Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Nanostructures and Niosomes: A Quantum Leap in Clotrimazole Therapeutics

Author(s): Himanshu Gupta*, Jitendra Singh Chaudhary and Dilip Kumar Chanchal

Volume 20, Issue 3, 2025

Published on: 25 January, 2024

Page: [267 - 279] Pages: 13

DOI: 10.2174/0115748855286072240101072301

Price: $65

Abstract

This in-depth analysis examines the revolutionary potential of nanostructures, particularly niosomes, in boosting Clotrimazole's therapeutic effectiveness for dermatological applications. A common antifungal drug called clotrimazole suffers significant problems with solubility, bioavailability, and penetration. Niosomal gels in particular, which are nanostructured drug carriers, have emerged as ground-breaking approaches to overcome these constraints. The study opens with an explanation of the mechanisms of action of Clotrimazole and its wide range of therapeutic uses in dermatology, emphasising the limitations of standard formulations. We present and explore niosomes, lipid-based nanocarriers with diverse characteristics. They provide a viable substrate for improved Clotrimazole administration due to their biocompatibility, adjustable lipid composition, and capacity to encapsulate both hydrophilic and hydrophobic medications. The creation and development of clotrimazole- loaded niosomal gels are at the core of the review. Numerous preparation processes are investigated, and elements affecting the formation of niosomal gel, such as lipid content and optimization strategies, are reviewed. Particle size analysis and encapsulation efficiency testing are two methods for characterising these gels that are covered in depth. The effectiveness of Clotrimazoleloaded niosomal gels is validated in large part by in vitro and in vivo tests. The review explores in vitro drug release investigations, studies of skin permeability and penetration, and comparisons with conventional formulations. When accessible, preclinical and clinical trial insights provide crucial clinical context. The benefits of clotrimazole-loaded niosomal gels, such as greater patient compliance and improved drug delivery, are also covered in the article. It solves difficulties including stability issues and regulatory issues. The review's conclusion emphasises the essential role that nanostructures and niosomes have played in developing Clotrimazole medicines for dermatological usage. It provides a thorough review of current developments, exciting new approaches, and the wider effects of this ground-breaking medication delivery strategy.

Keywords: Clotrimazole, niosomes, nanostructures, drug delivery, antifungal therapy, dermatology.

Graphical Abstract
[1]
Marks JG, Miller JJ. Lookingbill and Marks’ Principles of Dermatology E-Book. Elsevier 2017.
[2]
Yuwnate A, Chandane R, Giri K, Yunati M, Sirsam S. A multicentre pharmacoepidemiological study of dermatological disorders in Wardha district. Int J Basic Clin Pharmacol 2013; 2(6): 751-6.
[http://dx.doi.org/10.5455/2319-2003.ijbcp20131215]
[3]
Zahra SA, Gedajlovic E, Neubaum DO, Shulman JM. A typology of social entrepreneurs: Motives, search processes and ethical challenges. J Bus Venturing 2009; 24(5): 519-32.
[http://dx.doi.org/10.1016/j.jbusvent.2008.04.007]
[4]
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2018; 270: 203-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[5]
Keshwania P, Kaur N, Chauhan J, et al. Superficial dermatophytosis across the world’s populations: Potential benefits from nanocarrier-based therapies and rising challenges. ACS Omega 2023; 8(35): 31575-99.
[http://dx.doi.org/10.1021/acsomega.3c01988] [PMID: 37692246]
[6]
Subissi A, Monti D, Togni G, Mailland F. Ciclopirox. Drugs 2010; 70(16): 2133-52.
[http://dx.doi.org/10.2165/11538110-000000000-00000] [PMID: 20964457]
[7]
Wal P, Saraswat N, Vig H. A detailed insight onto the molecular and cellular mechanism of action of the antifungal drugs used in the treatment of superficial fungal infections. Curr Drug Ther 2022; 17(3): 148-59.
[http://dx.doi.org/10.2174/1574885517666220328141054]
[8]
Mir MA. Human Pathogenic Microbes: Diseases and Concerns. Academic Press 2022.
[9]
Dogra S, Sahni K, Singh S. Newer topical treatments in skin and nail dermatophyte infections. Indian Dermatol Online J 2018; 9(3): 149-58.
[http://dx.doi.org/10.4103/idoj.IDOJ_281_17] [PMID: 29854633]
[10]
Conn HW. Bacteria, yeasts, and molds in the home 1903. Available from: https://books.google.co.in/books
[11]
Waghule T, Sankar S, Rapalli VK, et al. Emerging role of nanocarriers based topical delivery of anti‐fungal agents in combating growing fungal infections. Dermatol Ther 2020; 33(6): e13905.
[http://dx.doi.org/10.1111/dth.13905] [PMID: 32588940]
[12]
Gupta AK, Skinner AR. Ciclopirox for the treatment of superficial fungal infections: A review. Int J Dermatol 2003; 42(S1): 3-9.
[http://dx.doi.org/10.1046/j.1365-4362.42.s1.2.x] [PMID: 12895181]
[13]
Rai M, Ingle AP, Pandit R, et al. Nanotechnology for the treatment of fungal infections on human skin. In: The microbiology of skin, soft tissue, bone and joint infections. Academic Press 2017.
[http://dx.doi.org/10.1016/B978-0-12-811079-9.00019-7]
[14]
Sokovic M, Liaras K. Antifungal compounds discovery: Natural and synthetic approaches. Elsevier 2020.
[15]
Taudorf EH, Jemec GBE, Hay RJ, Saunte DML. Cutaneous candidiasis - an evidence‐based review of topical and systemic treatments to inform clinical practice. J Eur Acad Dermatol Venereol 2019; 33(10): 1863-73.
[http://dx.doi.org/10.1111/jdv.15782] [PMID: 31287594]
[16]
Borelli D, Jacobs PH, Nall L. Tinea versicolor: Epidemiologic, clinical, and therapeutic aspects. J Am Acad Dermatol 1991; 25(2): 300-5.
[http://dx.doi.org/10.1016/0190-9622(91)70198-B] [PMID: 1918469]
[17]
Vermout S, Tabart J, Baldo A, Mathy A, Losson B, Mignon B. Pathogenesis of dermatophytosis. Mycopathologia 2008; 166(5-6): 267-75.
[http://dx.doi.org/10.1007/s11046-008-9104-5] [PMID: 18478361]
[18]
Janniger CK, Schwartz RA, Szepietowski JC, Reich A. Intertrigo and common secondary skin infections. Am Fam Physician 2005; 72(5): 833-8.
[PMID: 16156342]
[19]
Mistiaen P, van Halm-Walters M. Prevention and treatment of intertrigo in large skin folds of adults: A systematic review. BMC Nurs 2010; 9(1): 12.
[http://dx.doi.org/10.1186/1472-6955-9-12] [PMID: 20626853]
[20]
Borkowski S. Diaper rash care and management. Pediatr Nurs 2004; 30(6): 467-70.
[PMID: 15704594]
[21]
Stulberg DL, Wolfrey J. Pityriasis rosea. Am Fam Physician 2004; 69(1): 87-91.
[PMID: 14727822]
[22]
Forouzan P, Cohen PR. Erythrasma revisited: Diagnosis, differential diagnoses, and comprehensive review of treatment. Cureus 2020; 12(9): e10733.
[http://dx.doi.org/10.7759/cureus.10733] [PMID: 33145138]
[23]
Relhan V, Goel K, Bansal S, Garg V. Management of chronic paronychia. Indian J Dermatol 2014; 59(1): 15-20.
[http://dx.doi.org/10.4103/0019-5154.123482] [PMID: 24470654]
[24]
van Burik JAH, Colven R, Spach DH. Cutaneous aspergillosis. J Clin Microbiol 1998; 36(11): 3115-21.
[http://dx.doi.org/10.1128/JCM.36.11.3115-3121.1998] [PMID: 9774549]
[25]
Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 2013; 19: 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[26]
Murakami T, Bodor E, Bodor N. Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs. Expert Opin Drug Metab Toxicol 2021; 17(5): 555-80.
[http://dx.doi.org/10.1080/17425255.2021.1902986] [PMID: 33703995]
[27]
Marzulli FN. Barriers to skin penetration. J Invest Dermatol 1962; 39(5): 387-93.
[http://dx.doi.org/10.1038/jid.1962.129] [PMID: 13933249]
[28]
Fernandes B, Matamá T, Cavaco-Paulo A, Cavaco-Paulo A. Cyclosporin A-loaded poly(d,l -lactide) nanoparticles: a promising tool for treating alopecia. Nanomedicine 2020; 15(15): 1459-69.
[http://dx.doi.org/10.2217/nnm-2020-0089] [PMID: 32552553]
[29]
Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? J Pharm Sci 2009; 98(8): 2549-72.
[http://dx.doi.org/10.1002/jps.21650] [PMID: 19373886]
[30]
Bonanomi G, Gaglione SA, Cesarano G, et al. Frequent applications of organic matter to agricultural soil increase fungistasis. Pedosphere 2017; 27(1): 86-95.
[http://dx.doi.org/10.1016/S1002-0160(17)60298-4]
[31]
Terada T, Noda S, Inui K. Management of dose variability and side effects for individualized cancer pharmacotherapy with tyrosine kinase inhibitors. Pharmacol Ther 2015; 152: 125-34.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.009] [PMID: 25976912]
[32]
Meudom R, Zhang Y, VandenBerg MA, et al. Supramolecular approaches for insulin stabilization without prolonged duration of action. Acta Pharm Sin B 2023; 13(5): 2281-90.
[http://dx.doi.org/10.1016/j.apsb.2023.01.007] [PMID: 37250160]
[33]
Fluhr JW, Darlenski R, Angelova-Fischer I, Tsankov N, Basketter D. Skin irritation and sensitization: Mechanisms and new approaches for risk assessment. 1. Skin irritation. Skin Pharmacol Physiol 2008; 21(3): 124-35.
[http://dx.doi.org/10.1159/000131077] [PMID: 18523410]
[34]
Stone MH, Fleck SJ, Triplett NT, Kraemer WJ. Health- and performance-related potential of resistance training. Sports Med 1991; 11(4): 210-31.
[http://dx.doi.org/10.2165/00007256-199111040-00002] [PMID: 2014369]
[35]
Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 2008; 97(2): 726-45.
[http://dx.doi.org/10.1002/jps.21024] [PMID: 17823947]
[36]
Yabbarov NG, Posypanova GA, Vorontsov EA, Popova ON, Severin ES. Targeted delivery of doxorubicin: Drug delivery system based on PAMAM dendrimers. Biochemistry 2013; 78(8): 884-94.
[http://dx.doi.org/10.1134/S000629791308004X] [PMID: 24228876]
[37]
Sousa F, Ferreira D, Reis S, Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals 2020; 13(9): 248.
[http://dx.doi.org/10.3390/ph13090248] [PMID: 32942693]
[38]
Cornette JL, Cease KB, Margalit H, Spouge JL, Berzofsky JA, DeLisi C. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J Mol Biol 1987; 195(3): 659-85.
[http://dx.doi.org/10.1016/0022-2836(87)90189-6] [PMID: 3656427]
[39]
Kaiser ET, Kézdy FJ. Amphiphilic secondary structure: Design of peptide hormones. Science 1984; 223(4633): 249-55.
[http://dx.doi.org/10.1126/science.6322295] [PMID: 6322295]
[40]
Wang D, Bradford SA, Harvey RW, Hao X, Zhou D. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid. J Hazard Mater 2012; 229-230: 170-6.
[http://dx.doi.org/10.1016/j.jhazmat.2012.05.089] [PMID: 22721835]
[41]
Oh JY, Yang G, Choi E, Ryu JH. Mesoporous silica nanoparticle-supported nanocarriers with enhanced drug loading, encapsulation stability, and targeting efficiency. Biomater Sci 2022; 10(6): 1448-55.
[http://dx.doi.org/10.1039/D2BM00010E] [PMID: 35229845]
[42]
Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res 2010; 27(10): 2043-53.
[http://dx.doi.org/10.1007/s11095-010-0159-x] [PMID: 20535532]
[43]
He B, Sui X, Yu B, Wang S, Shen Y,, Cong H. Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Deliv 2020; 27(1): 1474-90.
[http://dx.doi.org/10.1080/10717544.2020.1831106] [PMID: 33100061]
[44]
Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian. J Pharmaceut sci 2014; 9(6): 304-16.
[http://dx.doi.org/10.1016/j.ajps.2014.05.005]
[45]
Ameeduzzafar Ali J, Fazil M, Qumbar M, Khan N, Ali A. Colloidal drug delivery system: Amplify the ocular delivery. Drug Deliv 2016; 23(3): 700-16.
[http://dx.doi.org/10.3109/10717544.2014.923065] [PMID: 24892625]
[46]
Hamishehkar H, Rahimpour Y, Kouhsoltani M. Niosomes as a propitious carrier for topical drug delivery. Expert Opin Drug Deliv 2013; 10(2): 261-72.
[http://dx.doi.org/10.1517/17425247.2013.746310] [PMID: 23252629]
[47]
Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv 2012; 9(7): 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[48]
Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Liposomes. Methods Protoc 2017; 17-22.
[49]
Kapus P, Ofner H. Development of fuel injection equipment and combustion system for DI diesels operated on dimethyl ether. SAE technical paper 1995.
[http://dx.doi.org/10.4271/950062]
[50]
Cortesi R, Esposito E, Gambarin S, Telloli P, Menegatti E, Nastruzzi C. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J Microencapsul 1999; 16(2): 251-6.
[http://dx.doi.org/10.1080/026520499289220] [PMID: 10080118]
[51]
Gaidhani KA, Harwalkar M, Bhambere D, Nirgude PS. Lyophilization/freeze drying-A review. World J Pharm Res 2015; 4(8): 516-43.
[52]
Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 2018; 19(5): 281-96.
[http://dx.doi.org/10.1038/nrm.2017.138] [PMID: 29410529]
[53]
Petkova B, Tcholakova S, Chenkova M, et al. Foamability of aqueous solutions: Role of surfactant type and concentration. Adv Colloid Interface Sci 2020; 276: 102084.
[http://dx.doi.org/10.1016/j.cis.2019.102084] [PMID: 31884021]
[54]
Sawyer PR, Brogden RN, Pinder RM, Speight TM, Avery GS. Clotrimazole. Drugs 1975; 9(6): 424-47.
[http://dx.doi.org/10.2165/00003495-197509060-00003] [PMID: 1097234]
[55]
Kaur D, Kumar S. Niosomes: Present scenario and future aspects. J Drug Deliv Ther 2018; 8(5): 35-43.
[http://dx.doi.org/10.22270/jddt.v8i5.1886]
[56]
Essa E. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J Pharm 2010; 4(4): 227.
[http://dx.doi.org/10.4103/0973-8398.76752]
[57]
Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 2011; 1(4): 208-19.
[http://dx.doi.org/10.1016/j.apsb.2011.09.002]
[58]
Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res 2018; 79(5): 201-17.
[http://dx.doi.org/10.1002/ddr.21452] [PMID: 30188584]
[59]
Zhou Y, Tang Y, Liao C, Su M, Shih K. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. J Hazard Mater 2023; 448: 130977.
[http://dx.doi.org/10.1016/j.jhazmat.2023.130977] [PMID: 36860053]
[60]
Mirzaie A, Peirovi N, Akbarzadeh I, et al. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorg Chem 2020; 103: 104231.
[http://dx.doi.org/10.1016/j.bioorg.2020.104231] [PMID: 32882442]
[61]
Babick F. Dynamic light scattering (DLS). In: Characterization of nanoparticles. Elsevier 2020.
[http://dx.doi.org/10.1016/B978-0-12-814182-3.00010-9]
[62]
Tang CY, Yang Z. Transmission electron microscopy (TEM). Membrane characterization. Elsevier 2017.
[http://dx.doi.org/10.1016/B978-0-444-63776-5.00008-5]
[63]
Mohammed A, Abdullah A. Scanning electron microscopy (SEM): A review. InProceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX 2018. Available from: https://fluidas.ro/hervex/proceedings2018/77-85.pdf
[64]
Trache A, Meininger GA. Atomic force microscopy (AFM). Curr Proto Microbiol 2008; 2.
[http://dx.doi.org/10.1002/9780471729259.mc02c02s8]
[65]
Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol 2011; 697: 63-70.
[http://dx.doi.org/10.1007/978-1-60327-198-1_6]
[66]
Chen Y, Zou C, Mastalerz M, Hu S, Gasaway C, Tao X. Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences-a review. Int J Mol Sci 2015; 16(12): 30223-50.
[http://dx.doi.org/10.3390/ijms161226227] [PMID: 26694380]
[67]
El-Ridy MS, Yehia SA, Mohsen AM, El-Awdan SA, Darwish AB. Formulation of niosomal gel for enhanced transdermal lornoxicam delivery: In-vitro and in-vivo evaluation. Curr Drug Deliv 2018; 15(1): 122-33.
[PMID: 28240177]
[68]
Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle size analysis in pharmaceutics: Principles, methods and applications. Pharm Res 2007; 24(2): 203-27.
[http://dx.doi.org/10.1007/s11095-006-9146-7] [PMID: 17191094]
[69]
Sadhu S, Bhowmick AK. Morphology study of rubber based nanocomposites by transmission electron microscopy and atomic force microscopy. J Mater Sci 2005; 40(7): 1633-42.
[http://dx.doi.org/10.1007/s10853-005-0663-2]
[70]
Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 2010; 27(3): 187-97.
[http://dx.doi.org/10.3109/02652040903131301] [PMID: 20406093]
[71]
Tavano L, Gentile L, Oliviero Rossi C, Muzzalupo R. Novel gel-niosomes formulations as multicomponent systems for transdermal drug delivery. Colloids Surf B Biointerfaces 2013; 110: 281-8.
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.017] [PMID: 23732806]
[72]
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144: 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[73]
Abdelbary G, El-gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 2008; 9(3): 740-7.
[http://dx.doi.org/10.1208/s12249-008-9105-1] [PMID: 18563578]
[74]
Sguizzato M, Pepe A, Baldisserotto A, et al. Niosomes for topical application of antioxidant molecules: Design and in vitro behavior. Gels 2023; 9(2): 107.
[http://dx.doi.org/10.3390/gels9020107] [PMID: 36826277]
[75]
Sankalia JM, Sankalia MG, Mashru RC. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: Establishment of level A IVIVC. J Control Release 2008; 129(1): 49-58.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.016] [PMID: 18456362]
[76]
Sandberg A, Blomqvist I, Jonsson UE, Lundborg P. Pharmacokinetic and pharmacodynamic properties of a new controlled-release formulation of metoprolol: A comparison with conventional tablets. Eur J Clin Pharmacol 1988; 33(S1): S9-S14.
[http://dx.doi.org/10.1007/BF00578406] [PMID: 3371395]
[77]
Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm 2001; 215(1-2): 51-6.
[http://dx.doi.org/10.1016/S0378-5173(00)00665-7] [PMID: 11250091]
[78]
Nounou M, El-Khordagui L, Khalafallah N, Khalil S. Liposomal formulation for dermal and transdermal drug delivery: Past, present and future. Recent Pat Drug Deliv Formul 2008; 2(1): 9-18.
[http://dx.doi.org/10.2174/187221108783331375] [PMID: 19075893]
[79]
Ning M, Guo Y, Pan H, Chen X, Gu Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev Ind Pharm 2005; 31(4-5): 375-83.
[http://dx.doi.org/10.1081/DDC-54315] [PMID: 16093203]
[80]
Nohynek GJ, Antignac E, Re T, Toutain H. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 2010; 243(2): 239-59.
[http://dx.doi.org/10.1016/j.taap.2009.12.001] [PMID: 20005888]
[81]
Sawant B, Khan T. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed Pharmacother 2017; 96: 1478-90.
[http://dx.doi.org/10.1016/j.biopha.2017.11.127] [PMID: 29223551]
[82]
Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asian J Pharm Sci 2019; 14(2): 117-29.
[http://dx.doi.org/10.1016/j.ajps.2018.05.007]
[83]
Kaur IP, Kakkar S. Topical delivery of antifungal agents. Expert Opin Drug Deliv 2010; 7(11): 1303-27.
[http://dx.doi.org/10.1517/17425247.2010.525230] [PMID: 20961206]
[84]
Fang JY, Hwang TL, Huang YL. Liposomes as vehicles for enhancing drug delivery via skin routes. Curr Nanosci 2006; 2(1): 55-70.
[http://dx.doi.org/10.2174/157341306775473791]
[85]
Azeem A, Anwer MK, Talegaonkar S. Niosomes in sustained and targeted drug delivery: Some recent advances. J Drug Target 2009; 17(9): 671-89.
[http://dx.doi.org/10.3109/10611860903079454] [PMID: 19845484]
[86]
Jain N, Verma A, Jain N. Formulation and investigation of pilocarpine hydrochloride niosomal gels for the treatment of glaucoma: Intraocular pressure measurement in white albino rabbits. Drug Deliv 2020; 27(1): 888-99.
[http://dx.doi.org/10.1080/10717544.2020.1775726] [PMID: 32551978]
[87]
Ferreira L, Mascarenhas-Melo F, Rabaça S, et al. Cyclodextrin-based dermatological formulations: Dermopharmaceutical and cosmetic applications. Colloids Surf B Biointerfaces 2022; 113012.
[http://dx.doi.org/10.1016/j.colsurfb.2022.113012] [PMID: 36395617]
[88]
Lam PL, Gambari R. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release 2014; 178: 25-45.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.028] [PMID: 24417967]
[89]
Kim JK, Zeb A, Qureshi OS, Kim H-S, Cha J-H, Kim HS. Improved skin permeation of methotrexate via nanosized ultradeformable liposomes. Int J Nanomedicine 2016; 11: 3813-24.
[http://dx.doi.org/10.2147/IJN.S109565] [PMID: 27540293]
[90]
Sindhu R, Binod P, Madhavan A, et al. Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresour Technol 2017; 245(Pt B): 1740-8.
[http://dx.doi.org/10.1016/j.biortech.2017.04.098] [PMID: 28478894]
[91]
Reker DM, Duncan PW, Horner RD, et al. Postacute stroke guideline compliance is associated with greater patient satisfaction. Arch Phys Med Rehabil 2002; 83(6): 750-6.
[http://dx.doi.org/10.1053/apmr.2002.99736] [PMID: 12048651]
[92]
Williams D. Revisiting the definition of biocompatibility. Med Device Technol 2003; 14(8): 10-3.
[PMID: 14603712]
[93]
Qu F, Geng R, Liu Y, Zhu J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 2022; 12(7): 3372-406.
[http://dx.doi.org/10.7150/thno.69999] [PMID: 35547773]
[94]
Schmidt C, Lautenschlaeger C, Collnot EM, et al. Nano- and microscaled particles for drug targeting to inflamed intestinal mucosa-A first in vivo study in human patients. J Control Release 2013; 165(2): 139-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.019] [PMID: 23127508]
[95]
Varma RS. Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 2012; 1(2): 123-8.
[http://dx.doi.org/10.1016/j.coche.2011.12.002]
[96]
Akhlaghi M, Taebpour M, Lotfabadi NN, et al. Synthesis and characterization of smart stimuli-responsive herbal drug-encapsulated nanoniosome particles for efficient treatment of breast cancer. Nanotechnol Rev 2022; 11(1): 1364-85.
[http://dx.doi.org/10.1515/ntrev-2022-0080]
[97]
Jain S, Patel N, Shah MK, Khatri P, Vora N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J Pharm Sci 2017; 106(2): 423-45.
[http://dx.doi.org/10.1016/j.xphs.2016.10.001] [PMID: 27865609]
[98]
Gorantla S, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Advances 2020; 10(46): 27835-55.
[http://dx.doi.org/10.1039/D0RA04971A] [PMID: 35516960]
[99]
Aparajay P, Dev A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 2022; 168: 106052.
[http://dx.doi.org/10.1016/j.ejps.2021.106052] [PMID: 34740786]
[100]
Zhou X, Hao Y, Yuan L, et al. Nano-formulations for transdermal drug delivery: A review. Chin Chem Lett 2018; 29(12): 1713-24.
[http://dx.doi.org/10.1016/j.cclet.2018.10.037]
[101]
Nicoli MC, Calligaris S, Manzocco L. Shelf-life testing of coffee and related products: Uncertainties, pitfalls, and perspectives. Food Eng Rev 2009; 1(2): 159-68.
[http://dx.doi.org/10.1007/s12393-009-9010-8]
[102]
Grol R. Successes and failures in the implementation of evidence-based guidelines for clinical practice. Med Care 2001; 39(8): 11-54.
[http://dx.doi.org/10.1097/00005650-200108002-00003] [PMID: 11583121]
[103]
Adams B, Bak H, Tustian AD. Moving from the bench towards a large scale, industrial platform process for adeno‐associated viral vector purification. Biotechnol Bioeng 2020; 117(10): 3199-211.
[http://dx.doi.org/10.1002/bit.27472] [PMID: 32573761]
[104]
Agrawal JP. Some new high energy materials and their formulations for specialized applications. Propellants, Explosives, Pyrotechnics. Int J Deal Sci Technol Aspect Energ Mater 2005; 30(5): 316-28.
[http://dx.doi.org/10.1002/prep.20050002]
[105]
Löscher W, Klotz U, Zimprich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009; 50(1): 1-23.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01716.x] [PMID: 18627414]
[106]
Jacxsens L, Luning PA, van der Vorst JGAJ, Devlieghere F, Leemans R, Uyttendaele M. Simulation modelling and risk assessment as tools to identify the impact of climate change on microbiological food safety - The case study of fresh produce supply chain. Food Res Int 2010; 43(7): 1925-35.
[http://dx.doi.org/10.1016/j.foodres.2009.07.009]
[107]
Lamanna WC, Holzmann J, Cohen HP, et al. Maintaining consistent quality and clinical performance of biopharmaceuticals. Expert Opin Biol Ther 2018; 18(4): 369-79.
[http://dx.doi.org/10.1080/14712598.2018.1421169] [PMID: 29285958]
[108]
Goyal G, Garg T, Malik B, Chauhan G, Rath G, Goyal AK. Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv 2015; 22(8): 1027-42.
[http://dx.doi.org/10.3109/10717544.2013.855277] [PMID: 24251352]
[109]
Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. Gastroenterology 2018; 154(6): 1706-1718.e1.
[http://dx.doi.org/10.1053/j.gastro.2018.01.064] [PMID: 29425931]
[110]
Cvenkel B, Kolko M. Devices and treatments to address low adherence in glaucoma patients: A narrative review. J Clin Med 2022; 12(1): 151.
[http://dx.doi.org/10.3390/jcm12010151] [PMID: 36614952]
[111]
Paiva-Santos AC, Silva AL, Guerra C, et al. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm Res 2021; 38(6): 947-70.
[http://dx.doi.org/10.1007/s11095-021-03053-5] [PMID: 34036520]
[112]
Nawaz A, Jan SU, Khan NR, Hussain A, Khan GM. Formulation and in vitro evaluation of clotrimazole gel containing almond oil and tween 80 as penetration enhancer for topical application. Pak J Pharm Sci 2013; 26(3): 617-22.
[PMID: 23625439]
[113]
Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int 2015; 2015: 1-15.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[114]
Mazidi Z, Javanmardi S, Naghib SM, Mohammadpour Z. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials. Chem Eng J 2022; 433: 134569.
[http://dx.doi.org/10.1016/j.cej.2022.134569]
[115]
Morteza-Semnani K, Saeedi M, Akbari J, et al. Green formulation, characterization, antifungal and biological safety evaluation of terbinafine HCl niosomes and niosomal gels manufactured by eco-friendly green method. J Biomater Sci Polym Ed 2022; 33(18): 2325-52.
[http://dx.doi.org/10.1080/09205063.2022.2103626] [PMID: 35848460]
[116]
Tiwari A, Tiwari A, Eds. Nanomaterials in drug delivery, imaging, and tissue engineering. John Wiley & Sons 2013.
[http://dx.doi.org/10.1002/9781118644591]
[117]
Shetty K, Sherje AP. Nano intervention in topical delivery of corticosteroid for psoriasis and atopic dermatitis-a systematic review. J Mater Sci Mater Med 2021; 32(8): 88.
[http://dx.doi.org/10.1007/s10856-021-06558-y] [PMID: 34331599]
[118]
Costa R, Santos L. Delivery systems for cosmetics - From manufacturing to the skin of natural antioxidants. Powder Technol 2017; 322: 402-16.
[http://dx.doi.org/10.1016/j.powtec.2017.07.086]
[119]
Nour S, Imani R, Chaudhry GR, Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches. J Biomed Mater Res A 2021; 109(4): 453-78.
[http://dx.doi.org/10.1002/jbm.a.37105] [PMID: 32985051]
[120]
Pandey M, Choudhury H, Gorain B, et al. Site-specific vesicular drug delivery system for skin cancer: A novel approach for targeting. Gels 2021; 7(4): 218.
[http://dx.doi.org/10.3390/gels7040218] [PMID: 34842689]
[121]
Shah P, Goodyear B, Haq A, Puri V, Michniak-Kohn B. Evaluations of quality by design (QbD) elements impact for developing niosomes as a promising topical drug delivery platform. Pharmaceutics 2020; 12(3): 246.
[http://dx.doi.org/10.3390/pharmaceutics12030246] [PMID: 32182792]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy