[1]
Menezes, J.C.J.M.D.S.; Campos, V.R. Natural biflavonoids as potential therapeutic agents against microbial diseases. Sci. Total Environ., 2021, 769, 145168.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145168] [PMID: 33493916]
[http://dx.doi.org/10.1016/j.scitotenv.2021.145168] [PMID: 33493916]
[2]
Cui, X.L.; Li, K.J.; Ren, H.X.; Zhang, Y.J.; Liu, X.D.; Bu, B.G.; Wang, L. Extract of Cycas revoluta Thunb. enhances the inhibitory effect of 5-fluorouracil on gastric cancer cells through the AKT-mTOR pathway. World J. Gastroenterol., 2019, 25(15), 1854-1864.
[http://dx.doi.org/10.3748/wjg.v25.i15.1854] [PMID: 31057299]
[http://dx.doi.org/10.3748/wjg.v25.i15.1854] [PMID: 31057299]
[3]
Njock, G.B.B.; Grougnet, R.; Efstathiou, A.; Smirlis, D.; Genta-Jouve, G.; Michel, S.; Mbing, J.N.; Kritsanida, M. A nitrile glucoside and biflavones from the leaves of Campylospermum excavatum (Ochnaceae). Chem. Biodivers., 2017, 14(11), e1700241.
[http://dx.doi.org/10.1002/cbdv.201700241] [PMID: 28695668]
[http://dx.doi.org/10.1002/cbdv.201700241] [PMID: 28695668]
[4]
Li, S.H.; Zhang, H.J.; Niu, X.M.; Yao, P.; Sun, H.D.; Fong, H.H.S. Chemical constituents from Amentotaxus yunnanensis and Torreyayunnanensis. J. Nat. Prod., 2003, 66(7), 1002-1005.
[http://dx.doi.org/10.1021/np030117b] [PMID: 12880325]
[http://dx.doi.org/10.1021/np030117b] [PMID: 12880325]
[5]
Darwish, R.S.; Hammoda, H.M.; Ghareeb, D.A.; Abdelhamid, A.S.A.; Harraz, F.M.; Shawky, E. Seasonal dynamics of the phenolic constituents of the cones and leaves of oriental Thuja (Platycladus orientalis L.) reveal their anti-inflammatory biomarkers. RSC Advances, 2021, 11(40), 24624-24635.
[http://dx.doi.org/10.1039/D1RA01681D] [PMID: 35481004]
[http://dx.doi.org/10.1039/D1RA01681D] [PMID: 35481004]
[6]
Wang, S.; Xu, X.; Hu, Y.; Lei, T.; Liu, T. Sotetsuflavone induces autophagy in non-small cell lung cancer through blocking PI3K/Akt/mTOR signaling pathway in vivo and in vitro. Front. Pharmacol., 2019, 10, 1460.
[http://dx.doi.org/10.3389/fphar.2019.01460] [PMID: 31920653]
[http://dx.doi.org/10.3389/fphar.2019.01460] [PMID: 31920653]
[7]
Ge, S.; Yang, Y.; Zuo, L.; Song, X.; Wen, H.; Geng, Z.; He, Y.; Xu, Z.; Wu, H.; Shen, M.; Ge, Y.; Sun, X. Sotetsuflavone ameliorates Crohn’s disease-like colitis by inhibiting M1 macrophage-induced intestinal barrier damage via JNK and MAPK signalling. Eur. J. Pharmacol., 2023, 940, 175464.
[http://dx.doi.org/10.1016/j.ejphar.2022.175464] [PMID: 36566007]
[http://dx.doi.org/10.1016/j.ejphar.2022.175464] [PMID: 36566007]
[8]
Boozari, M.; Hosseinzadeh, H. Natural products for COVID ‐19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother. Res., 2021, 35(2), 864-876.
[http://dx.doi.org/10.1002/ptr.6873] [PMID: 32985017]
[http://dx.doi.org/10.1002/ptr.6873] [PMID: 32985017]
[9]
Wang, S.; Yan, Y.; Cheng, Z.; Hu, Y.; Liu, T. Sotetsuflavone suppresses invasion and metastasis in non-small-cell lung cancer A549 cells by reversing EMT via the TNF-α/NF-κB and PI3K/AKT signaling pathway. Cell Death Discov., 2018, 4(1), 26.
[http://dx.doi.org/10.1038/s41420-018-0026-9] [PMID: 29531823]
[http://dx.doi.org/10.1038/s41420-018-0026-9] [PMID: 29531823]
[10]
Wang, S.; Hu, Y.; Yan, Y.; Cheng, Z.; Liu, T. Sotetsuflavone inhibits proliferation and induces apoptosis of A549 cells through ROS-mediated mitochondrial-dependent pathway. BMC Complement. Altern. Med., 2018, 18(1), 235.
[http://dx.doi.org/10.1186/s12906-018-2300-z] [PMID: 30092797]
[http://dx.doi.org/10.1186/s12906-018-2300-z] [PMID: 30092797]
[11]
Coulerie, P.; Nour, M.; Maciuk, A.; Eydoux, C.; Guillemot, J.C.; Lebouvier, N.; Hnawia, E.; Leblanc, K.; Lewin, G.; Canard, B.; Figadère, B. Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp. Planta Med., 2013, 79(14), 1313-1318.
[http://dx.doi.org/10.1055/s-0033-1350672] [PMID: 23929244]
[http://dx.doi.org/10.1055/s-0033-1350672] [PMID: 23929244]
[12]
Attallah, N.G.M.; Al-Fakhrany, O.M.; Elekhnawy, E.; Hussein, I.A.; Shaldam, M.A.; Altwaijry, N. Anti-biofilm and antibacterial activities of cycas media R. Br secondary metabolites: In silico, in vitro, and in vivo approaches. Antibiot, 2022, 11, 993.
[13]
Dey, D.; Hossain, R.; Biswas, P.; Paul, P.; Islam, M.A.; Ema, T.I. Amentoflavone derivatives significantly act towards the main protease (3CL(PRO)/M(PRO)) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol. Divers., 2022, 27(2), 857-871.
[PMID: 35639226]
[PMID: 35639226]
8