Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Targeting Cervical Cancer Stem Cells by Phytochemicals

Author(s): Tanya Tripathi, Joni Yadav, Divya Janjua, Apoorva Chaudhary, Udit Joshi, Anna Senrung, Arun Chhokar, Nikita Aggarwal and Alok Chandra Bharti*

Volume 31, Issue 32, 2024

Published on: 29 January, 2024

Page: [5222 - 5254] Pages: 33

DOI: 10.2174/0109298673281823231222065616

Price: $65

conference banner
Abstract

Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.

Keywords: Cancer stem cell signaling, cervical cancer, cervical cancer stem cells, chemo-resistance, phytochemicals, radio-resistance.

[1]
Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health, 2020, 8(2), e191-e203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[2]
Hausen, H. Papillomaviruses causing cancer: Evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst., 2000, 92(9), 690-698.
[http://dx.doi.org/10.1093/jnci/92.9.690] [PMID: 10793105]
[3]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Burmeister, C.A.; Khan, S.F.; Schäfer, G.; Mbatani, N.; Adams, T.; Moodley, J.; Prince, S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Research, 2022, 13, 200238.
[http://dx.doi.org/10.1016/j.tvr.2022.200238] [PMID: 35460940]
[5]
Noda, K.; Teshima, K.; Tekeuti, K.; Hasegawa, K.; Inoue, K.; Yamashita, K.; Sawaragi, I.; Nakajima, T.; Takashima, E.; Ikeuchi, M.; Sekiba, K.; Okuda, H.; Ichijo, M.; Saito, T.; Ozawa, M.; Tamura, H.; Chihara, T.; Kuzuya, K.; Ozaki, M.; Inagaki, M.; Tominaga, S. Immunotherapy using the streptococcal preparation OK-432 for the treatment of uterine cervical cancer. Gynecol. Oncol., 1989, 35(3), 367-372.
[http://dx.doi.org/10.1016/0090-8258(89)90081-4] [PMID: 2689304]
[6]
Patry, C.; Bouchard, L.; Labrecque, P.; Gendron, D.; Lemieux, B.; Toutant, J.; Lapointe, E.; Wellinger, R.; Chabot, B. Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res., 2003, 63(22), 7679-7688.
[PMID: 14633690]
[7]
Enríquez-Aceves, I.; Galicia-Carmona, T.; Coronel-Martínez, J.A.; Espinosa-Romero, R.; Calderillo-Ruíz, G.; Cortés-Esteban, P.; Cetina-Pérez, L. Standard treatment with bevacizumab as targeted therapy in cervical cancer. Rev. Invest. Clin., 2020, 72(4), 213-218.
[http://dx.doi.org/10.24875/RIC.20000061] [PMID: 32488224]
[8]
Wright, J.D.; Matsuo, K.; Huang, Y.; Tergas, A.I.; Hou, J.Y.; Khoury-Collado, F.; St Clair, C.M.; Ananth, C.V.; Neugut, A.I.; Hershman, D.L. Prognostic performance of the 2018 international federation of gynecology and obstetrics cervical cancer staging guidelines. Obstet. Gynecol., 2019, 134(1), 49-57.
[http://dx.doi.org/10.1097/AOG.0000000000003311] [PMID: 31188324]
[9]
Yoshida, K.; Kajiyama, H.; Utsumi, F.; Niimi, K.; Sakata, J.; Suzuki, S.; Shibata, K.; Kikkawa, F. A post-recurrence survival-predicting indicator for cervical cancer from the analysis of 165 patients who developed recurrence. Mol. Clin. Oncol., 2018, 8(2), 281-285.
[PMID: 29435288]
[10]
Yang, J.; Cai, H.; Xiao, Z.X.; Wang, H.; Yang, P. Effect of radiotherapy on the survival of cervical cancer patients. Medicine, 2019, 98(30), e16421.
[http://dx.doi.org/10.1097/MD.0000000000016421] [PMID: 31348242]
[11]
Metcalf, D.; Moore, M.A. Factors modifying stem cell proliferation of myelomonocytic leukemic cells in vitro and in vivo. J. Natl. Cancer Inst., 1970, 44(4), 801-808.
[PMID: 11515047]
[12]
Yang, B.; Lu, Y.; Zhang, A.; Zhou, A.; Zhang, L.; Zhang, L.; Gao, L.; Zang, Y.; Tang, X.; Sun, L. Doxycycline induces apoptosis and inhibits proliferation and invasion of human cervical carcinoma stem cells. PLoS One, 2015, 10(6), e0129138.
[http://dx.doi.org/10.1371/journal.pone.0129138] [PMID: 26111245]
[13]
Bigoni-Ordóñez, G.D.; Ortiz-Sánchez, E.; Rosendo-Chalma, P.; Valencia-González, H.A.; Aceves, C.; García-Carrancá, A. Molecular iodine inhibits the expression of stemness markers on cancer stem-like cells of established cell lines derived from cervical cancer. BMC Cancer, 2018, 18(1), 928.
[http://dx.doi.org/10.1186/s12885-018-4824-5] [PMID: 30257666]
[14]
Wang, L.; Liu, Y.; Zhou, Y.; Wang, J.; Tu, L.; Sun, Z.; Wang, X.; Luo, F. Zoledronic acid inhibits the growth of cancer stem cell derived from cervical cancer cell by attenuating their stemness phenotype and inducing apoptosis and cell cycle arrest through the Erk1/2 and Akt pathways. J. Exp. Clin. Cancer Res., 2019, 38(1), 93.
[http://dx.doi.org/10.1186/s13046-019-1109-z] [PMID: 30791957]
[15]
Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer, 2003, 3(10), 768-780.
[http://dx.doi.org/10.1038/nrc1189] [PMID: 14570043]
[16]
Lapidot, T.; Sirard, C.; Vormoor, J.; Murdoch, B.; Hoang, T.; Caceres-Cortes, J.; Minden, M.; Paterson, B.; Caligiuri, M.A.; Dick, J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367(6464), 645-648.
[http://dx.doi.org/10.1038/367645a0] [PMID: 7509044]
[17]
Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res., 2003, 63(18), 5821-5828.
[PMID: 14522905]
[18]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci., 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[19]
Hamburger, A.W.; Salmon, S.E. Primary bioassay of human tumor stem cells. Science, 1977, 197(4302), 461-463.
[http://dx.doi.org/10.1126/science.560061] [PMID: 560061]
[20]
Vermeulen, L.; Todaro, M.; de Sousa Mello, F.; Sprick, M.R.; Kemper, K.; Perez Alea, M.; Richel, D.J.; Stassi, G.; Medema, J.P. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl. Acad. Sci., 2008, 105(36), 13427-13432.
[http://dx.doi.org/10.1073/pnas.0805706105] [PMID: 18765800]
[21]
Zhou, J.; Wulfkuhle, J.; Zhang, H.; Gu, P.; Yang, Y.; Deng, J.; Margolick, J.B.; Liotta, L.A.; Petricoin, E., III; Zhang, Y. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl. Acad. Sci., 2007, 104(41), 16158-16163.
[http://dx.doi.org/10.1073/pnas.0702596104] [PMID: 17911267]
[22]
Tomasetti, C.; Levy, D. Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc. Natl. Acad. Sci., 2010, 107(39), 16766-16771.
[http://dx.doi.org/10.1073/pnas.1007726107] [PMID: 20826440]
[23]
Huang, T.; Song, X.; Xu, D.; Tiek, D.; Goenka, A.; Wu, B.; Sastry, N.; Hu, B.; Cheng, S.Y. Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics, 2020, 10(19), 8721-8743.
[http://dx.doi.org/10.7150/thno.41648] [PMID: 32754274]
[24]
Herfs, M.; Yamamoto, Y.; Laury, A.; Wang, X.; Nucci, M.R.; McLaughlin-Drubin, M.E.; Münger, K.; Feldman, S.; McKeon, F.D.; Xian, W.; Crum, C.P. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl. Acad. Sci. USA, 2012, 109(26), 10516-10521.
[http://dx.doi.org/10.1073/pnas.1202684109] [PMID: 22689991]
[25]
Surviladze, Z.; Dziduszko, A.; Ozbun, M.A. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog., 2012, 8(2), e1002519.
[http://dx.doi.org/10.1371/journal.ppat.1002519] [PMID: 22346752]
[26]
Thomas, J.T.; Laimins, L.A. Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J. Virol., 1998, 72(2), 1131-1137.
[http://dx.doi.org/10.1128/JVI.72.2.1131-1137.1998] [PMID: 9445009]
[27]
Dyson, N.; Howley, P.M.; Münger, K.; Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science, 1989, 243(4893), 934-937.
[http://dx.doi.org/10.1126/science.2537532] [PMID: 2537532]
[28]
Bhattacharjee, R.; Das, S.S.; Biswal, S.S.; Nath, A.; Das, D.; Basu, A.; Malik, S.; Kumar, L.; Kar, S.; Singh, S.K.; Upadhye, V.J.; Iqbal, D.; Almojam, S.; Roychoudhury, S.; Ojha, S.; Ruokolainen, J.; Jha, N.K.; Kesari, K.K. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Crit. Rev. Oncol. Hematol., 2022, 174, 103675.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103675] [PMID: 35381343]
[29]
Lin, T.; Chao, C.; Saito, S.; Mazur, S.J.; Murphy, M.E.; Appella, E.; Xu, Y. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol., 2005, 7(2), 165-171.
[http://dx.doi.org/10.1038/ncb1211] [PMID: 15619621]
[30]
Kareta, M.S.; Gorges, L.L.; Hafeez, S.; Benayoun, B.A.; Marro, S.; Zmoos, A.F.; Cecchini, M.J.; Spacek, D.; Batista, L.F.Z.; O’Brien, M.; Ng, Y.H.; Ang, C.E.; Vaka, D.; Artandi, S.E.; Dick, F.A.; Brunet, A.; Sage, J.; Wernig, M. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell, 2015, 16(1), 39-50.
[http://dx.doi.org/10.1016/j.stem.2014.10.019] [PMID: 25467916]
[31]
Tyagi, A.; Vishnoi, K.; Mahata, S.; Verma, G.; Srivastava, Y.; Masaldan, S.; Roy, B.G.; Bharti, A.C.; Das, B.C. Cervical cancer stem cells selectively overexpress hpv oncoprotein e6 that controls stemness and self-renewal through upregulation of HES1. Clin. Cancer Res., 2016, 22(16), 4170-4184.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2574] [PMID: 26988248]
[32]
Wang, Y-D.; Cai, N.; Wu, X-L.; Cao, H-Z.; Xie, L-L.; Zheng, P-S. OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis., 2013, 4(8), e760.
[http://dx.doi.org/10.1038/cddis.2013.272] [PMID: 23928699]
[33]
Noh, K.H.; Kim, B.W.; Song, K.H.; Cho, H.; Lee, Y.H.; Kim, J.H.; Chung, J.Y.; Kim, J.H.; Hewitt, S.M.; Seong, S.Y.; Mao, C.P.; Wu, T.C.; Kim, T.W. Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J. Clin. Invest., 2012, 122(11), 4077-4093.
[http://dx.doi.org/10.1172/JCI64057] [PMID: 23093782]
[34]
Zhang, L.; Guo, C.; Ji, T.; Chen, X. RETRACTED ARTICLE: SOX2 regulates lncRNA CCAT1/MicroRNA-185-3p/FOXP3 axis to affect the proliferation and self-renewal of cervical cancer stem cells. Nanoscale Res. Lett., 2021, 16(1), 2.
[http://dx.doi.org/10.1186/s11671-020-03449-z] [PMID: 33394184]
[35]
Ding, Y.; Yu, A.Q.; Li, C.L.; Fang, J.; Zeng, Y.; Li, D.S. TALEN-mediated Nanog disruption results in less invasiveness, more chemosensitivity and reversal of EMT in Hela cells. Oncotarget, 2014, 5(18), 8393-8401.
[http://dx.doi.org/10.18632/oncotarget.2298] [PMID: 25245189]
[36]
Dontu, G.; Abdallah, W.M.; Foley, J.M.; Jackson, K.W.; Clarke, M.F.; Kawamura, M.J.; Wicha, M.S. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev., 2003, 17(10), 1253-1270.
[http://dx.doi.org/10.1101/gad.1061803] [PMID: 12756227]
[37]
Pastrana, E.; Silva-Vargas, V.; Doetsch, F. Eyes wide open: A critical review of sphere-formation as an assay for stem cells. Cell Stem Cell, 2011, 8(5), 486-498.
[http://dx.doi.org/10.1016/j.stem.2011.04.007] [PMID: 21549325]
[38]
Cabana, R.; Frolova, E.G.; Kapoor, V.; Thomas, R.A.; Krishan, A.; Telford, W.G. The minimal instrumentation requirements for Hoechst side population analysis: stem cell analysis on low-cost flow cytometry platforms. Stem Cells, 2006, 24(11), 2573-2581.
[http://dx.doi.org/10.1634/stemcells.2006-0266] [PMID: 16888279]
[39]
López, J.; Poitevin, A.; Mendoza-Martínez, V.; Pérez-Plasencia, C.; García-Carrancá, A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer, 2012, 12(1), 48.
[http://dx.doi.org/10.1186/1471-2407-12-48] [PMID: 22284662]
[40]
Zhang, S.L.; Wang, Y.S.; Zhou, T.; Yu, X.W.; Wei, Z.T.; Li, Y.L. Isolation and characterization of cancer stem cells from cervical cancer HeLa cells. Cytotechnology, 2012, 64(4), 477-484.
[http://dx.doi.org/10.1007/s10616-012-9436-3] [PMID: 22431223]
[41]
Liu, H.; Wang, Y.J.; Bian, L.; Fang, Z.H.; Zhang, Q.Y.; Cheng, J.X. CD44+/CD24+ cervical cancer cells resist radiotherapy and exhibit properties of cancer stem cells. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(9), 1745-1754.
[PMID: 27212166]
[42]
Abdel-Hamid, N.M.; Fathy, M.; Koike, C.; Yoshida, T.; Okabe, M.; Zho, K.; Abouzied, M.; Nikaido, T. Identification of chemo and radio-resistant sub-population of stem cells in human cervical cancer hela cells. Cancer Invest., 2021, 39(8), 661-674.
[http://dx.doi.org/10.1080/07357907.2021.1931875] [PMID: 34076552]
[43]
Leung, T.H.Y.; Tang, H.W.M.; Siu, M.K.Y.; Chan, D.W.; Chan, K.K.L.; Cheung, A.N.Y.; Ngan, H.Y.S. CD71+ population enriched by HPV-E6 protein promotes cancer aggressiveness and radioresistance in cervical cancer cells. Mol. Cancer Res., 2019, 17(9), 1867-1880.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0068] [PMID: 31235657]
[44]
Javed, S.; Sharma, B.K.; Sood, S.; Sharma, S.; Bagga, R.; Bhattacharyya, S.; Rayat, C.S.; Dhaliwal, L.; Srinivasan, R. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer. BMC Cancer, 2018, 18(1), 357.
[http://dx.doi.org/10.1186/s12885-018-4237-5] [PMID: 29609538]
[45]
Xu, X.; Chai, S.; Wang, P.; Zhang, C.; Yang, Y.; Yang, Y.; Wang, K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett., 2015, 369(1), 50-57.
[http://dx.doi.org/10.1016/j.canlet.2015.08.018] [PMID: 26319899]
[46]
Lin, J.; Liu, X.; Ding, D. Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri. Int. J. Clin. Exp. Pathol., 2015, 8(1), 847-855.
[PMID: 25755785]
[47]
Liu, S.Y.; Zheng, P.S. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer. Oncotarget, 2013, 4(12), 2462-2475.
[http://dx.doi.org/10.18632/oncotarget.1578] [PMID: 24318570]
[48]
Rao, Q.X.; Yao, T.T.; Zhang, B.Z.; Lin, R.C.; Chen, Z.L.; Zhou, H.; Wang, L.J.; Lu, H.W.; Chen, Q.; Di, N.; Lin, Z.Q. Expression and functional role of ALDH1 in cervical carcinoma cells. Asian Pac. J. Cancer Prev., 2012, 13(4), 1325-1331.
[http://dx.doi.org/10.7314/APJCP.2012.13.4.1325] [PMID: 22799327]
[49]
Marigo, V.; Johnson, R.L.; Vortkamp, A.; Tabin, C.J. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev. Biol., 1996, 180(1), 273-283.
[http://dx.doi.org/10.1006/dbio.1996.0300] [PMID: 8948590]
[50]
Jeng, K.S.; Chang, C.F.; Lin, S.S. Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int. J. Mol. Sci., 2020, 21(3), 758.
[http://dx.doi.org/10.3390/ijms21030758] [PMID: 31979397]
[51]
Ingham, P.W. Hedgehog signaling. Curr. Top. Dev. Biol., 2022, 149, 1-58.
[http://dx.doi.org/10.1016/bs.ctdb.2022.04.003] [PMID: 35606054]
[52]
Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn. J. Basic Med. Sci., 2018, 18(1), 8-20.
[http://dx.doi.org/10.17305/bjbms.2018.2756] [PMID: 29274272]
[53]
Samarzija, I.; Beard, P. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration. Biochem. Biophys. Res. Commun., 2012, 425(1), 64-69.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.051] [PMID: 22820185]
[54]
Liu, C.; Wang, R. The roles of hedgehog signaling pathway in radioresistance of cervical cancer. Dose Response, 2019, 17(4)
[http://dx.doi.org/10.1177/1559325819885293] [PMID: 31695582]
[55]
Po, A.; Ferretti, E.; Miele, E.; De Smaele, E.; Paganelli, A.; Canettieri, G.; Coni, S.; Di Marcotullio, L.; Biffoni, M.; Massimi, L.; Di Rocco, C.; Screpanti, I.; Gulino, A. Hedgehog controls neural stem cells through p53-independent regulation of Nanog. EMBO J., 2010, 29(15), 2646-2658.
[http://dx.doi.org/10.1038/emboj.2010.131] [PMID: 20581804]
[56]
Vishnoi, K.; Mahata, S.; Tyagi, A.; Pandey, A.; Verma, G.; Jadli, M.; Singh, T.; Singh, S.M.; Bharti, A.C. Cross-talk between human papillomavirus oncoproteins and hedgehog signaling synergistically promotes stemness in cervical cancer cells. Sci. Rep., 2016, 6(1), 34377.
[http://dx.doi.org/10.1038/srep34377] [PMID: 27678330]
[57]
Nayak, A.; Satapathy, S.R.; Das, D.; Siddharth, S.; Tripathi, N.; Bharatam, P.V.; Kundu, C. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1. Sci. Rep., 2016, 6(1), 20600.
[http://dx.doi.org/10.1038/srep20600] [PMID: 26846872]
[58]
Huang, C.; Lu, H.; Li, J.; Xie, X.; Fan, L.; Wang, D.; Tan, W.; Wang, Y.; Lin, Z.; Yao, T. SOX2 regulates radioresistance in cervical cancer via the hedgehog signaling pathway. Gynecol. Oncol., 2018, 151(3), 533-541.
[http://dx.doi.org/10.1016/j.ygyno.2018.10.005] [PMID: 30336948]
[59]
Sharma, A.; De, R.; Javed, S.; Srinivasan, R.; Pal, A.; Bhattacharyya, S. Sonic hedgehog pathway activation regulates cervical cancer stem cell characteristics during epithelial to mesenchymal transition. J. Cell. Physiol., 2019, 234(9), 15726-15741.
[http://dx.doi.org/10.1002/jcp.28231] [PMID: 30714153]
[60]
Kim, J.; Won, J.S.; Singh, A.K.; Sharma, A.K.; Singh, I. STAT3 regulation by S-nitrosylation: Implication for inflammatory disease. Antioxid. Redox Signal., 2014, 20(16), 2514-2527.
[http://dx.doi.org/10.1089/ars.2013.5223] [PMID: 24063605]
[61]
Fukada, T.; Hibi, M.; Yamanaka, Y.; Takahashi-Tezuka, M.; Fujitani, Y.; Yamaguchi, T.; Nakajima, K.; Hirano, T. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity, 1996, 5(5), 449-460.
[http://dx.doi.org/10.1016/S1074-7613(00)80501-4] [PMID: 8934572]
[62]
Wu, Y.Y.; Bradshaw, R.A. Induction of neurite outgrowth by interleukin-6 is accompanied by activation of Stat3 signaling pathway in a variant PC12 cell (E2) line. J. Biol. Chem., 1996, 271(22), 13023-13032.
[http://dx.doi.org/10.1074/jbc.271.22.13023] [PMID: 8662645]
[63]
Nakajima, K.; Yamanaka, Y.; Nakae, K.; Kojima, H.; Ichiba, M.; Kiuchi, N.; Kitaoka, T.; Fukada, T.; Hibi, M.; Hirano, T. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J., 1996, 15(14), 3651-3658.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00734.x] [PMID: 8670868]
[64]
Tolomeo, M.; Cascio, A. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. Int. J. Mol. Sci., 2021, 22(2), 603.
[http://dx.doi.org/10.3390/ijms22020603] [PMID: 33435349]
[65]
Shukla, S.; Mahata, S.; Shishodia, G.; Pandey, A.; Tyagi, A.; Vishnoi, K.; Basir, S.F.; Das, B.C.; Bharti, A.C. Functional regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis. PLoS One, 2013, 8(7), e67849.
[http://dx.doi.org/10.1371/journal.pone.0067849] [PMID: 23874455]
[66]
Shukla, S.; Shishodia, G.; Mahata, S.; Hedau, S.; Pandey, A.; Bhambhani, S.; Batra, S.; Basir, S.F.; Das, B.C.; Bharti, A.C. Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: Implications in high-risk human papillomavirus infection. Mol. Cancer, 2010, 9(1), 282.
[http://dx.doi.org/10.1186/1476-4598-9-282] [PMID: 20977777]
[67]
Shishodia, G.; Shukla, S.; Srivastava, Y.; Masaldan, S.; Mehta, S.; Bhambhani, S.; Sharma, S.; Mehrotra, R.; Das, B.C.; Bharti, A.C. Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis. Mol. Cancer, 2015, 14(1), 116.
[http://dx.doi.org/10.1186/s12943-015-0385-2] [PMID: 26051842]
[68]
Shishodia, G.; Verma, G.; Srivastava, Y.; Mehrotra, R.; Das, B.C.; Bharti, A.C. Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC Cancer, 2014, 14(1), 996.
[http://dx.doi.org/10.1186/1471-2407-14-996] [PMID: 25539644]
[69]
Wang, H.; Cai, H.; Chen, L.; Zhao, W.; Li, P.; Wang, Z.; Li, Z. STAT3 correlates with stem cell-related transcription factors in cervical cancer. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2015, 35(6), 891-897.
[http://dx.doi.org/10.1007/s11596-015-1524-0] [PMID: 26670442]
[70]
Wang, H.; Deng, J.; Ren, H.Y.; Jia, P.; Zhang, W.; Li, M.Q.; Li, S.W.; Zhou, Q.H. STAT3 influences the characteristics of stem cells in cervical carcinoma. Oncol. Lett., 2017, 14(2), 2131-2136.
[http://dx.doi.org/10.3892/ol.2017.6454] [PMID: 28781654]
[71]
Mei, J.; Zhu, C.; Pan, L.; Li, M. MACC1 regulates the AKT/STAT3 signaling pathway to induce migration, invasion, cancer stemness, and suppress apoptosis in cervical cancer cells. Bioengineered, 2022, 13(1), 61-70.
[http://dx.doi.org/10.1080/21655979.2021.2006567] [PMID: 34939526]
[72]
Thakur, K.; Janjua, D.; Aggarwal, N.; Chhokar, A.; Yadav, J.; Tripathi, T.; Chaudhary, A.; Senrung, A.; Shrivastav, A.; Bharti, A.C. Physical interaction between STAT3 and AP1 in cervical carcinogenesis: Implications in HPV transcription control. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(8), 166817.
[http://dx.doi.org/10.1016/j.bbadis.2023.166817] [PMID: 37532113]
[73]
Seo, J.H.; Rah, J.C.; Choi, S.H.; Shin, J.K.; Min, K.; Kim, H.S.; Park, C.H.; Kim, S.; Kim, E.M.; Lee, S.H.; Lee, S.; Won Suh, S.; Suh, Y.H. α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J., 2002, 16(13), 1-20.
[http://dx.doi.org/10.1096/fj.02-0041fje] [PMID: 12223445]
[74]
Zhuang, S.; Yan, Y.; Daubert, R.A.; Schnellmann, R.G. Epiregulin promotes proliferation and migration of renal proximal tubular cells. Am. J. Physiol. Renal Physiol., 2007, 293(1), F219-F226.
[http://dx.doi.org/10.1152/ajprenal.00082.2007] [PMID: 17389679]
[75]
Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The pathogenic role of PI3K/AKT pathway in cancer onset and drug resistance: An updated review. Cancers, 2021, 13(16), 3949.
[http://dx.doi.org/10.3390/cancers13163949] [PMID: 34439105]
[76]
Sun, R.; Chen, C.; Deng, X.; Wang, F.; Song, S.; Cai, Q.; Wang, J.; Zhang, T.; Shi, M.; Ke, Q.; Luo, Z. IL-11 mediates the radioresistance of cervical cancer cells via the PI3K/Akt signaling pathway. J. Cancer, 2021, 12(15), 4638-4647.
[http://dx.doi.org/10.7150/jca.56185] [PMID: 34149927]
[77]
Park, J.K.; Cho, C.H.; Ramachandran, S.; Shin, S.J.; Kwon, S.H.; Kwon, S.Y.; Cha, S.D. Augmentation of sodium butyrate-induced apoptosis by phosphatidylinositol 3-kinase inhibition in the human cervical cancer cell-line. Cancer Res. Treat., 2006, 38(2), 112-117.
[http://dx.doi.org/10.4143/crt.2006.38.2.112] [PMID: 19771269]
[78]
Li, J.; Zhou, B.P. Activation of β-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer, 2011, 11(1), 49.
[http://dx.doi.org/10.1186/1471-2407-11-49] [PMID: 21284870]
[79]
Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; Pessah-Pollack, R.; McClung, M.; Wimalawansa, S.J.; Watts, N.B. American association of clinical endocrinologists/american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2020 update. Endocr. Pract., 2020, 26(Suppl. 1), 1-46.
[http://dx.doi.org/10.4158/GL-2020-0524SUPPL] [PMID: 32427503]
[80]
Gnant, M. Zoledronic acid in breast cancer: Latest findings and interpretations. Ther. Adv. Med. Oncol., 2011, 3(6), 293-301.
[http://dx.doi.org/10.1177/1758834011420599] [PMID: 22084643]
[81]
Hattori, Y.; Shibuya, K.; Kojima, K.; Miatmoko, A.; Kawano, K.; Ozaki, K.I.; Yonemochi, E. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin. Int. J. Oncol., 2015, 47(1), 211-219.
[http://dx.doi.org/10.3892/ijo.2015.2991] [PMID: 25955490]
[82]
Zhao, M.; Tominaga, Y.; Ohuchida, K.; Mizumoto, K.; Cui, L.; Kozono, S.; Fujita, H.; Maeyama, R.; Toma, H.; Tanaka, M. Significance of combination therapy of zoledronic acid and gemcitabine on pancreatic cancer. Cancer Sci., 2012, 103(1), 58-66.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02113.x] [PMID: 21954965]
[83]
Zhang, T. Efficacy of zoledronic acid combined with radiotherapy on cervical cancer patients with bone metastasis and its influence on immune function and inflammatory factors. Int. J. Clin. Exp. Med., 2020, 13(8), 8.
[84]
Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the borders of autoimmunity and inflammation. Front. Immunol., 2021, 12, 716469.
[http://dx.doi.org/10.3389/fimmu.2021.716469] [PMID: 34434197]
[85]
Mirzaei, S. Saghari, S.; Bassiri, F.; Raesi, R.; Zarrabi, A.; Hushmandi, K.; Sethi, G.; Tergaonkar, V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J. Cell. Physiol., 2022, 237(7), 2770-2795.
[http://dx.doi.org/10.1002/jcp.30759] [PMID: 35561232]
[86]
Li, J.; Jia, H.; Xie, L.; Wang, X.; Wang, X.; He, H.; Lin, Y.; Hu, L. Association of constitutive nuclear factor-kappaB activation with aggressive aspects and poor prognosis in cervical cancer. Int. J. Gynecol. Cancer, 2009, 19(8), 1421-1426.
[http://dx.doi.org/10.1111/IGC.0b013e3181b70445] [PMID: 20009901]
[87]
Wu, Z.; Li, J.; Zhang, Y.; Hu, L.; Peng, X. Synchronous co expression of Id 1 and nuclear NF κB p65 promotes cervical cancer progression and malignancy, and is associated with a poor prognosis and chemosensitivity. Oncol. Rep., 2019, 42(5), 2075-2086.
[http://dx.doi.org/10.3892/or.2019.7301] [PMID: 31545447]
[88]
Kendellen, M.F.; Bradford, J.W.; Lawrence, C.L.; Clark, K.S.; Baldwin, A.S. Canonical and non-canonical NF-κB signaling promotes breast cancer tumor-initiating cells. Oncogene, 2014, 33(10), 1297-1305.
[http://dx.doi.org/10.1038/onc.2013.64] [PMID: 23474754]
[89]
Helweg, L.P.; Storm, J.; Witte, K.E.; Schulten, W.; Wrachtrup, L.; Janotte, T.; Kitke, A.; Greiner, J.F.W.; Knabbe, C.; Kaltschmidt, B.; Simon, M.; Kaltschmidt, C. Targeting key signaling pathways in glioblastoma stem cells for the development of efficient chemo- and immunotherapy. Int. J. Mol. Sci., 2022, 23(21), 12919.
[http://dx.doi.org/10.3390/ijms232112919] [PMID: 36361720]
[90]
Lizarraga, F.; Espinosa, M.; Ceballos-Cancino, G.; Vazquez-Santillan, K.; Bahena-Ocampo, I.; Schwarz-Cruz y Celis, A.; Vega-Gordillo, M.; Garcia Lopez, P.; Maldonado, V.; Melendez-Zajgla, J. Tissue inhibitor of metalloproteinases-4 (TIMP-4) regulates stemness in cervical cancer cells. Mol. Carcinog., 2016, 55(12), 1952-1961.
[http://dx.doi.org/10.1002/mc.22442] [PMID: 26618609]
[91]
Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis, 2008, 4(2), 68-75.
[http://dx.doi.org/10.4161/org.4.2.5851] [PMID: 19279717]
[92]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[93]
Banister, C.E.; Liu, C.; Pirisi, L.; Creek, K.E.; Buckhaults, P.J. Identification and characterization of HPV-independent cervical cancers. Oncotarget, 2017, 8(8), 13375-13386.
[http://dx.doi.org/10.18632/oncotarget.14533] [PMID: 28077784]
[94]
Ramachandran, I.; Thavathiru, E.; Ramalingam, S.; Natarajan, G.; Mills, W.K.; Benbrook, D.M.; Zuna, R.; Lightfoot, S.; Reis, A.; Anant, S.; Queimado, L. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene, 2012, 31(22), 2725-2737.
[http://dx.doi.org/10.1038/onc.2011.455] [PMID: 22002305]
[95]
de Sousa e Melo, F.; Vermeulen, L. Wnt signaling in cancer stem cell biology. Cancers, 2016, 8(7), 60.
[http://dx.doi.org/10.3390/cancers8070060] [PMID: 27355964]
[96]
Ortiz-Sánchez, E.; Santiago-López, L.; Cruz-Domínguez, V.B.; Toledo-Guzmán, M.E.; Hernández-Cueto, D.; Muñiz-Hernández, S.; Garrido, E.; De León, D.C.; García-Carrancá, A. Characterization of cervical cancer stem cell-like cells: phenotyping, stemness, and human papilloma virus co-receptor expression. Oncotarget, 2016, 7(22), 31943-31954.
[http://dx.doi.org/10.18632/oncotarget.8218] [PMID: 27008711]
[97]
Yang, G.; He, Y.; Chen, Y.; Huang, Z.; Huang, J.; Ren, X.; Xu, S.; Li, P. Antitumor activity of galaxamide involved in cell apoptosis and stemness by inhibiting Wnt/β-catenin pathway in cervical cancer. Drug Dev. Res., 2023, 84(6), 1114-1126.
[http://dx.doi.org/10.1002/ddr.22073] [PMID: 37154105]
[98]
Zhang, X.; Wang, M.; Zhang, Y.; Yang, J.; Duan, W. Knockdown of CENPU inhibits cervical cancer cell migration and stemness through the FOXM1/Wnt/β-catenin pathway. Tissue Cell, 2023, 81, 102009.
[http://dx.doi.org/10.1016/j.tice.2022.102009] [PMID: 36608638]
[99]
Kopan, R. Notch signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(10), a011213.
[http://dx.doi.org/10.1101/cshperspect.a011213] [PMID: 23028119]
[100]
Misiorek, J.O.; Przybyszewska-Podstawka, A.; Kałafut, J.; Paziewska, B.; Rolle, K.; Rivero-Müller, A.; Nees, M. Context matters: NOTCH signatures and pathway in cancer progression and metastasis. Cells, 2021, 10(1), 94.
[http://dx.doi.org/10.3390/cells10010094] [PMID: 33430387]
[101]
Anusewicz, D.; Orzechowska, M.; Bednarek, A.K. Notch signaling pathway in cancer—review with bioinformatic analysis. Cancers, 2021, 13(4), 768.
[http://dx.doi.org/10.3390/cancers13040768] [PMID: 33673145]
[102]
Yu, L.; Li, W. Abnormal activation of notch 1 signaling causes apoptosis resistance in cervical cancer. Int. J. Clin. Exp. Pathol., 2022, 15(1), 11-19.
[PMID: 35145579]
[103]
Prabakaran, D.S.; Muthusami, S.; Sivaraman, T.; Yu, J.R.; Park, W.Y. Silencing of FTS increases radiosensitivity by blocking radiation-induced Notch1 activation and spheroid formation in cervical cancer cells. Int. J. Biol. Macromol., 2019, 126, 1318-1325.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.114] [PMID: 30244128]
[104]
Yin, X.; Lu, Y.; Zou, M.; Wang, L.; Zhou, X.; Zhang, Y.; Su, M. Synthesis and characterization of salinomycin-loaded high-density lipoprotein and its effects on cervical cancer cells and cervical cancer stem cells. Int. J. Nanomedicine, 2021, 16, 6367-6382.
[http://dx.doi.org/10.2147/IJN.S326089] [PMID: 34584409]
[105]
Wang, L.; Guo, H.; Yang, L.; Dong, L.; Lin, C.; Zhang, J.; Lin, P.; Wang, X. Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-κB activity and apoptosis induction. Mol. Cell. Biochem., 2013, 379(1-2), 7-18.
[http://dx.doi.org/10.1007/s11010-013-1621-y] [PMID: 23543150]
[106]
Guo, H.; Liu, C.; Yang, L.; Dong, L.; Wang, L.; Wang, Q.; Li, H.; Zhang, J.; Lin, P.; Wang, X. Morusin inhibits glioblastoma stem cell growth in vitro and in vivo through stemness attenuation, adipocyte transdifferentiation, and apoptosis induction. Mol. Carcinog., 2016, 55(1), 77-89.
[http://dx.doi.org/10.1002/mc.22260] [PMID: 25557841]
[107]
Zhou, Y.; Li, X.; Ye, M. Morusin inhibits the growth of human colorectal cancer HCT116 derived sphere forming cells via the inactivation of Akt pathway. Int. J. Mol. Med., 2021, 47(4), 51.
[http://dx.doi.org/10.3892/ijmm.2021.4884] [PMID: 33576447]
[108]
Liu, J.; Cao, X.C.; Xiao, Q.; Quan, M.F. Apigenin inhibits HeLa sphere-forming cells through inactivation of casein kinase 2α. Mol. Med. Rep., 2015, 11(1), 665-669.
[http://dx.doi.org/10.3892/mmr.2014.2720] [PMID: 25334018]
[109]
Li, Y.W.; Xu, J.; Zhu, G.Y.; Huang, Z.J.; Lu, Y.; Li, X.Q.; Wang, N.; Zhang, F.X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov., 2018, 4(1), 105.
[http://dx.doi.org/10.1038/s41420-018-0124-8] [PMID: 30479839]
[110]
Wu, C.H.; Hong, B.H.; Ho, C.T.; Yen, G.C. Targeting cancer stem cells in breast cancer: Potential anticancer properties of 6-shogaol and pterostilbene. J. Agric. Food Chem., 2015, 63(9), 2432-2441.
[http://dx.doi.org/10.1021/acs.jafc.5b00002] [PMID: 25686711]
[111]
Shin, H.J.; Han, J.M.; Choi, Y.S.; Jung, H.J. Pterostilbene suppresses both cancer cells and cancer stem-like cells in cervical cancer with superior bioavailability to resveratrol. Molecules, 2020, 25(1), 228.
[http://dx.doi.org/10.3390/molecules25010228] [PMID: 31935877]
[112]
Mori, S.; Kishi, S.; Honoki, K.; Fujiwara-Tani, R.; Moriguchi, T.; Sasaki, T.; Fujii, K.; Tsukamoto, S.; Fujii, H.; Kido, A.; Tanaka, Y.; Luo, Y.; Kuniyasu, H. Anti-stem cell property of pterostilbene in gastrointestinal cancer cells. Int. J. Mol. Sci., 2020, 21(24), 9347.
[http://dx.doi.org/10.3390/ijms21249347] [PMID: 33302440]
[113]
Tyagi, A.; Vishnoi, K.; Kaur, H.; Srivastava, Y.; Roy, B.G.; Das, B.C.; Bharti, A.C. Cervical cancer stem cells manifest radioresistance: Association with upregulated AP-1 activity. Sci. Rep., 2017, 7(1), 4781.
[http://dx.doi.org/10.1038/s41598-017-05162-x] [PMID: 28684765]
[114]
Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine, 2019, 58, 152740.
[http://dx.doi.org/10.1016/j.phymed.2018.11.001] [PMID: 31005718]
[115]
Ma, Y.; Yu, W.; Shrivastava, A.; Srivastava, R.K.; Shankar, S. Inhibition of pancreatic cancer stem cell characteristics by α;-Mangostin: Molecular mechanisms involving Sonic hedgehog and Nanog. J. Cell. Mol. Med., 2019, 23(4), 2719-2730.
[http://dx.doi.org/10.1111/jcmm.14178] [PMID: 30712329]
[116]
Chien, H.J. Ying, T.H.; Hsieh, S.C.; Lin, C.L.; Yu, Y.L.; Kao, S.H.; Hsieh, Y.H. α;-Mangostin attenuates stemness and enhances cisplatin-induced cell death in cervical cancer stem like cells through induction of mitochondrial-mediated apoptosis. J. Cell. Physiol., 2020, 235(7-8), 5590-5601.
[http://dx.doi.org/10.1002/jcp.29489] [PMID: 31960449]
[117]
Wang, X.; Cao, X.; Wang, D.; Qiu, Y.; Deng, K.; Cao, J.; Lin, S.; Xu, Y.; Ren, K. Casticin attenuates stemness in cervical cancer stem-like cells by regulating activity and expression of DNMT1. Chin. J. Integr. Med., 2023, 29(3), 224-232.
[http://dx.doi.org/10.1007/s11655-022-3469-z] [PMID: 35809177]
[118]
He, G.; Cao, X.; He, M.; Sheng, X.; Wu, Y.; Ai, X. Casticin inhibits self-renewal of liver cancer stem cells from the MHCC97 cell line. Oncol. Lett., 2014, 7(6), 2023-2028.
[http://dx.doi.org/10.3892/ol.2014.1972] [PMID: 24932283]
[119]
He, M.; Cao, X.C.; He, G.C.; Sheng, X.F.; Ai, X.H.; Wu, Y.H. Casticin inhibits epithelial-mesenchymal transition of liver cancer stem cells of the SMMC-7721 cell line through downregulating Twist. Oncol. Lett., 2014, 7(5), 1625-1631.
[http://dx.doi.org/10.3892/ol.2014.1899] [PMID: 24765190]
[120]
Liu, F.; Cao, X.; Liu, Z.; Guo, H.; Ren, K.; Quan, M.; Zhou, Y.; Xiang, H.; Cao, J. Casticin suppresses self-renewal and invasion of lung cancer stem-like cells from A549 cells through down-regulation of pAkt. Acta Biochim. Biophys. Sin., 2014, 46(1), 15-21.
[http://dx.doi.org/10.1093/abbs/gmt123] [PMID: 24247269]
[121]
Pal, D.; Kolluru, V.; Chandrasekaran, B.; Baby, B.V.; Aman, M.; Suman, S.; Sirimulla, S.; Sanders, M.A.; Alatassi, H.; Ankem, M.K.; Damodaran, C. Targeting aberrant expression of Notch-1 in ALDH+ cancer stem cells in breast cancer. Mol. Carcinog., 2017, 56(3), 1127-1136.
[http://dx.doi.org/10.1002/mc.22579] [PMID: 27753148]
[122]
Suman, S.; Das, T.P.; Damodaran, C. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br. J. Cancer, 2013, 109(10), 2587-2596.
[http://dx.doi.org/10.1038/bjc.2013.642] [PMID: 24129237]
[123]
Lee, S.H.; Nam, H.J.; Kang, H.J.; Kwon, H.W.; Lim, Y.C. Epigallocatechin-3-gallate attenuates head and neck cancer stem cell traits through suppression of Notch pathway. Eur. J. Cancer, 2013, 49(15), 3210-3218.
[http://dx.doi.org/10.1016/j.ejca.2013.06.025] [PMID: 23876835]
[124]
Chung, S.S.; Vadgama, J.V. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res., 2015, 35(1), 39-46.
[PMID: 25550533]
[125]
Chen, Y.; Wang, X.Q.; Zhang, Q.; Zhu, J.Y.; Li, Y.; Xie, C.F.; Li, X.T.; Wu, J.S.; Geng, S.S.; Zhong, C.Y.; Han, H.Y. (-)-Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing wnt/β-catenin pathway. Nutrients, 2017, 9(6), 572.
[http://dx.doi.org/10.3390/nu9060572] [PMID: 28587207]
[126]
Toden, S.; Tran, H.M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget, 2016, 7(13), 16158-16171.
[http://dx.doi.org/10.18632/oncotarget.7567] [PMID: 26930714]
[127]
Sun, X.; Song, J.; Li, E.; Geng, H.; Li, Y.; Yu, D.; Zhong, C. () Epigallocatechin 3 gallate inhibits bladder cancer stem cells via suppression of sonic hedgehog pathway. Oncol. Rep., 2019, 42(1), 425-435.
[http://dx.doi.org/10.3892/or.2019.7170] [PMID: 31180522]
[128]
Jiang, P.; Xu, C.; Zhang, P.; Ren, J.; Mageed, F.; Wu, X.; Chen, L.; Zeb, F.; Feng, Q.; Li, S. Epigallocatechin 3 gallate inhibits self renewal ability of lung cancer stem like cells through inhibition of CLOCK. Int. J. Mol. Med., 2020, 46(6), 2216-2224.
[http://dx.doi.org/10.3892/ijmm.2020.4758] [PMID: 33125096]
[129]
Huang, Y.; Zeng, F.; Xu, L.; Zhou, J.; Liu, X.; Le, H. Anticancer effects of cinnamic acid in lung adenocarcinoma cell line h1299-derived stem-like cells. Oncol. Res., 2012, 20(11), 499-507.
[http://dx.doi.org/10.3727/096504013X13685487925095] [PMID: 24063280]
[130]
Soltanian, S.; Riahirad, H.; Pabarja, A.; Jafari, E.; Khandani, B.K. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. Daru, 2018, 26(1), 19-29.
[http://dx.doi.org/10.1007/s40199-018-0210-8] [PMID: 30209760]
[131]
Ray, A.; Vasudevan, S.; Sengupta, S. 6-Shogaol inhibits breast cancer cells and stem cell-like spheroids by modulation of notch signaling pathway and induction of autophagic cell death. PLoS One, 2015, 10(9), e0137614.
[http://dx.doi.org/10.1371/journal.pone.0137614] [PMID: 26355461]
[132]
Zhen, X.; Choi, H.S.; Kim, J.H.; Kim, S.L.; Liu, R.; Yun, B.S.; Lee, D.S. Machilin D, a lignin derived from saururus chinensis, suppresses breast cancer stem cells and inhibits nf-κb signaling. Biomolecules, 2020, 10(2), 245.
[http://dx.doi.org/10.3390/biom10020245] [PMID: 32033472]
[133]
Bhummaphan, N.; Petpiroon, N.; Prakhongcheep, O.; Sritularak, B.; Chanvorachote, P. Lusianthridin targeting of lung cancer stem cells via Src-STAT3 suppression. Phytomedicine, 2019, 62, 152932.
[http://dx.doi.org/10.1016/j.phymed.2019.152932] [PMID: 31100681]
[134]
Ma, L.; Mao, R.; Shen, K.; Zheng, Y.; Li, Y.; Liu, J.; Ni, L. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits. Biochem. Biophys. Res. Commun., 2014, 450(1), 353-359.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.110] [PMID: 24944018]
[135]
Wang, K.; Huang, W.; Sang, X.; Wu, X.; Shan, Q.; Tang, D.; Xu, X.; Cao, G. Atractylenolide I inhibits colorectal cancer cell proliferation by affecting metabolism and stemness via AKT/mTOR signaling. Phytomedicine, 2020, 68, 153191.
[http://dx.doi.org/10.1016/j.phymed.2020.153191] [PMID: 32135457]
[136]
Sehrawat, A.; Kim, S.H.; Hahm, E.R.; Arlotti, J.A.; Eiseman, J.; Shiva, S.S.; Rigatti, L.H.; Singh, S.V. Cancer-selective death of human breast cancer cells by leelamine is mediated by bax and bak activation. Mol. Carcinog., 2017, 56(2), 337-348.
[http://dx.doi.org/10.1002/mc.22497] [PMID: 27149078]
[137]
Giacomelli, C.; Daniele, S.; Natali, L.; Iofrida, C.; Flamini, G.; Braca, A.; Trincavelli, M.L.; Martini, C. Carnosol controls the human glioblastoma stemness features through the epithelial-mesenchymal transition modulation and the induction of cancer stem cell apoptosis. Sci. Rep., 2017, 7(1), 15174.
[http://dx.doi.org/10.1038/s41598-017-15360-2] [PMID: 29123181]
[138]
Aliebrahimi, S.; Kouhsari, S.M.; Arab, S.S.; Shadboorestan, A.; Ostad, S.N. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed. Pharmacother., 2018, 106, 1527-1536.
[http://dx.doi.org/10.1016/j.biopha.2018.07.055] [PMID: 30119228]
[139]
Leong, K.H.; Mahdzir, M.A.; Din, M.F.M.; Awang, K.; Tanaka, Y.; Kulkeaw, K.; Ishitani, T.; Sugiyama, D. Induction of intrinsic apoptosis in leukaemia stem cells and in vivo zebrafish model by betulonic acid isolated from Walsura pinnata Hassk (Meliaceae). Phytomedicine, 2017, 26, 11-21.
[http://dx.doi.org/10.1016/j.phymed.2016.12.018] [PMID: 28257660]
[140]
Kakar, S.S.; Parte, S.; Carter, K.; Joshua, I.G.; Worth, C.; Rameshwar, P.; Ratajczak, M.Z.; Withaferin, A. WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells. Oncotarget, 2017, 8(43), 74494-74505.
[http://dx.doi.org/10.18632/oncotarget.20170] [PMID: 29088802]
[141]
Issa, M.E.; Cuendet, M. Withaferin A induces cell death and differentiation in multiple myeloma cancer stem cells. MedChemComm, 2017, 8(1), 112-121.
[http://dx.doi.org/10.1039/C6MD00410E] [PMID: 30108696]
[142]
Lin, C.S.; Bamodu, O.A.; Kuo, K.T.; Huang, C.M.; Liu, S.C.; Wang, C.H.; Tzeng, Y.M.; Chao, T.Y.; Yeh, C.T. Investigation of ovatodiolide, a macrocyclic diterpenoid, as a potential inhibitor of oral cancer stem-like cells properties via the inhibition of the JAK2/STAT3/JARID1B signal circuit. Phytomedicine, 2018, 46, 93-103.
[http://dx.doi.org/10.1016/j.phymed.2018.04.016] [PMID: 30097127]
[143]
Su, Y.; Bamodu, O.A.; Tzeng, Y.M.; Hsiao, M.; Yeh, C.T.; Lin, C.M. Ovatodiolide inhibits the oncogenicity and cancer stem cell-like phenotype of glioblastoma cells, as well as potentiate the anticancer effect of temozolomide. Phytomedicine, 2019, 61, 152840.
[http://dx.doi.org/10.1016/j.phymed.2019.152840] [PMID: 31035045]
[144]
Liu, S.C.; Huang, C.M.; Bamodu, O.A.; Lin, C.S.; Liu, B.L.; Tzeng, Y.M.; Tsai, J.T.; Lee, W.H.; Chen, T.M. Ovatodiolide suppresses nasopharyngeal cancer by targeting stem cell-like population, inducing apoptosis, inhibiting EMT and dysregulating JAK/STAT signaling pathway. Phytomedicine, 2019, 56, 269-278.
[http://dx.doi.org/10.1016/j.phymed.2018.05.007] [PMID: 30668347]
[145]
Sun, L.; Cao, J.; Chen, K.; Cheng, L.; Zhou, C.; Yan, B.; Qian, W.; Li, J.; Duan, W.; Ma, J.; Qi, D.; Wu, E.; Wang, Z.; Liu, Q.; Ma, Q.; Xu, Q. Betulinic acid inhibits stemness and EMT of pancreatic cancer cells via activation of AMPK signaling. Int. J. Oncol., 2019, 54(1), 98-110.
[PMID: 30365057]
[146]
Wang, D.; Upadhyaya, B.; Liu, Y.; Knudsen, D.; Dey, M. Phenethyl isothiocyanate upregulates death receptors 4 and 5 and inhibits proliferation in human cancer stem-like cells. BMC Cancer, 2014, 14(1), 591.
[http://dx.doi.org/10.1186/1471-2407-14-591] [PMID: 25127663]
[147]
Upadhyaya, B.; Liu, Y.; Dey, M. Phenethyl isothiocyanate exposure promotes oxidative stress and suppresses sp1 transcription factor in cancer stem cells. Int. J. Mol. Sci., 2019, 20(5), 1027.
[http://dx.doi.org/10.3390/ijms20051027] [PMID: 30818757]
[148]
Yun, J.H.; Kim, K.A.; Yoo, G.; Kim, S.Y.; Shin, J.M.; Kim, J.H.; Jung, S.H.; Kim, J.; Nho, C.W. Phenethyl isothiocyanate suppresses cancer stem cell properties in vitro and in a xenograft model. Phytomedicine, 2017, 30, 42-49.
[http://dx.doi.org/10.1016/j.phymed.2017.01.015] [PMID: 28545668]
[149]
Zhang, T.; Zhang, W.; Hao, M. Phenethyl isothiocyanate reduces breast cancer stem cell-like properties by epigenetic reactivation of CDH1. Oncol. Rep., 2020, 45(1), 337-348.
[http://dx.doi.org/10.3892/or.2020.7860] [PMID: 33416137]
[150]
Li, S.H.; Fu, J.; Watkins, D.N.; Srivastava, R.K.; Shankar, S. Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of Sonic hedgehog–GLI pathway. Mol. Cell. Biochem., 2013, 373(1-2), 217-227.
[http://dx.doi.org/10.1007/s11010-012-1493-6] [PMID: 23129257]
[151]
Zhu, J.; Wang, S.; Chen, Y.; Li, X.; Jiang, Y.; Yang, X.; Li, Y.; Wang, X.; Meng, Y.; Zhu, M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.; Geng, S.; Wu, J.; Zhong, C.; Han, H. miR-19 targeting of GSK3β mediates sulforaphane suppression of lung cancer stem cells. J. Nutr. Biochem., 2017, 44, 80-91.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.020] [PMID: 28431267]
[152]
Chen, L.; Chan, L.S.; Lung, H.L.; Yip, T.T.C.; Ngan, R.K.C.; Wong, J.W.C.; Lo, K.W.; Ng, W.T.; Lee, A.W.M.; Tsao, G.S.W.; Lung, M.L.; Mak, N.K. Crucifera sulforaphane (SFN) inhibits the growth of nasopharyngeal carcinoma through DNA methyltransferase 1 (DNMT1)/Wnt inhibitory factor 1 (WIF1) axis. Phytomedicine, 2019, 63, 153058.
[http://dx.doi.org/10.1016/j.phymed.2019.153058] [PMID: 31394414]
[153]
Ahmadipour, F.; Noordin, M.I.; Mohan, S.; Arya, A.; Paydar, M.; Looi, C.Y.; Keong, Y.S.; Siyamak, E.N.; Fani, S.; Firoozi, M.; Yong, C.L.; Sukari, M.A.; Kamalidehghan, B. Koenimbin, a natural dietary compound of Murraya koenigii (L) Spreng: Inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44(+)/CD24(-/low)): an in vitro study. Drug Des. Devel. Ther., 2015, 9, 1193-1208.
[PMID: 25759564]
[154]
Kamalidehghan, B.; Ghafouri-Fard, S.; Motevaseli, E.; Ahmadipour, F. Inhibition of human prostate cancer (PC-3) cells and targeting of PC-3-derived prostate cancer stem cells with koenimbin, a natural dietary compound from Murraya koenigii (L). Spreng. Drug Des. Devel. Ther., 2018, 12, 1119-1133.
[http://dx.doi.org/10.2147/DDDT.S156826] [PMID: 29765202]
[155]
Li, X.; Meng, Y.; Xie, C.; Zhu, J.; Wang, X.; Li, Y.; Geng, S.; Wu, J.; Zhong, C.; Li, M. Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J. Cell. Biochem., 2018, 119(5), 4134-4141.
[http://dx.doi.org/10.1002/jcb.26613] [PMID: 29243835]
[156]
Zhang, Q.; Li, X.T.; Chen, Y.; Chen, J.Q.; Zhu, J.Y.; Meng, Y.; Wang, X.Q.; Li, Y.; Geng, S.S.; Xie, C.F.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemother. Pharmacol., 2018, 81(6), 969-977.
[http://dx.doi.org/10.1007/s00280-018-3565-0] [PMID: 29594332]
[157]
Zhang, T.; Cao, W.; Sun, H.; Yu, D.; Zhong, C. Diallyl trisulfide suppresses the renal cancer stem-like cell properties via nanog. Nutr. Cancer, 2023, 75(3), 971-979.
[http://dx.doi.org/10.1080/01635581.2022.2156553] [PMID: 36562732]
[158]
Das, M.; Kandimalla, R.; Gogoi, B.; Dutta, K.N.; Choudhury, P.; Devi, R.; Dutta, P.P.; Talukdar, N.C.; Samanta, S.K. Mahanine, A dietary phytochemical, represses mammary tumor burden in rat and inhibits subtype regardless breast cancer progression through suppressing self-renewal of breast cancer stem cells. Pharmacol. Res., 2019, 146, 104330.
[http://dx.doi.org/10.1016/j.phrs.2019.104330] [PMID: 31251988]
[159]
Maitisha, G.; Aimaiti, M.; An, Z.; Li, X. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol. Biol. Rep., 2021, 48(11), 7261-7272.
[http://dx.doi.org/10.1007/s11033-021-06722-1] [PMID: 34626309]
[160]
Naveen, C.R.; Gaikwad, S.; Agrawal-Rajput, R. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells. Phytomedicine, 2016, 23(7), 736-744.
[http://dx.doi.org/10.1016/j.phymed.2016.03.013] [PMID: 27235712]
[161]
Ma, Y.; Yu, W.; Shrivastava, A.; Alemi, F.; Lankachandra, K.; Srivastava, R.K.; Shankar, S. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway. Carcinogenesis, 2017, 38(10), 1047-1056.
[http://dx.doi.org/10.1093/carcin/bgx070] [PMID: 28968696]
[162]
Khan, A.Q.; Mohamed, E.A.N.; Hakeem, I.; Nazeer, A.; Kuttikrishnan, S.; Prabhu, K.S.; Siveen, K.S.; Nawaz, Z.; Ahmad, A.; Zayed, H.; Uddin, S. Sanguinarine induces apoptosis in papillary thyroid cancer cells via generation of reactive oxygen species. Molecules, 2020, 25(5), 1229.
[http://dx.doi.org/10.3390/molecules25051229] [PMID: 32182833]
[163]
Li, W.; Zhang, Q.; Chen, K.; Sima, Z.; Liu, J.; Yu, Q.; Liu, J. 2-Ethoxystypandrone, a novel small-molecule STAT3 signaling inhibitor from Polygonum cuspidatum, inhibits cell growth and induces apoptosis of HCC cells and HCC cancer stem cells. BMC Complement. Altern. Med., 2019, 19(1), 38.
[http://dx.doi.org/10.1186/s12906-019-2440-9] [PMID: 30709346]
[164]
Feng, D.; Peng, C.; Li, C.; Zhou, Y.; Li, M.; Ling, B.; Wei, H.; Tian, Z. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri. Oncol. Rep., 2009, 22(5), 1129-1134.
[PMID: 19787230]
[165]
Ji, J.; Zheng, P.S. Expression of Sox2 in human cervical carcinogenesis. Hum. Pathol., 2010, 41(10), 1438-1447.
[http://dx.doi.org/10.1016/j.humpath.2009.11.021] [PMID: 20709360]
[166]
Bortolomai, I.; Canevari, S.; Facetti, I.; De Cecco, L.; Castellano, G.; Zacchetti, A.; Alison, M.R.; Miotti, S. Tumor initiating cells: Development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle, 2010, 9(6), 1194-1206.
[http://dx.doi.org/10.4161/cc.9.6.11108] [PMID: 20237414]
[167]
Gu, W.; Yeo, E.; McMillan, N.; Yu, C. Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther., 2011, 18(12), 897-905.
[http://dx.doi.org/10.1038/cgt.2011.58] [PMID: 21904396]
[168]
Wang, K.; Zeng, J.; Luo, L.; Yang, J.; Chen, J.; Li, B.; Shen, K. Identification of a cancer stem cell-like side population in the HeLa human cervical carcinoma cell line. Oncol. Lett., 2013, 6(6), 1673-1680.
[http://dx.doi.org/10.3892/ol.2013.1607] [PMID: 24260061]
[169]
Liao, T.; Kaufmann, A.M.; Qian, X.; Sangvatanakul, V.; Chen, C.; Kube, T.; Zhang, G.; Albers, A.E. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines. J. Cancer Res. Clin. Oncol., 2013, 139(1), 159-170.
[http://dx.doi.org/10.1007/s00432-012-1311-2] [PMID: 23001491]
[170]
Hayashi, K.; Tamari, K.; Ishii, H.; Konno, M.; Nishida, N.; Kawamoto, K.; Koseki, J.; Fukusumi, T.; Kano, Y.; Nishikawa, S.; Miyo, M.; Noguchi, K.; Ogawa, H.; Hamabe, A.; Seo, Y.; Doki, Y.; Mori, M.; Ogawa, K. Visualization and characterization of cancer stem-like cells in cervical cancer. Int. J. Oncol., 2014, 45(6), 2468-2474.
[http://dx.doi.org/10.3892/ijo.2014.2670] [PMID: 25269542]
[171]
Wang, L.; Guo, H.; Lin, C.; Yang, L.; Wang, X. Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line. Mol. Med. Rep., 2014, 9(6), 2117-2123.
[http://dx.doi.org/10.3892/mmr.2014.2063] [PMID: 24676900]
[172]
Liu, X.F.; Yang, W.T.; Xu, R.; Liu, J.T.; Zheng, P.S. Cervical cancer cells with positive Sox2 expression exhibit the properties of cancer stem cells. PLoS One, 2014, 9(1), e87092.
[http://dx.doi.org/10.1371/journal.pone.0087092] [PMID: 24489842]
[173]
Villanueva-Toledo, J.; Ponciano-Gómez, A.; Ortiz-Sánchez, E.; Garrido, E. Side populations from cervical-cancer-derived cell lines have stem-cell-like properties. Mol. Biol. Rep., 2014, 41(4), 1993-2004.
[http://dx.doi.org/10.1007/s11033-014-3047-3] [PMID: 24420854]
[174]
Kumazawa, S.; Kajiyama, H.; Umezu, T.; Mizuno, M.; Suzuki, S.; Yamamoto, E.; Mitsui, H.; Sekiya, R.; Shibata, K.; Kikkawa, F. Possible association between stem-like hallmark and radioresistance in human cervical carcinoma cells. J. Obstet. Gynaecol. Res., 2014, 40(5), 1389-1398.
[http://dx.doi.org/10.1111/jog.12357] [PMID: 24750491]
[175]
Qi, W.; Zhao, C.; Zhao, L.; Liu, N.; Li, X.; Yu, W.; Wei, L. Sorting and identification of side population cells in the human cervical cancer cell line HeLa. Cancer Cell Int., 2014, 14(1), 3.
[http://dx.doi.org/10.1186/1475-2867-14-3] [PMID: 24418020]
[176]
Liu, H.; Wang, H.; Li, C.; Zhang, T.; Meng, X.; Zhang, Y.; Qian, H. Spheres from cervical cancer cells display stemness and cancer drug resistance. Oncol. Lett., 2016, 12(3), 2184-2188.
[http://dx.doi.org/10.3892/ol.2016.4893] [PMID: 27602161]
[177]
Asano, T.; Hirohashi, Y.; Torigoe, T.; Mariya, T.; Horibe, R.; Kuroda, T.; Tabuchi, Y.; Saijo, H.; Yasuda, K.; Mizuuchi, M.; Takahashi, A.; Asanuma, H.; Hasegawa, T.; Saito, T.; Sato, N. Brother of the regulator of the imprinted site (BORIS) variant subfamily 6 is involved in cervical cancer stemness and can be a target of immunotherapy. Oncotarget, 2016, 7(10), 11223-11237.
[http://dx.doi.org/10.18632/oncotarget.7165] [PMID: 26849232]
[178]
Wei, Z.T.; Yu, X.W.; He, J.X.; Liu, Y.; Zhang, S.L. Characteristics of primary side population cervical cancer cells. Oncol. Lett., 2017, 14(3), 3536-3544.
[http://dx.doi.org/10.3892/ol.2017.6606] [PMID: 28927110]
[179]
Yang, S.; Chen, T.; Huang, L.; Xu, S.; Cao, Z.; Zhang, S.; Xu, J.; Li, Y.; Yue, Y.; Lu, W.; Cheng, X.; Xie, X. High-risk human papillomavirus e7 maintains stemness via APH1B in cervical cancer stem-cell like cells. Cancer Manag. Res., 2019, 11, 9541-9552.
[http://dx.doi.org/10.2147/CMAR.S194239] [PMID: 31814758]
[180]
Jung, J. Kim, S.; An, H.T.; Ko, J. α;-Actinin-4 regulates cancer stem cell properties and chemoresistance in cervical cancer. Carcinogenesis, 2020, 41(7), 940-949.
[http://dx.doi.org/10.1093/carcin/bgz168] [PMID: 31584624]
[181]
Yao, T.; Weng, X.; Yao, Y.; Huang, C.; Li, J.; Peng, Y.; Lin, R.; Lin, Z. ALDH-1-positive cells exhibited a radioresistant phenotype that was enhanced with hypoxia in cervical cancer. BMC Cancer, 2020, 20(1), 891.
[http://dx.doi.org/10.1186/s12885-020-07337-8] [PMID: 32942996]
[182]
Shi, J.; Zhao, H.; Lian, H.; Ke, L.; Zhao, L.; Wang, C.; Han, Q. CD276 (B7H3) improve cancer stem cells formation in cervical carcinoma cell lines. Transl. Cancer Res., 2021, 10(1), 65-72.
[http://dx.doi.org/10.21037/tcr-19-2910] [PMID: 35116240]
[183]
García-Rocha, R.; Monroy-García, A.; Carrera-Martínez, M.; Hernández-Montes, J.; Don-López, C.A.; Weiss-Steider, B.; Monroy-Mora, K.A.; Ponce-Chavero, M.Á.; Montesinos-Montesinos, J.J.; Escobar-Sánchez, M.L.; Castillo, G.M.; Chacón-Salinas, R.; Vallejo-Castillo, L.; Pérez-Tapia, S.M.; Mora-García, M.L. Evidence that cervical cancer cells cultured as tumorspheres maintain high CD73 expression and increase their protumor characteristics through TGF‐β production. Cell Biochem. Funct., 2022, 40(7), 760-772.
[http://dx.doi.org/10.1002/cbf.3742] [PMID: 36070413]
[184]
Yao, T.; Lu, R.; Li, Y.; Peng, Y.; Ding, M.; Xie, X.; Lin, Z. ALDH1 might influence the metastatic capability of HeLa cells. Tumour Biol., 2015, 36(9), 7045-7051.
[http://dx.doi.org/10.1007/s13277-015-3398-y] [PMID: 25864109]
[185]
Xie, Q.; Liang, J.; Rao, Q.; Xie, X.; Li, R.; Liu, Y.; Zhou, H.; Han, J.; Yao, T.; Lin, Z. Aldehyde dehydrogenase 1 expression predicts chemoresistance and poor clinical outcomes in patients with locally advanced cervical cancer treated with neoadjuvant chemotherapy prior to radical hysterectomy. Ann. Surg. Oncol., 2016, 23(1), 163-170.
[http://dx.doi.org/10.1245/s10434-015-4555-7] [PMID: 25916979]
[186]
Fahmi, M.; Kusuma, F.; Hellyanti, T.; Kekalih, A.; Sekarutami, S.; Nurrana, L.; Purwoto, G.; Anggraeni, T. High ALDH-1 expression predicts non-complete response of radiotherapy in stage iii squamous cell cervical carcinoma patients. Asian Pac. J. Cancer Prev., 2023, 24(6), 1863-1868.
[http://dx.doi.org/10.31557/APJCP.2023.24.6.1863] [PMID: 37378913]
[187]
Yao, T.; Wu, Z.; Liu, Y.; Rao, Q.; Lin, Z. Aldehyde dehydrogenase 1 (ALDH1) positivity correlates with poor prognosis in cervical cancer. J. Int. Med. Res., 2014, 42(4), 1038-1042.
[http://dx.doi.org/10.1177/0300060514527060] [PMID: 24827824]
[188]
Hou, T.; Zhang, W.; Tong, C.; Kazobinka, G.; Huang, X.; Huang, Y.; Zhang, Y. Putative stem cell markers in cervical squamous cell carcinoma are correlated with poor clinical outcome. BMC Cancer, 2015, 15(1), 785.
[http://dx.doi.org/10.1186/s12885-015-1826-4] [PMID: 26499463]
[189]
Fahmi, M.; Hertapanndika, I.; Kusuma, F. The prognostic value of cancer stem cell markers in cervical cancer: A systematic review and meta-analysis. Asian Pac. J. Cancer Prev., 2021, 22(12), 4057-4065.
[http://dx.doi.org/10.31557/APJCP.2021.22.12.4057] [PMID: 34967589]
[190]
Javed, S.; Sood, S.; Rai, B.; Bhattacharyya, S.; Bagga, R.; Srinivasan, R. ALDH1 & CD133 in invasive cervical carcinoma & their association with the outcome of chemoradiation therapy. Indian J. Med. Res., 2021, 154(2), 367-374.
[PMID: 35295009]
[191]
Zhang, J.; Chen, X.; Bian, L.; Wang, Y.; Liu, H. CD44+/CD24+-expressing cervical cancer cells and radioresistant cervical cancer cells exhibit cancer stem cell characteristics. Gynecol. Obstet. Invest., 2019, 84(2), 174-182.
[http://dx.doi.org/10.1159/000493129] [PMID: 30317240]
[192]
Wu, L.; Han, L.; Zhou, C.; Wei, W.; Chen, X.; Yi, H.; Wu, X.; Bai, X.; Guo, S.; Yu, Y.; Liang, L.; Wang, W. TGF-β1-induced CK 17 enhances cancer stem cell-like properties rather than EMT in promoting cervical cancer metastasis via the ERK 1/2- MZF 1 signaling pathway. FEBS J., 2017, 284(18), 3000-3017.
[http://dx.doi.org/10.1111/febs.14162] [PMID: 28703907]
[193]
Ikeda, K.; Tate, G.; Suzuki, T.; Mitsuya, T. Coordinate expression of cytokeratin 8 and cytokeratin 17 immunohistochemical staining in cervical intraepithelial neoplasia and cervical squamous cell carcinoma: An immunohistochemical analysis and review of the literature. Gynecol. Oncol., 2008, 108(3), 598-602.
[http://dx.doi.org/10.1016/j.ygyno.2007.11.042] [PMID: 18191996]
[194]
Li, S.W.; Wu, X.L.; Dong, C.L.; Xie, X.Y.; Wu, J.F.; Zhang, X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS One, 2015, 10(3), e0118033.
[http://dx.doi.org/10.1371/journal.pone.0118033] [PMID: 25816351]
[195]
Yang, Y.; Wang, Y.; Yin, C.; Li, X. Clinical significance of the stem cell gene Oct-4 in cervical cancer. Tumour Biol., 2014, 35(6), 5339-5345.
[http://dx.doi.org/10.1007/s13277-014-1696-4] [PMID: 24532469]
[196]
Shen, L.; Huang, X.; Xie, X.; Su, J.; Yuan, J.; Chen, X. High expression of SOX2 and OCT4 indicates radiation resistance and an independent negative prognosis in cervical squamous cell carcinoma. J. Histochem. Cytochem., 2014, 62(7), 499-509.
[http://dx.doi.org/10.1369/0022155414532654] [PMID: 24710660]
[197]
Huang, X.; Qian, Y.; Wu, H.; Xie, X.; Zhou, Q.; Wang, Y.; Kuang, W.; Shen, L.; Li, K.; Su, J.; Shen, L.; Chen, X. Aberrant expression of osteopontin and E-cadherin indicates radiation resistance and poor prognosis for patients with cervical carcinoma. J. Histochem. Cytochem., 2015, 63(2), 88-98.
[http://dx.doi.org/10.1369/0022155414561329] [PMID: 25380749]
[198]
Gong, P.; Wang, Y.; Gao, Y.; Gao, M.; Liu, L.; Qu, P.; Jin, X.; Gao, Q. Msi1 promotes tumor progression by epithelial-to-mesenchymal transition in cervical cancer. Hum. Pathol., 2017, 65, 53-61.
[http://dx.doi.org/10.1016/j.humpath.2016.12.026] [PMID: 28088346]
[199]
Ding, Y.; Yu, A.Q.; Wang, X.L.; Guo, X.R.; Yuan, Y.H.; Li, D.S. Forced expression of Nanog with mRNA synthesized in vitro to evaluate the malignancy of HeLa cells through acquiring cancer stem cell phenotypes. Oncol. Rep., 2016, 35(5), 2643-2650.
[http://dx.doi.org/10.3892/or.2016.4639] [PMID: 26936116]
[200]
Cao, H.Z.; Liu, X.F.; Yang, W.T.; Chen, Q.; Zheng, P.S. LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer. Cell Death Dis., 2017, 8(9), e3039.
[http://dx.doi.org/10.1038/cddis.2017.393] [PMID: 28880275]
[201]
Pei, G.; Li, B.; Ma, A. Suppression of Hiwi inhibits the growth and epithelial mesenchymal transition of cervical cancer cells. Oncol. Lett., 2018, 16(3), 3874-3880.
[http://dx.doi.org/10.3892/ol.2018.9056] [PMID: 30128001]
[202]
Liu, W.; Gao, Q.; Chen, K.; Xue, X.; Li, M.; Chen, Q.; Zhu, G.; Gao, Y. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. Oncol. Rep., 2014, 32(5), 1853-1860.
[http://dx.doi.org/10.3892/or.2014.3401] [PMID: 25119492]
[203]
Chen, M.Y.; Hsu, C.H.; Setiawan, S.A.; Tzeng, D.T.W.; Ma, H.P.; Ong, J.R.; Chu, Y.C.; Hsieh, M.S.; Wu, A.T.H.; Tzeng, Y.M.; Yeh, C.T. Ovatodiolide and antrocin synergistically inhibit the stemness and metastatic potential of hepatocellular carcinoma via impairing ribosome biogenesis and modulating ERK/Akt-mTOR signaling axis. Phytomedicine, 2023, 108, 154478.
[http://dx.doi.org/10.1016/j.phymed.2022.154478] [PMID: 36265255]
[204]
Jo, M.K.; Moon, C.M.; Kim, E.J.; Kwon, J.H.; Fei, X.; Kim, S.E.; Jung, S.A.; Kim, M.; Mun, Y.C.; Ahn, Y.H.; Seo, S.Y.; Kim, T.I. Suppressive effect of α-mangostin for cancer stem cells in colorectal cancer via the Notch pathway. BMC Cancer, 2022, 22(1), 341.
[http://dx.doi.org/10.1186/s12885-022-09414-6] [PMID: 35351071]
[205]
Khan, A.Q.; Ahmed, E.I.; Elareer, N.; Fathima, H.; Prabhu, K.S.; Siveen, K.S.; Kulinski, M.; Azizi, F.; Dermime, S.; Ahmad, A.; Steinhoff, M.; Uddin, S. Curcumin-mediated apoptotic cell death in papillary thyroid cancer and cancer stem-like cells through targeting of the JAK/STAT3 signaling pathway. Int. J. Mol. Sci., 2020, 21(2), 438.
[http://dx.doi.org/10.3390/ijms21020438] [PMID: 31936675]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy