di Venere, D.; Salerno, M. UV-C irradiation in preventing botrytis storage rot of strawberry, table grapes and kiwifruit.) Non Conventional Methods for the Control of Postharvest Disease and Microbiological Science;, 1998, 26, 209-214.
[143]
Nigro, F.; Ippolito, A.; Lima, G. Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biol. Technol., 1998, 13(3), 171-181.
[http://dx.doi.org/10.1016/S0925-5214(98)00009-X]
[144]
Mercier, J.; Arul, J.; Julien, C. Effect of UV-C on phytoalexin accumulation and resistance to Botrytis cinerea in stored carrots. J. Phytopathol., 1993, 139(1), 17-25.
[http://dx.doi.org/10.1111/j.1439-0434.1993.tb01397.x]
[145]
Lu, J.Y.; Stevens, C.; Khan, V.A.; Kabwe, M.; Wilson, C.L. The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. J. Food Qual., 1991, 14(4), 299-305.
[http://dx.doi.org/10.1111/j.1745-4557.1991.tb00070.x]
[146]
Stevens, C.; Khan, V.A.; Tang, A.Y.; Lu, J.Y. The effect of ultraviolet radiation on mold rots and nutrients of stored sweet potatoes. J. Food Prot., 1990, 53(3), 223-226.
[http://dx.doi.org/10.4315/0362-028X-53.3.223] [PMID: 31018398]
[147]
Droby, S.; Chalutz, E.; Horev, B.; Cohen, L.; Gaba, V.; Wilson, C.L.; Wisniewski, M. Factors affecting UV-induced resistance in grapefruit against the green mould decay caused by Penicillium digitatum. Plant Pathol., 1993, 42(3), 418-424.
[http://dx.doi.org/10.1111/j.1365-3059.1993.tb01520.x]
[148]
Liu, C.; Cai, L.; Lu, X.; Han, X.; Ying, T. Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. J. Integr. Agric., 2012, 11(1), 159-165.
[http://dx.doi.org/10.1016/S1671-2927(12)60794-9]
[149]
Nigro, F.; Ippolito, A.; Lattanzio, V.; Di Venere, D.; Salerno, M. Effect of ultraviolet-C light on postharvest decay of strawberry. J. Plant Pathol., 2000, 29-37.
[150]
Ouhibi, C.; Attia, H.; Nicot, P.; Urban, L.; Lachaâl, M.; Aarrouf, J. Effect of UV -C radiation on resistance of Romaine Lettuce (Lactuca sativa L.) Against Botrytis cinerea and Sclerotinia minor. J. Phytopathol., 2015, 163(7-8), 578-582.
[http://dx.doi.org/10.1111/jph.12357]
[151]
Rocha, A.B.O.; Honório, S.L.; Messias, C.L.; Otón, M.; Gómez, P.A. Effect of UV-C radiation and fluorescent light to control postharvest soft rot in potato seed tubers. Sci. Hortic., 2015, 181, 174-181.
[http://dx.doi.org/10.1016/j.scienta.2014.10.045]
[152]
Guan, W.; Fan, X.; Yan, R. Effects of UV-C treatment on inactivation of Escherichia coli O157:H7, microbial loads, and quality of button mushrooms. Postharvest Biol. Technol., 2012, 64(1), 119-125.
[http://dx.doi.org/10.1016/j.postharvbio.2011.05.017]
[153]
Xie, Z.; Charles, M.T.; Fan, J.; Charlebois, D.; Khanizadeh, S.; Rolland, D.; Roussel, D.; Deschênes, M.; Dubé, C. Effects of preharvest ultraviolet-C irradiation on fruit phytochemical profiles and antioxidant capacity in three strawberry (Fragaria × ananassa Duch.) cultivars. J. Sci. Food Agric., 2015, 95(14), 2996-3002.
[http://dx.doi.org/10.1002/jsfa.7064] [PMID: 25546470]
[154]
Aguirre-Joya, J.A.; Álvarez, B.; Ventura, J.M.; García-Galindo, J.O.; De León-Zapata, M.A.; Rojas, R.; Saucedo, S.; Aguilar, C.N. Edible coatings and films from lipids, waxes, and resins. Edible Food Packaging: materials and processing technologies, 2016, 121-152.
[155]
Chalutz, E.; Droby, S.; Wilson, C.L.; Wisniewski, M.E. UV-induced resistance to postharvest diseases of citrus fruit. J. Photochem. Photobiol. B, 1992, 15(4), 367-371.
[http://dx.doi.org/10.1016/1011-1344(92)85143-I]
[156]
Nawrocka, J. Małolepsza, U. Diversity in plant systemic resistance induced by Trichoderma. Biol. Control, 2013, 67(2), 149-156.
[http://dx.doi.org/10.1016/j.biocontrol.2013.07.005]
[157]
Wang, J.; Bi, Y.; Wang, Y.; Deng, J.; Zhang, H.; Zhang, Z. Multiple preharvest treatments with harpin reduce postharvest disease and maintain quality in muskmelon fruit (cv. Huanghemi). Phytoparasitica, 2014, 42(2), 155-163.
[http://dx.doi.org/10.1007/s12600-013-0351-8]
[158]
Lucon, C.M.M.; Guzzo, S.D.; de Jesus, C.O.; Pascholati, S.F.; de Goes, A. Postharvest harpin or Bacillus thuringiensis treatments suppress citrus black spot in ‘Valencia’ oranges. Crop Prot., 2010, 29(7), 766-772.
[http://dx.doi.org/10.1016/j.cropro.2010.02.018]
[159]
Zhang, H.; Li, R.; Liu, W. Effects of chitin and its derivative chitosan on postharvest decay of fruits: a review. Int. J. Mol. Sci., 2011, 12(2), 917-934.
[http://dx.doi.org/10.3390/ijms12020917] [PMID: 21541034]
[160]
Ma, Z.; Yang, L.; Yan, H.; Kennedy, J.F.; Meng, X. Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydr. Polym., 2013, 94(1), 272-277.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.012] [PMID: 23544538]
[161]
Liu, J.; Tian, S.; Meng, X.; Xu, Y. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biol. Technol., 2007, 44(3), 300-306.
[http://dx.doi.org/10.1016/j.postharvbio.2006.12.019]
[162]
Zeng, K.; Deng, Y.; Ming, J.; Deng, L. Induction of disease resistance and ROS metabolism in navel oranges by chitosan. Sci. Hortic., 2010, 126(2), 223-228.
[http://dx.doi.org/10.1016/j.scienta.2010.07.017]
[163]
van Loon, L.C.; Bakker, P.A.H.M.; Pieterse, C.M.J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol., 1998, 36(1), 453-483.
[http://dx.doi.org/10.1146/annurev.phyto.36.1.453] [PMID: 15012509]
[164]
Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol., 2004, 42(1), 185-209.
[http://dx.doi.org/10.1146/annurev.phyto.42.040803.140421] [PMID: 15283665]
[165]
Koornneef, A.; Pieterse, C.M.J. Cross talk in defense signaling. Plant Physiol., 2008, 146(3), 839-844.
[http://dx.doi.org/10.1104/pp.107.112029] [PMID: 18316638]
[166]
Jin, P.; Zheng, Y.; Tang, S.; Rui, H.; Wang, C.Y. Enhancing disease resistance in peach fruit with methyl jasmonate. J. Sci. Food Agric., 2009, 89(5), 802-808.
[http://dx.doi.org/10.1002/jsfa.3516]
[167]
Panahirad, S.; Zaare-Nahandi, F.; Safaralizadeh, R.; Alizadeh-Salteh, S. Postharvest control ofR hizopus stolonifer in peach (P runus persicaL. B atsch) fruits using salicylic acid. J. Food Saf., 2012, 32(4), 502-507.
[http://dx.doi.org/10.1111/jfs.12013]
[168]
Hussain, M.; Hamid, M.I.; Ghazanfar, M.U. Salicylic acid induced resistance in fruits to combat against postharvest pathogens: A review. Arch. Phytopathol. Pflanzenschutz, 2015, 48(1), 34-42.
[http://dx.doi.org/10.1080/03235408.2014.882111]
[169]
Yao, H.; Tian, S. Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol. Technol., 2005, 35(3), 253-262.
[http://dx.doi.org/10.1016/j.postharvbio.2004.09.001]
[170]
Ren, Y.; Wang, Y.; Bi, Y.; Ge, Y.; Wang, Y.; Fan, C.; Li, D.; Deng, H. Postharvest BTH treatment induced disease resistance and enhanced reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Eur. Food Res. Technol., 2012, 234(6), 963-971.
[http://dx.doi.org/10.1007/s00217-012-1715-x]
[171]
Liu, Y.; Ge, Y.; Bi, Y.; Li, C.; Deng, H.; Hu, L.; Dong, B. Effect of postharvest acibenzolar-S-methyl dipping on phenylpropanoid pathway metabolism in muskmelon (Cucumis melo L.) fruits. Sci. Hortic., 2014, 168, 113-119.
[http://dx.doi.org/10.1016/j.scienta.2014.01.030]
[172]
Zhou, Y.; Li, S.; Zeng, K. Exogenous nitric oxide-induced postharvest disease resistance in citrus fruit to Colletotrichum gloeosporioides. J. Sci. Food Agric., 2016, 96(2), 505-512.
[http://dx.doi.org/10.1002/jsfa.7117] [PMID: 25639938]
[173]
Guo, M.; Feng, J.; Zhang, P.; Jia, L.; Chen, K. Postharvest treatment with trans-2-hexenal induced resistance against Botrytis cinerea in tomato fruit. Australas. Plant Pathol., 2015, 44(1), 121-128.
[http://dx.doi.org/10.1007/s13313-014-0331-6]
[174]
Scholz, S.S.; Malabarba, J.; Reichelt, M.; Heyer, M.; Ludewig, F.; Mithöfer, A. Evidence for GABA-induced systemic GABA accumulation in Arabidopsis upon wounding. Front. Plant Sci., 2017, 8, 388.
[http://dx.doi.org/10.3389/fpls.2017.00388] [PMID: 28382046]
[175]
Cohen, Y.; Vaknin, M.; Mauch-Mani, B. BABA-induced resistance: Milestones along a 55-year journey. Phytoparasitica, 2016, 44(4), 513-538.
[http://dx.doi.org/10.1007/s12600-016-0546-x]
[176]
Thevenet, D.; Pastor, V.; Baccelli, I.; Balmer, A.; Vallat, A.; Neier, R.; Glauser, G.; Mauch-Mani, B. The priming molecule β‐aminobutyric acid is naturally present in plants and is induced by stress. New Phytol., 2017, 213(2), 552-559.
[http://dx.doi.org/10.1111/nph.14298] [PMID: 27782340]
[177]
Cohen, Y.R. β-aminobutyric acid-induced resistance against plant pathogens. Plant Dis., 2002, 86(5), 448-457.
[http://dx.doi.org/10.1094/PDIS.2002.86.5.448] [PMID: 30818665]
[178]
Luna, E.; Beardon, E.; Ravnskov, S.; Scholes, J.; Ton, J. Optimizing chemically induced resistance in tomato against Botrytis cinerea. Plant Dis., 2016, 100(4), 704-710.
[http://dx.doi.org/10.1094/PDIS-03-15-0347-RE] [PMID: 30688613]
[179]
Slaughter, A.; Daniel, X.; Flors, V.; Luna, E.; Hohn, B.; Mauch-Mani, B. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol., 2012, 158(2), 835-843.
[http://dx.doi.org/10.1104/pp.111.191593] [PMID: 22209872]
[180]
Wilkinson, S.W.; Pastor, V.; Paplauskas, S.; Pétriacq, P.; Luna, E. Long-lasting β‐aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathol., 2018, 67(1), 30-41.
[http://dx.doi.org/10.1111/ppa.12725]
[181]
Yu, C. Zeng, L.; Sheng, K.; Chen, F.; Zhou, T.; Zheng, X.; Yu, T. γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit. Food Chem., 2014, 159, 29-37.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.011] [PMID: 24767023]
[182]
Bouché, N.; Lacombe, B.; Fromm, H. GABA signaling: A conserved and ubiquitous mechanism. Trends Cell Biol., 2003, 13(12), 607-610.
[http://dx.doi.org/10.1016/j.tcb.2003.10.001] [PMID: 14624837]
[183]
Ramesh, S.A. Tyerman, S.D.; Gilliham, M.; Xu, B. γ-Aminobutyric acid (GABA) signalling in plants. Cell. Mol. Life Sci., 2017, 74(9), 1577-1603.
[http://dx.doi.org/10.1007/s00018-016-2415-7] [PMID: 27838745]
[184]
Wilson, C.L.; Wisniewski, M.E. Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annu. Rev. Phytopathol., 1989, 27(1), 425-441.
[http://dx.doi.org/10.1146/annurev.py.27.090189.002233]
[185]
Chan, Z.; Qin, G.; Xu, X.; Li, B.; Tian, S. Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J. Proteome Res., 2007, 6(5), 1677-1688.
[http://dx.doi.org/10.1021/pr060483r] [PMID: 17381148]
[186]
Zhang, C.; Chen, K.; Wang, G. Combination of the biocontrol yeast Cryptococcus laurentii with UV-C treatment for control of postharvest diseases of tomato fruit. BioControl, 2013, 58(2), 269-281.
[http://dx.doi.org/10.1007/s10526-012-9477-8]
[187]
Ippolito, A.; El Ghaouth, A.; Wilson, C.L.; Wisniewski, M. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biol. Technol., 2000, 19(3), 265-272.
[http://dx.doi.org/10.1016/S0925-5214(00)00104-6]
[188]
Wang, X.; Wang, L.; Wang, J.; Jin, P.; Liu, H.; Zheng, Y. Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS One, 2014, 9(11), e112494.
[http://dx.doi.org/10.1371/journal.pone.0112494] [PMID: 25386680]
[189]
Rodov, V.; Ben-Yehoshua, S.; Fang, D.; D’hallewin, G.; Castia, T. Accumulation of phytoalexins scoparone and scopoletin in citrus fruits subjected to various postharvest treatments. Proceedings of the International Symposium on Natural Phenols in Plant Resistance, 3811993, pp. 517-525.
[190]
Lauxmann, M.A.; Brun, B.; Borsani, J.; Bustamante, C.A.; Budde, C.O.; Lara, M.V.; Drincovich, M.F. Transcriptomic profiling during the post-harvest of heat-treated Dixiland Prunus persica fruits: common and distinct response to heat and cold. PLoS One, 2012, 7(12), e51052.
[http://dx.doi.org/10.1371/journal.pone.0051052] [PMID: 23236430]
[191]
Jin, P.; Zheng, C.; Huang, Y.; Wang, X.; Luo, Z.; Zheng, Y. Hot air treatment activates defense responses and induces resistance against Botrytis cinerea in strawberry fruit. J. Integr. Agric., 2016, 15(11), 2658-2665.
[http://dx.doi.org/10.1016/S2095-3119(16)61387-4]
[192]
Hashmi, M.; East, A.; Palmer, J.; Heyes, J. Strawberries inoculated after hypobaric treatment exhibit reduced fungal decay suggesting induced resistance. Proceedings of the II International Symposium on Discovery and Development of Innovative Strategies for Postharvest Disease Management, 2013, pp. 163-168.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy