Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Mini-Review Article

Nanoparticles as Catalysts: Exploring Potential Applications

Author(s): Shibani Basu* and Bimal Krishna Banik*

Volume 11, Issue 4, 2024

Published on: 25 January, 2024

Page: [265 - 272] Pages: 8

DOI: 10.2174/0122133372285610231227094959

Price: $65

Abstract

Nanoparticles have emerged as highly promising catalysts due to their unique physical and chemical properties arising from their small size and high surface area–to–volume ratio. This review delves into the diverse applications of nanoparticles as catalysts in various chemical reactions. A key advantage lies in their substantial surface area–to–volume ratio, facilitation, enhanced accessibility of reactants, and heightened interaction with the catalyst surface. This distinctive characteristic results in improved catalytic activity and efficiency. Additionally, size-dependent properties, such as surface plasmon resonance and quantum confinement effects, offer opportunities for tailoring catalytic behavior. Despite their immense potential, challenges such as synthesis, stability, toxicity, aggregation, and recyclability require attention. Future research should prioritize scalable and sustainable synthesis methods, improve catalyst stability under harsh conditions, and ensure safe handling and disposal. This review provides an overview of the role of nanoparticles as catalysts and highlights their significance in various fields, highlighting their exceptional performance, versatility, and environmental benefits.

Keywords: Nanoparticles, catalyst, environmental remediation, green technology, size dependent properties, catalytic behavior.

Graphical Abstract
[1]
Talapin, D.V.; Shevchenko, E.V. Introduction: Nanoparticle chemistry. Chem. Rev., 2016, 116(18), 10343-10345.
[http://dx.doi.org/10.1021/acs.chemrev.6b00566] [PMID: 27677520]
[2]
Basu, S.; Ghosh, M.; Bhunia, R.K.; Ganguly, J.; Banik, B.K. Polysaccharides from Dolichos biflorus Linn and Trachyspermum ammi Linn seeds: Isolation, characterization and remarkable antimicrobial activity. Chem. Cent. J., 2017, 11(1), 118.
[http://dx.doi.org/10.1186/s13065-017-0349-2] [PMID: 29159657]
[3]
Basu, S.; Maji, P.; Ganguly, J. Biosynthesis, characterisation and antimicrobial activity of silver and gold nanoparticles by Dolichos biflorus Linn seed extract. J. Exp. Nanosci., 2016, 11(8), 660-668.
[http://dx.doi.org/10.1080/17458080.2015.1112042]
[4]
Basu, S.; Maji, P.; Ganguly, J. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis. Appl. Nanosci., 2016, 6(1), 1-5.
[http://dx.doi.org/10.1007/s13204-015-0407-9]
[5]
Somorjai, G.A.; Borodko, Y.G. Research in nanosciences – Great opportunity for catalysis science. Catal. Lett., 2001, 76(1/2), 1-5.
[http://dx.doi.org/10.1023/A:1016711323302]
[6]
Hervés, P.; Pérez-Lorenzo, M.; Liz-Marzán, L.M.; Dzubiella, J.; Lu, Y.; Ballauff, M. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chem. Soc. Rev., 2012, 41(17), 5577-5587.
[http://dx.doi.org/10.1039/c2cs35029g] [PMID: 22648281]
[7]
Ertl, G. Wilhelm Ostwald: Founder of physical chemistry and Nobel laureate 1909. Angew. Chem. Int. Ed., 2009, 48(36), 6600-6606.
[http://dx.doi.org/10.1002/anie.200901193] [PMID: 19536798]
[8]
Fechete, I. Paul sabatier – The father of the chemical theory of catalysis. C. R. Chim., 2016, 19(11-12), 1374-1381.
[http://dx.doi.org/10.1016/j.crci.2016.08.006]
[9]
Haruta, M.; Kobayashi, T.; Sano, H. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0•Ž. Chem. Lett., 1987, 16(2), 405-408.
[10]
Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev., 1997, 97(6), 2373-2420.
[http://dx.doi.org/10.1021/cr960406n] [PMID: 11848903]
[11]
Jin, R. The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol. Rev., 2012, 1(2012), 31-56.
[http://dx.doi.org/10.1515/ntrev-2011-0003]
[12]
Gómez-López, P.; Puente-Santiago, A.; Castro-Beltrán, A.; do Nascimento, S.L.A.; Balu, A.M.; Luque, R.; Alvarado-Beltrán, C.G. Nanomaterials and catalysis for green chemistry. Curr. Opin. Green Sustain. Chem., 2020, 24, 48-55.
[http://dx.doi.org/10.1016/j.cogsc.2020.03.001]
[13]
Narayan, N.; Meiyazhagan, A.; Vajtai, R. Metal nanoparticles as green catalysts. Materials, 2019, 12(21), 3602.
[http://dx.doi.org/10.3390/ma12213602]
[14]
Somorjai, G.A.; Rioux, R.M. High technology catalysts towards 100% selectivity. Catal. Today, 2005, 100(3-4), 201-215.
[http://dx.doi.org/10.1016/j.cattod.2004.07.059]
[15]
Zhang, Q.; Uchaker, E.; Candelaria, S.L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev., 2013, 42(7), 3127-3171.
[http://dx.doi.org/10.1039/c3cs00009e] [PMID: 23455759]
[16]
Banin, U.; Waiskopf, N.; Hammarström, L.; Boschloo, G.; Freitag, M.; Johansson, E.M.J.; Sá, J.; Tian, H.; Johnston, M.B.; Herz, L.M.; Milot, R.L.; Kanatzidis, M.G.; Ke, W.; Spanopoulos, I.; Kohlstedt, K.L.; Schatz, G.C.; Lewis, N.; Meyer, T.; Nozik, A.J.; Beard, M.C.; Armstrong, F.; Megarity, C.F.; Schmuttenmaer, C.A.; Batista, V.S.; Brudvig, G.W. Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2020, 32(4), 042003.
[http://dx.doi.org/10.1088/1361-6528/abbce8]
[17]
Chen, T.W.; Anushya, G.; Chen, S.M.; Kalimuthu, P.; Mariyappan, V.; Gajendran, P.; Ramachandran, R. Recent advances in nanoscale based electrocatalysts for metal-air battery, fuel cell and water-splitting applications: An overview. Materials, 2022, 15(2), 458.
[http://dx.doi.org/10.3390/ma15020458]
[18]
Ningthoujam, R.; Singh, Y.D.; Babu, P.J.; Tirkey, A.; Pradhan, S.; Sarma, M. Nanocatalyst in remediating environmental pollutants. Chem. Phy. Impact, 2022, 4, 100064.
[http://dx.doi.org/10.1016/j.chphi.2022.100064]
[19]
Chadha, U.; Selvaraj, S.K.; Ashokan, H.; Hariharan, S.P.; Mathew Paul, V.; Venkatarangan, V.; Paramasivam, V. Complex nanomaterials in catalysis for chemically significant applications: From synthesis and hydrocarbon processing to renewable energy applications. In: Advances in Materials Science and Engineering; Hindawi Limited, 2022.
[http://dx.doi.org/10.1155/2022/1552334]
[20]
Piracha, S.; Saleem, S.; Basharat, G.; Anjum, A.; Yaseen, Z. Nanoparticle: Role in chemical industries, potential sources and chemical catalysis applications. Sch. Int. J. Chem. Mater. Sci., 2021, 4(4), 40-45.
[http://dx.doi.org/10.36348/sijcms.2021.v04i04.006]
[21]
Somwanshi, S.B.; Somvanshi, S.B.; Kharat, P.B. Nanocatalyst: A brief review on synthesis to applications. J. Phys. Conf. Ser., 2020, 1644, 012046.
[http://dx.doi.org/10.1088/1742-6596/1644/1/012046]
[22]
Rao, C.N.R.; Kulkarni, G.U.; Thomas, P.J.; Edwards, P.P. Metal nanoparticles and their assemblies. Chem. Soc. Rev., 2000, 29, 27-35.
[http://dx.doi.org/10.1039/a904518j]
[23]
Basu, S.; Samanta, H.S.; Ganguly, J. Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft Mater., 2018, 16(1), 7-19.
[http://dx.doi.org/10.1080/1539445X.2017.1368559]
[24]
Han, J.; Zhao, D.; Li, D.; Wang, X.; Jin, Z.; Zhao, K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers, 2018, 10(1), 31.
[http://dx.doi.org/10.3390/polym10010031]
[25]
Hou, D.; Xie, C.; Huang, K.; Zhu, C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials, 2003, 24(10), 1781-1785.
[http://dx.doi.org/10.1016/S0142-9612(02)00578-1] [PMID: 12593960]
[26]
Katz, E.; Willner, I.; Wang, J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. In: Electroanalysis; Wiley-VCH Verlag, 2004; pp. 19-44.
[http://dx.doi.org/10.1002/elan.200302930]
[27]
Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C, 2009, 113(43), 18546-18551.
[http://dx.doi.org/10.1021/jp905912n]
[28]
Yang, H.; Wang, H.; Wen, C.; Bai, S.; Wei, P.; Xu, B.; Xu, Y.; Liang, C.; Zhang, Y.; Zhang, G.; Wen, H.; Zhang, L. Effects of iron oxide nanoparticles as T2-MRI contrast agents on reproductive system in male mice. J. Nanobiotechnology, 2022, 20(1), 98.
[http://dx.doi.org/10.1186/s12951-022-01291-2] [PMID: 35236363]
[29]
Fernández-Barahona, I.; Muñoz-Hernando, M.; Ruiz-Cabello, J.; Herranz, F.; Pellico, J. Iron oxide nanoparticles: An alternative for positive contrast in magnetic resonance imaging. Inorganics, 2020, 8(4), 28.
[http://dx.doi.org/10.3390/inorganics8040028]
[30]
Shen, Z.; Wu, A.; Chen, X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol. Pharm., 2017, 14(5), 1352-1364.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00839]
[31]
Oberdick, S.D.; Jordanova, K.V.; Lundstrom, J.T.; Parigi, G.; Poorman, M.E.; Zabow, G.; Keenan, K.E. Iron oxide nanoparticles as positive T1 contrast agents for low-field magnetic resonance imaging at 64 mT. Sci. Rep., 2023, 13(1), 11520.
[http://dx.doi.org/10.1038/s41598-023-38222-6] [PMID: 37460669]
[32]
Abed, A.; Derakhshan, M.; Karimi, M.; Shirazinia, M.; Mahjoubin-Tehran, M.; Homayonfal, M.; Hamblin, M.R.; Mirzaei, S.A.; Soleimanpour, H.; Dehghani, S.; Dehkordi, F.F.; Mirzaei, H. Platinum nanoparticles in biomedicine: Preparation, anti-cancer activity, and drug delivery vehicles. Front. Pharmacol., 2022, 13, 797804.
[http://dx.doi.org/10.3389/fphar.2022.797804]
[33]
Bloch, K.; Pardesi, K.; Satriano, C.; Ghosh, S. Bacteriogenic platinum nanoparticles for application in nanomedicine. Front Chem., 2021, 9, 624344.
[http://dx.doi.org/10.3389/fchem.2021.624344] [PMID: 33763405]
[34]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403]
[35]
Xia, W.; Tao, Z.; Zhu, B.; Zhang, W.; Liu, C.; Chen, S.; Song, M. Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy. Int. J. Mol. Sci., 2021, 22(17), 9118.
[http://dx.doi.org/10.3390/ijms22179118] [PMID: 34502028]
[36]
Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid nanoparticles from liposomes to MRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano, 2021, 15(11), 16982-17015.
[http://dx.doi.org/10.1021/acsnano.1c04996]
[37]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8]
[38]
Matea, C.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[39]
Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater., 2019, 94, 44-63.
[http://dx.doi.org/10.1016/j.actbio.2019.05.022]
[40]
Alsheheri, S.Z. Nanocomposites containing titanium dioxide for environmental remediation. In: Designed Monomers and Polymers; Taylor and Francis Ltd., 2021; pp. 22-45.
[http://dx.doi.org/10.1080/15685551.2021.1876322]
[41]
Irshad, M.A.; Nawaz, R.; Rehman, M.Z.; Adrees, M.; Rizwan, M.; Ali, S.; Ahmad, S.; Tasleem, S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicol. Environ. Saf., 2021, 212, 111978.
[http://dx.doi.org/10.1016/j.ecoenv.2021.111978] [PMID: 33561774]
[42]
Noureddine, A.; Maestas-Olguin, A.; Tang, L.; Corman-Hijar, J.I.; Olewine, M.; Krawchuck, J.A.; Tsala Ebode, J.; Edeh, C.; Dang, C.; Negrete, O.A.; Watt, J.; Howard, T.; Coker, E.N.; Guo, J.; Brinker, C.J. Future of mesoporous silica nanoparticles in nanomedicine: Protocol for reproducible synthesis, characterization, lipid coating, and loading of therapeutics (chemotherapeutic, proteins, siRNA and mRNA). ACS Nano, 2023, 17(17), 16308-16325.
[http://dx.doi.org/10.1021/acsnano.3c07621] [PMID: 37643407]
[43]
Lin, V.S.Y. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct. Target. Ther., 2008, 81, 435.
[http://dx.doi.org/10.1038/s41392-023-01654-7]
[44]
Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic iron oxide nanoparticles-current and prospective medical applications. Materials, 2019, 12(4), 617.
[http://dx.doi.org/10.3390/ma12040617]
[45]
Nelson, N.; Port, J.; Pandey, M. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: An educational review. J. Nanotheranostics, 2020, 1(1), 105-135.
[http://dx.doi.org/10.3390/jnt1010008]
[46]
Speranza, G. Carbon nanomaterials: Synthesis, functionalization and sensing applications. Nanomaterials, 2021, 11(4), 967.
[http://dx.doi.org/10.3390/nano11040967]
[47]
Li, J.; Cheng, Y.; Gu, M.; Yang, Z.; Zhan, L.; Du, Z. Sensing and stimulation applications of carbon nanomaterials in implantable brain-computer interface. Int. J. Mol. Sci., 2023, 24(6), 5182.
[http://dx.doi.org/10.3390/ijms24065182]
[48]
Ali, A.; Rahimian, K.S.S.; Alshehri, A.H.; Arockiarajan, A. Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures – A review. J. Mater. Res. Technol., 2023, 24, 6495-6521.
[http://dx.doi.org/10.1016/j.jmrt.2023.04.072]
[49]
Sinha, K. Mechanics of Nonplanar Interfaces in Flip-Chip Interconnects. PhD Thesis, University of Maryland, College Park, Maryland, 2012.
[50]
Sinha, K.; Farley, D.; Kahnert, T.; Solares, S.D.; Dasgupta, A.; Caers, J.F.J.; Zhao, X.J. Influence of fabrication parameters on bond strength of adhesively bonded flip-chip interconnects. J. Adhes. Sci. Technol., 2014, 28(12), 1167-1191.
[http://dx.doi.org/10.1080/01694243.2014.891349]
[51]
Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C.E.; Xu, J.; Fernando, K.A.S.; Wang, P.; Guliants, E.A.; Tackett, K.N., II; Sun, Y.P. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc., 2011, 133(13), 4754-4757.
[http://dx.doi.org/10.1021/ja200804h] [PMID: 21401091]
[52]
Arvidsson, R.; Hansen, S.F. Environmental and health risks of nanorobots: An early review. Environ. Sci. Nano, 2020, 7(10), 2875-2886.
[http://dx.doi.org/10.1039/D0EN00570C]
[53]
Hagarová, I.; Nemček, L. Application of metallic nanoparticles and their hybrids as innovative sorbents for separation and pre-concentration of trace elements by dispersive micro-solid phase extraction: A minireview. Front Chem., 2021, 9, 672755.
[http://dx.doi.org/10.3389/fchem.2021.672755]
[54]
Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Mohana Roopan, S. Function of nanocatalyst in chemistry of organic compounds revolution: An overview. J. Nanomater., 2013, 2013, 1-23.
[http://dx.doi.org/10.1155/2013/341015]
[55]
Narayanan, R. Synthesis of green nanocatalysts and industrially important green reactions. Green Chem. Lett. Rev., 2012, 5(4), 707-725.
[http://dx.doi.org/10.1080/17518253.2012.700955]
[56]
Damodharan, J. Nanomaterials in medicine - An overview. In: Materials Today: Proceedings; Elsevier, 2020; 37, pp. 383-385.
[http://dx.doi.org/10.1016/j.matpr.2020.05.380]
[57]
Glaser, J.A. Green chemistry with nanocatalysts. Clean Technol. Environ. Policy, 2012, 14, 513-520.
[http://dx.doi.org/10.1007/s10098-012-0507-0]
[58]
Velusamy, K.; Devanand, J.; Senthil Kumar, P.; Soundarajan, K.; Sivasubramanian, V.; Sindhu, J.; Vo, D.V.N. A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel, 2021, 306, 121632.
[http://dx.doi.org/10.1016/j.fuel.2021.121632]
[59]
Lin, H.; Wei, K.; Yin, Z.; Sun, S. Nanocatalysts in electrosynthesis. iScience, 2021, 24(3), 102172.
[60]
Narasimhan, M.; Chandrasekaran, M.; Govindasamy, S.; Aravamudhan, A. Heterogeneous nanocatalysts for sustainable biodiesel production: A review. J. Environ. Chem. Eng., 2021, 9(1), 104876.
[http://dx.doi.org/10.1016/j.jece.2020.104876]
[61]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc., 2012, 16(3), 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[62]
Roy, A.; Elzaki, A.; Tirth, V.; Kajoak, S.; Osman, H.; Algahtani, A.; Islam, S.; Faizo, N.L.; Khandaker, M.U.; Islam, M.N.; Emran, T. Biological synthesis of nanocatalysts and their applications. Catalysts, 2021, 11(12), 1494.
[http://dx.doi.org/10.3390/catal11121494]
[63]
Fiorio, J.L.; Gothe, M.L.; Kohlrausch, E.C.; Zardo, M.L.; Tanaka, A.A.; de Lima, R.B.; da Silva, A.G.M.; Garcia, M.A.S.; Vidinha, P.; Machado, G. Nanoengineering of catalysts for enhanced hydrogen production. Hydrogen, 2022, 3(2), 218-254.
[http://dx.doi.org/10.3390/hydrogen3020014]
[64]
Zhang, L.; Wang, Q.; Li, L.; Banis, M.N.; Li, J.; Adair, K.; Sun, Y.; Li, R.; Zhao, Z.J.; Gu, M.; Sun, X. Single atom surface engineering: A new strategy to boost electrochemical activities of Pt catalysts. Nano Energy, 2022, 93, 106813.
[http://dx.doi.org/10.1016/j.nanoen.2021.106813]
[65]
Guo, S.; Zhang, Q.; Wang, S. Emerging small science on nanomaterials for energy storage and catalysis. Small Sci., 2021, 1(10), 2100101.
[http://dx.doi.org/10.1002/smsc.202100101]
[66]
Kuspanov, Z.; Bakbolat, B.; Baimenov, A.; Issadykov, A.; Yeleuov, M.; Daulbayev, C. Photocatalysts for a sustainable future: Innovations in large-scale environmental and energy applications. Sci. Total Environ., 2023, 885, 163914.
[http://dx.doi.org/10.1016/j.scitotenv.2023.163914]
[67]
Guo, S.; Li, X.; Li, J.; Wei, B. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun., 2021, 12(1), 1343.
[http://dx.doi.org/10.1038/s41467-021-21526-4] [PMID: 33637719]
[68]
Tahir, M.B.; Sohaib, M.; Sagir, M.; Rafique, M. Role of nanotechnology in photocatalysis. In: Encyclopedia of Smart Materials; Elsevier, 2021; pp. 578-589.
[http://dx.doi.org/10.1016/B978-0-12-815732-9.00006-1]
[69]
Dey, S.; Mehta, N.S. Automobile pollution control using catalysis. Resour. Environ. Sustain., 2020, 2, 100006.
[http://dx.doi.org/10.1016/j.resenv.2020.100006]
[70]
Ambalkar, A.A.; Kawade, U.V.; Sethi, Y.A.; Kanade, S.C.; Kulkarni, M.V.; Adhyapak, P.V.; Kale, B.B. A nanostructured SnO 2/Ni/CNT composite as an anode for Li ion batteries. RSC Advances, 2021, 11(32), 19531-19540.
[http://dx.doi.org/10.1039/D1RA01678D] [PMID: 35479220]
[71]
Sousa-Castillo, A.; Mariño-López, A.; Puértolas, B.; Correa-Duarte, M.A. Nanostructured heterogeneous catalysts for bioorthogonal reactions. Angew. Chem., 2023, 62(10), e202215427.
[http://dx.doi.org/10.1002/anie.202215427]
[72]
Tsuda, T.; Sheng, M.; Ishikawa, H.; Yamazoe, S.; Yamasaki, J.; Hirayama, M.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. Iron phosphide nanocrystals as an air-stable heterogeneous catalyst for liquid-phase nitrile hydrogenation. Nat. Commun., 2023, 14(1), 5959.
[http://dx.doi.org/10.1038/s41467-023-41627-6] [PMID: 37770434]
[73]
Fang, X.; Wei, P.; Wang, L.; Wang, X.; Chen, B.; He, Q.; Yue, Q.; Zhang, J.; Zhao, W.; Wang, J.; Lu, G.; Zhang, H.; Huang, W.; Huang, X.; Li, H. Transforming monolayer transition-metal dichalcogenide nanosheets into one-dimensional nanoscrolls with high photosensitivity. ACS Appl. Mater. Interfaces, 2018, 10(15), 13011-13018.
[http://dx.doi.org/10.1021/acsami.8b01856] [PMID: 29600705]
[74]
Aghababai, B.A.; Jabbari, H. Nanomaterials for environmental applications. Results Eng., 2022, 15, 100467.
[http://dx.doi.org/10.1016/j.rineng.2022.100467]
[75]
Bhardwaj, B.; Singh, P.; Kumar, A.; Kumar, S.; Budhwar, V. Eco-friendly greener synthesis of nanoparticles. In: Advanced Pharmaceutical Bulletin; Tabriz University of Medical Sciences, 2020; pp. 566-576.
[http://dx.doi.org/10.34172/apb.2020.067]
[76]
Vignesh, P.; Jayaseelan, V.; Pugazhendiran, P.; Prakash, M.S.; Sudhakar, K. Nature-inspired nano-additives for biofuel application - A review. Chem. Eng. J. Adv., 2022, 12, 100360.
[http://dx.doi.org/10.1016/j.ceja.2022.100360]
[77]
Kumar, N.; Chauhan, N.S. Nano-biocatalysts: Potential biotechnological applications. Indian J. Microbiol., 2021, 61(4), 441-448.
[http://dx.doi.org/10.1007/s12088-021-00975-x]
[78]
Minopoli, A.; Acunzo, A.; Della, V.B.; Velotta, R. Nanostructured surfaces as plasmonic biosensors: A review. Adv. Mater. Interfaces, 2022, 10(35), 2101133.
[http://dx.doi.org/10.1002/admi.202101133]
[79]
Sharma, D.; Hussain, C.M. Smart nanomaterials in pharmaceutical analysis. Arab. J. Chem., 2020, 13(1), 3319-3343.
[http://dx.doi.org/10.1016/j.arabjc.2018.11.007]
[80]
Yang, F.; Deng, D.; Pan, X.; Fu, Q.; Bao, X. Understanding nano effects in catalysis. Natl. Sci. Rev., 2015, 2(2), 183-201.
[http://dx.doi.org/10.1093/nsr/nwv024]
[81]
Hodges, B.C.; Cates, E.L.; Kim, J.H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol., 2018, 13(8), 642-650.
[http://dx.doi.org/10.1038/s41565-018-0216-x] [PMID: 30082806]
[82]
Ramanathan, A. Toxicity of nanoparticles_ challenges and opportunities. Appl. Microsc., 2019, 49.
[http://dx.doi.org/10.1007/s42649-019-0004-6]
[83]
Zhang, F. Grand challenges for nanoscience and nanotechnology in energy and health. Front Chem., 2017, 5, 80.
[http://dx.doi.org/10.3389/fchem.2017.00080] [PMID: 29164100]
[84]
Mendes, B.B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Adir, O.; Liang, H.; Shi, J.; Schroeder, A.; Conde, J. Nanodelivery of nucleic acids. Nat. Rev. Methods Primers, 2022, 2, 24.
[http://dx.doi.org/10.1038/s43586-022-00104-y]
[85]
Chernyshev, V.M.; Astakhov, A.V.; Chikunov, I.E.; Tyurin, R.V.; Eremin, D.B.; Ranny, G.S.; Khrustalev, V.N.; Ananikov, V.P. Pd and Pt catalyst poisoning in the study of reaction mechanisms: What does the mercury test mean for catalysis? ACS Catal., 2019, 9(4), 2984-2995.
[http://dx.doi.org/10.1021/acscatal.8b03683]
[86]
Chung, D.Y.; Kim, H.; Chung, Y.H.; Lee, M.J.; Yoo, S.J.; Bokare, A.D.; Choi, W.; Sung, Y.E. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell. Sci. Rep., 2014, 4(1), 7450.
[http://dx.doi.org/10.1038/srep07450] [PMID: 25502744]
[87]
Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and environmental risks of nanomaterials: Challenges and future needs. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2009, 27(1), 1-35.
[http://dx.doi.org/10.1080/10590500802708267] [PMID: 19204862]
[88]
Kumah, E.A.; Fopa, R.D.; Harati, S.; Boadu, P.; Zohoori, F.V.; Pak, T. Human and environmental impacts of nanoparticles: A scoping review of the current literature. BMC Public Health, 2023, 23(1), 1059.
[http://dx.doi.org/10.1186/s12889-023-15958-4] [PMID: 37268899]
[89]
Đorđević, S.; Gonzalez, M.M.; Conejos-Sánchez, I.; Carreira, B.; Pozzi, S.; Acúrcio, R.C.; Satchi-Fainaro, R.; Florindo, H.F.; Vicent, M.J. Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Deliv. Transl. Res., 2022, 12(3), 500-525.
[http://dx.doi.org/10.1007/s13346-021-01024-2]
[90]
Albalawi, F.; Hussein, M.Z.; Fakurazi, S.; Masarudin, M.J. Engineered nanomaterials: The challenges and opportunities for nanomedicines. Int. J. Nanomedicine, 2021, 16, 161-184.
[http://dx.doi.org/10.2147/IJN.S288236]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy