Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Review Article

Marine-derived Compounds: A Powerful Platform for the Treatment of Alzheimer’s Disease

Author(s): Rashmi Arora, Ritchu Babbar, Abhishek Dabra, Bhawna Chopra, Geeta Deswal and Ajmer Singh Grewal*

Volume 24, Issue 2, 2024

Published on: 16 January, 2024

Page: [166 - 181] Pages: 16

DOI: 10.2174/0118715249269050231129103002

Price: $65

Open Access Journals Promotions 2
Abstract

Alzheimer's disease (AD) is a debilitating form of dementia that primarily affects cholinergic neurons in the brain, significantly reducing an individual's capacity for learning and creative skills and ultimately resulting in an inability to carry out even basic daily tasks. As the elderly population is exponentially increasing, the disease has become a significant concern for society. Therefore, neuroprotective substances have garnered considerable interest in addressing this universal issue. Studies have shown that oxidative damage to neurons contributes to the pathophysiological processes underlying AD progression. In AD, tau phosphorylation and glutamate excitotoxicity may play essential roles, but no permanent cure for AD is available. The existing therapies only manage the early symptoms of AD and often come with numerous side effects and toxicities. To address these challenges, researchers have turned to nature and explored various sources such as plants, animals, and marine organisms. Many historic holy books from different cultures emphasize that adding marine compounds to the regular diet enhances brain function and mitigates its decline. Consequently, researchers have devoted significant time to identifying potentially active neuroprotective substances from marine sources. Marine-derived compounds are gaining recognition due to their abundant supply of diverse chemical compounds with biological and pharmacological potential and unique mechanisms of action. Several studies have reported that plants exhibit multitarget potential in treating AD. In light of this, the current study focuses on marine-derived components with excellent potential for treating this neurodegenerative disease.

Keywords: Alzheimer’s disease, marine sources, bioactive components, pathology, natural sources, neurodegenerative diseases.

Graphical Abstract
[1]
Uddin, M.S.; Kabir, M.T.; Rahman, M.S.; Behl, T.; Jeandet, P.; Ashraf, G.M.; Najda, A.; Bin-Jumah, M.N.; El-Seedi, H.R.; Abdel-Daim, M.M. Revisiting the amyloid cascade hypothesis: from anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(16), 5858.
[http://dx.doi.org/10.3390/ijms21165858] [PMID: 32824102]
[2]
Prince, M.J.; Wimo, A.; Guerchet, M.M. World Alzheimer report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends; Alzheimer’s Disease International; (ADI): London, 2015.
[3]
Sachdev, P.S.; Blacker, D.; Blazer, D.G.; Ganguli, M.; Jeste, D.V.; Paulsen, J.S.; Petersen, R.C. Classifying neurocognitive disorders: The DSM-5 approach. Nat. Rev. Neurol., 2014, 10(11), 634-642.
[http://dx.doi.org/10.1038/nrneurol.2014.181] [PMID: 25266297]
[4]
Hafez Ghoran, S.; Kijjoa, A. Marine-derived compounds with anti-Alzheimer’s disease activities. Mar. Drugs, 2021, 19(8), 410.
[http://dx.doi.org/10.3390/md19080410] [PMID: 34436249]
[5]
Yassine, H.N.; Braskie, M.N.; Mack, W.J.; Castor, K.J.; Fonteh, A.N.; Schneider, L.S.; Harrington, M.G.; Chui, H.C. Association of docosahexaenoic acid supplementation with Alzheimer disease stage in apolipoprotein E ε4 carriers: A review. JAMA Neurol., 2017, 74(3), 339-347.
[http://dx.doi.org/10.1001/jamaneurol.2016.4899] [PMID: 28114437]
[6]
Zhang, Y.; Chen, J.; Qiu, J.; Li, Y.; Wang, J.; Jiao, J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: A dose-response meta-analysis of 21 cohort studies. Am. J. Clin. Nutr., 2016, 103(2), 330-340.
[http://dx.doi.org/10.3945/ajcn.115.124081] [PMID: 26718417]
[7]
Blanco-Silvente, L.; Castells, X.; Saez, M.; Barceló, M.A.; Garre-Olmo, J.; Vilalta-Franch, J.; Capellà, D. Discontinuation, efficacy, and safety of cholinesterase inhibitors for Alzheimer’s disease: A meta-analysis and meta-regression of 43 randomized clinical trials enrolling 16 106 patients. Int. J. Neuropsychopharmacol., 2017, 20(7), 519-528.
[http://dx.doi.org/10.1093/ijnp/pyx012] [PMID: 28201726]
[8]
Matsunaga, S.; Kishi, T.; Iwata, N. Memantine monotherapy for Alzheimer’s disease: A systematic review and meta-analysis. PLoS One, 2015, 10(4), e0123289.
[http://dx.doi.org/10.1371/journal.pone.0123289] [PMID: 25860130]
[9]
Deardorff, W.J.; Grossberg, G. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des. Devel. Ther., 2016, 10, 3267-3279.
[http://dx.doi.org/10.2147/DDDT.S86463] [PMID: 27757016]
[10]
Choi, D.Y.; Choi, H. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer’s disease, Parkinson’s disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch. Pharm. Res., 2015, 38(2), 139-170.
[http://dx.doi.org/10.1007/s12272-014-0503-5] [PMID: 25348867]
[11]
Dhingra, D.; Parshad, S. Improvement of learning and memory of mice by plumbagin. J. Pharm. Technol. Res. Manag., 2016, 4(2), 147-159.
[http://dx.doi.org/10.15415/jptrm.2016.42010]
[12]
Kumar, D.; Kumar, S. Neuropharmacological profile of fractions of Actaea acuminata H. Hara roots. J. Pharm. Technol. Res. Manag., 2018, 6(1), 1-8.
[http://dx.doi.org/10.15415/jptrm.2018.61001]
[13]
Kabir, M.T.; Uddin, M.S.; Jeandet, P.; Emran, T.B.; Mitra, S.; Albadrani, G.M.; Sayed, A.A.; Abdel-Daim, M.M.; Simal-Gandara, J. Anti-Alzheimer’s molecules derived from marine life: Understanding molecular mechanisms and therapeutic potential. Mar. Drugs, 2021, 19(5), 251.
[http://dx.doi.org/10.3390/md19050251] [PMID: 33925063]
[14]
Martins, M.; Silva, R.; M.M. Pinto, M.; Sousa, E. Marine natural products, multitarget therapy and repurposed agents in Alzheimer’s disease. Pharmaceuticals, 2020, 13(9), 242.
[http://dx.doi.org/10.3390/ph13090242] [PMID: 32933034]
[15]
Russo, P.; Kisialiou, A.; Lamonaca, P.; Moroni, R.; Prinzi, G.; Fini, M. New drugs from marine organisms in Alzheimer’s disease. Mar. Drugs, 2015, 14(1), 5.
[http://dx.doi.org/10.3390/md14010005] [PMID: 26712769]
[16]
Newman, D.J.; Cragg, G.M. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr. Med. Chem., 2004, 11(13), 1693-1713.
[http://dx.doi.org/10.2174/0929867043364982] [PMID: 15279577]
[17]
Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar. Drugs, 2014, 12(2), 1066-1101.
[http://dx.doi.org/10.3390/md12021066] [PMID: 24549205]
[18]
Lindequist, U. Marine-derived pharmaceuticals - challenges and opportunities. Biomol. Ther., 2016, 24(6), 561-571.
[http://dx.doi.org/10.4062/biomolther.2016.181] [PMID: 27795450]
[19]
Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci., 2016, 8(2), 83-91.
[http://dx.doi.org/10.4103/0975-7406.171700] [PMID: 27134458]
[20]
Bahbah, E.I.; Ghozy, S.; Attia, M.S.; Negida, A.; Emran, T.B.; Mitra, S.; Albadrani, G.M.; Abdel-Daim, M.M.; Uddin, M.S.; Simal-Gandara, J. Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent. Mar. Drugs, 2021, 19(4), 201.
[http://dx.doi.org/10.3390/md19040201] [PMID: 33916730]
[21]
Liu, L.; Zheng, Y.Y.; Shao, C.L.; Wang, C.Y. Metabolites from marine invertebrates and their symbiotic microorganisms: Molecular diversity discovery, mining, and application. Mar. Life Sci. Technol., 2019, 1(1), 60-94.
[http://dx.doi.org/10.1007/s42995-019-00021-2]
[22]
Nii-Trebi, N.I. Emerging and neglected infectious diseases: Insights, advances, and challenges. BioMed Res. Int., 2017, 2017, 1-15.
[http://dx.doi.org/10.1155/2017/5245021] [PMID: 28286767]
[23]
Petersen, L.E.; Kellermann, M.Y.; Schupp, P.J. Secondary metabolites of marine microbes: From natural products chemistry to chemical ecology. In: YOUMARES 9-The Oceans: Our Research, Our Future; Jungblut, S.; Liebich, V.; Bode-Dalby, M., Eds.; Springer: Cham, Switzerland, 2020; pp. 159-180.
[http://dx.doi.org/10.1007/978-3-030-20389-4_8]
[24]
Varijakzhan, D.; Loh, J.Y.; Yap, W.S.; Yusoff, K.; Seboussi, R.; Lim, S.H.E.; Lai, K.S.; Chong, C.M. Bioactive compounds from marine sponges: Fundamentals and applications. Mar. Drugs, 2021, 19(5), 246.
[http://dx.doi.org/10.3390/md19050246] [PMID: 33925365]
[25]
Ghattavi, S.; Homaei, A. Marine enzymes: Classification and application in various industries. Int. J. Biol. Macromol., 2023, 230, 123136.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123136] [PMID: 36621739]
[26]
Noman, E.; Al-Shaibani, M.M.; Bakhrebah, M.A.; Almoheer, R.; Al-Sahari, M.; Al-Gheethi, A.; Radin Mohamed, R.M.S.; Almulaiky, Y.Q.; Abdulaal, W.H. Potential of anti-cancer activity of secondary metabolic products from marine fungi. J. Fungi, 2021, 7(6), 436.
[http://dx.doi.org/10.3390/jof7060436] [PMID: 34070936]
[27]
Mrudulakumari Vasudevan, U.; Mai, D.H.A.; Krishna, S.; Lee, E.Y. Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnol. Adv., 2023, 63, 108097.
[http://dx.doi.org/10.1016/j.biotechadv.2023.108097] [PMID: 36634856]
[28]
Mishra, S.; Palanivelu, K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann. Indian Acad. Neurol., 2008, 11(1), 13-19.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[29]
Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554.
[http://dx.doi.org/10.2147/IJN.S200490] [PMID: 31410002]
[30]
Montero-Cosme, T.G.; Pascual-Mathey, L.I.; Hernández-Aguilar, M.E.; Herrera-Covarrubias, D.; Rojas-Durán, F.; Aranda-Abreu, G.E. Potential drugs for the treatment of Alzheimer’s disease. Pharmacol. Rep., 2023, 75(3), 544-559.
[http://dx.doi.org/10.1007/s43440-023-00481-5] [PMID: 37005970]
[31]
Kalinin, S.; Gavrilyuk, V.; Polak, P.E.; Vasser, R.; Zhao, J.; Heneka, M.T.; Feinstein, D.L. Noradrenaline deficiency in brain increases β-amyloid plaque burden in an animal model of Alzheimer’s disease. Neurobiol. Aging, 2007, 28(8), 1206-1214.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.06.003] [PMID: 16837104]
[32]
Tomimoto, H.; Ohtani, R.; Shibata, M.; Nakamura, N.; Ihara, M. Loss of cholinergic pathways in vascular dementia of the Binswanger type. Dement. Geriatr. Cogn. Disord., 2005, 19(5-6), 282-288.
[http://dx.doi.org/10.1159/000084553] [PMID: 15785029]
[33]
Ahmed, M.Q.; Alenazi, F.S.H.; Fazaludeen, M.F.; Shahid, S.M.A.; Kausar, M.A. Pathology and management of Alzheimer’s disease: a review. Int. J. Pharm. Res. Allied Sci., 2018, 7(2), 30-42.
[34]
García-Morales, V.; González-Acedo, A.; Melguizo-Rodríguez, L.; Pardo-Moreno, T.; Costela-Ruiz, V.J.; Montiel-Troya, M.; Ramos-Rodríguez, J.J. Current understanding of the physiopathology, diagnosis and therapeutic approach to Alzheimer’s disease. Biomedicines, 2021, 9(12), 1910.
[http://dx.doi.org/10.3390/biomedicines9121910] [PMID: 34944723]
[35]
Kelleher, R.J.; Soiza, R.L. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder? Am. J. Cardiovasc. Dis., 2013, 3(4), 197-226.
[PMID: 24224133]
[36]
Chen, H.; Xu, J.; Xu, H.; Luo, T.; Li, Y.; Jiang, K.; Shentu, Y.; Tong, Z. New insights into Alzheimer’s disease: Novel pathogenesis, drug target and delivery. Pharmaceutics, 2023, 15(4), 1133.
[http://dx.doi.org/10.3390/pharmaceutics15041133] [PMID: 37111618]
[37]
Marvanová, M.; Lakso, M.; Pirhonen, J.; Nawa, H.; Wong, G.; Castrén, E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell. Neurosci., 2001, 18(3), 247-258.
[http://dx.doi.org/10.1006/mcne.2001.1027] [PMID: 11591126]
[38]
Castelli, V.; Alfonsetti, M.; d’Angelo, M. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen. Res., 2023, 18(6), 1220-1228.
[http://dx.doi.org/10.4103/1673-5374.358619] [PMID: 36453397]
[39]
Anand, A.; Patience, A.A.; Sharma, N.; Khurana, N. The present and future of pharmacotherapy of Alzheimer’s disease: A comprehensive review. Eur. J. Pharmacol., 2017, 815, 364-375.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.043] [PMID: 28978455]
[40]
Picone, P.; Sanfilippo, T.; Vasto, S.; Baldassano, S.; Guggino, R.; Nuzzo, D.; Bulone, D.; San Biagio, P.L.; Muscolino, E.; Monastero, R.; Dispenza, C.; Giacomazza, D. From small peptides to large proteins against alzheimer’s disease. Biomolecules, 2022, 12(10), 1344.
[http://dx.doi.org/10.3390/biom12101344] [PMID: 36291553]
[41]
Das, B.; Yan, R. Role of BACE1 in Alzheimer’s synaptic function. Transl. Neurodegener., 2017, 6(1), 23.
[http://dx.doi.org/10.1186/s40035-017-0093-5] [PMID: 28855981]
[42]
Coimbra, J.R.M.; Marques, D.F.F.; Baptista, S.J.; Pereira, C.M.F.; Moreira, P.I.; Dinis, T.C.P.; Santos, A.E.; Salvador, J.A.R. Highlights in BACE1 inhibitors for Alzheimer’s disease treatment. Front Chem., 2018, 6, 178.
[http://dx.doi.org/10.3389/fchem.2018.00178] [PMID: 29881722]
[43]
Hampel, H.; Vassar, R.; De Strooper, B.; Hardy, J.; Willem, M.; Singh, N.; Zhou, J.; Yan, R.; Vanmechelen, E.; De Vos, A.; Nisticò, R.; Corbo, M.; Imbimbo, B.P.; Streffer, J.; Voytyuk, I.; Timmers, M.; Tahami Monfared, A.A.; Irizarry, M.; Albala, B.; Koyama, A.; Watanabe, N.; Kimura, T.; Yarenis, L.; Lista, S.; Kramer, L.; Vergallo, A. The secretase BACE1 in Alzheimer’s disease. Biol. Psychiatry, 2021, 89(8), 745-756.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[44]
Vassar, R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(9), 89.
[http://dx.doi.org/10.1186/s13195-014-0089-7] [PMID: 25621019]
[45]
Suzuki, K.; Hamada, Y.; Nguyen, J.T.; Kiso, Y. Novel BACE1 inhibitors with a non-acidic heterocycle at the P′ position. Bioorg. Med. Chem., 2013, 21(21), 6665-6673.
[http://dx.doi.org/10.1016/j.bmc.2013.08.016] [PMID: 23993670]
[46]
Liu, M.; Guo, H.; Li, C.; Wang, D.; Wu, J.; Wang, C.; Xu, J.; Qin, R. Cognitive improvement of compound danshen in an Aβ25-35 peptide-induced rat model of Alzheimer’s disease. BMC Complement. Altern. Med., 2015, 15(1), 382.
[http://dx.doi.org/10.1186/s12906-015-0906-y] [PMID: 26497584]
[47]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[48]
Luo, Z.; Xu, H.; Liu, L.; Ohulchanskyy, T.Y.; Qu, J. Optical imaging of beta-amyloid plaques in Alzheimer’s disease. Biosensors, 2021, 11(8), 255.
[http://dx.doi.org/10.3390/bios11080255] [PMID: 34436057]
[49]
Kaur, A.; Nigam, K.; Srivastava, S.; Tyagi, A.; Dang, S. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease. J. Microencapsul., 2020, 37(5), 355-365.
[http://dx.doi.org/10.1080/02652048.2020.1756971] [PMID: 32293915]
[50]
Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther., 2019, 4(1), 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[51]
Silva, J.H.C.; Ferreira, R.S.; Pereira, E.P.; Braga-de-Souza, S.; Almeida, M.M.A.; Santos, C.C.; Butt, A.M.; Caiazzo, E.; Capasso, R.; Silva, V.D.A.; Costa, S.L. Amburana cearensis: Pharmacological and neuroprotective effects of its compounds. Molecules, 2020, 25(15), 3394.
[http://dx.doi.org/10.3390/molecules25153394] [PMID: 32726999]
[52]
Long, I.; Rashid, N.A. The potential role of nicotine in the treatment of learning and memory impairment after REM sleep deprivation. J. Multidiscip. Healthc., 2015, 2(1), 17-30.
[http://dx.doi.org/10.15415/jmrh.2015.21002]
[53]
Ismail, N.; Kureishy, N.; Church, S.J.; Scholefield, M.; Unwin, R.D.; Xu, J.; Patassini, S.; Cooper, G.J.S. Vitamin B5 (d-pantothenic acid) localizes in myelinated structures of the rat brain: Potential role for cerebral vitamin B5 stores in local myelin homeostasis. Biochem. Biophys. Res. Commun., 2020, 522(1), 220-225.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.052] [PMID: 31759626]
[54]
Xu, J.; Patassini, S.; Begley, P.; Church, S.; Waldvogel, H.J.; Faull, R.L.M.; Unwin, R.D.; Cooper, G.J.S. Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2020, 527(3), 676-681.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.015] [PMID: 32416962]
[55]
Hrubša, M.; Siatka, T.; Nejmanová, I.; Vopršalová, M. Kujovská Krčmová, L.; Matoušová, K.; Javorská, L.; Macáková, K.; Mercolini, L.; Remião, F.; Máťuš, M.; Mladěnka, P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients, 2022, 14(3), 484.
[http://dx.doi.org/10.3390/nu14030484] [PMID: 35276844]
[56]
Swerdlow, R.H. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J. Alzheimers Dis., 2018, 62(3), 1403-1416.
[http://dx.doi.org/10.3233/JAD-170585] [PMID: 29036828]
[57]
Bustamante-Barrientos, F.A.; Luque-Campos, N.; Araya, M.J.; Lara-Barba, E.; de Solminihac, J.; Pradenas, C.; Molina, L.; Herrera-Luna, Y.; Utreras-Mendoza, Y.; Elizondo-Vega, R.; Vega-Letter, A.M.; Luz-Crawford, P. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J. Transl. Med., 2023, 21(1), 613.
[http://dx.doi.org/10.1186/s12967-023-04493-w] [PMID: 37689642]
[58]
Tretter, L.; Adam-Vizi, V. Alpha-ketoglutarate dehydrogenase: A target and generator of oxidative stress. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2005, 360(1464), 2335-2345.
[http://dx.doi.org/10.1098/rstb.2005.1764] [PMID: 16321804]
[59]
Glancy, B.; Balaban, R.S. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry, 2012, 51(14), 2959-2973.
[http://dx.doi.org/10.1021/bi2018909] [PMID: 22443365]
[60]
Wojsiat, J.; Prandelli, C.; Laskowska-Kaszub, K.; Martín-Requero, A.; Wojda, U. Oxidative stress and aberrant cell cycle in Alzheimer’s disease lymphocytes: diagnostic prospects. J. Alzheimers Dis., 2015, 46(2), 329-350.
[http://dx.doi.org/10.3233/JAD-141977] [PMID: 25737047]
[61]
Beck, S.J.; Guo, L.; Phensy, A.; Tian, J.; Wang, L.; Tandon, N.; Gauba, E.; Lu, L.; Pascual, J.M.; Kroener, S.; Du, H. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease. Nat. Commun., 2016, 7(1), 11483.
[http://dx.doi.org/10.1038/ncomms11483] [PMID: 27151236]
[62]
Lambert, M.P.; Barlow, A.K.; Chromy, B.A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T.E.; Rozovsky, I.; Trommer, B.; Viola, K.L.; Wals, P.; Zhang, C.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Diffusible, nonfibrillar ligands derived from Aβ 1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA, 1998, 95(11), 6448-6453.
[http://dx.doi.org/10.1073/pnas.95.11.6448] [PMID: 9600986]
[63]
Shirazi, S.K.; Wood, J.G. The protein tyrosine kinase, fyn, in Alzheimerʼs disease pathology. Neuroreport, 1993, 4(4), 435-437.
[http://dx.doi.org/10.1097/00001756-199304000-00024] [PMID: 8388744]
[64]
Yang, K.; Belrose, J.; Trepanier, C.H.; Lei, G.; Jackson, M.F.; MacDonald, J.F. Fyn, a potential target for Alzheimer’s disease. J. Alzheimers Dis., 2011, 27(2), 243-252.
[http://dx.doi.org/10.3233/JAD-2011-110353] [PMID: 21799250]
[65]
Nygaard, H.B. Targeting fyn kinase in Alzheimer’s disease. Biol. Psychiatry, 2018, 83(4), 369-376.
[http://dx.doi.org/10.1016/j.biopsych.2017.06.004] [PMID: 28709498]
[66]
Chun, H.; Lee, C.J. Reactive astrocytes in Alzheimer’s disease: A double-edged sword. Neurosci. Res., 2018, 126, 44-52.
[http://dx.doi.org/10.1016/j.neures.2017.11.012] [PMID: 29225140]
[67]
Srivastava, S.; Ahmad, R.; Khare, S.K. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem., 2021, 216, 113320.
[http://dx.doi.org/10.1016/j.ejmech.2021.113320] [PMID: 33652356]
[68]
Morgan, C.; Colombres, M.; Nuñez, M.T.; Inestrosa, N.C. Structure and function of amyloid in Alzheimer’s disease. Prog. Neurobiol., 2004, 74(6), 323-349.
[http://dx.doi.org/10.1016/j.pneurobio.2004.10.004] [PMID: 15649580]
[69]
Vassar, R.; Kuhn, P.H.; Haass, C.; Kennedy, M.E.; Rajendran, L.; Wong, P.C.; Lichtenthaler, S.F. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J. Neurochem., 2014, 130(1), 4-28.
[http://dx.doi.org/10.1111/jnc.12715] [PMID: 24646365]
[70]
Zhang, H.; Ma, Q.; Zhang, Y.; Xu, H. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J. Neurochem., 2012, 120(S1), 9-21.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07519.x] [PMID: 22122372]
[71]
Chen, J.J.; Genereux, J.C.; Wiseman, R.L. Endoplasmic reticulum quality control and systemic amyloid disease: Impacting protein stability from the inside out. IUBMB Life, 2015, 67(6), 404-413.
[http://dx.doi.org/10.1002/iub.1386] [PMID: 26018985]
[72]
Raina, P.; Santaguida, P.; Ismaila, A.; Patterson, C.; Cowan, D.; Levine, M.; Booker, L.; Oremus, M. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann. Intern. Med., 2008, 148(5), 379-397.
[http://dx.doi.org/10.7326/0003-4819-148-5-200803040-00009] [PMID: 18316756]
[73]
Danysz, W.; Parsons, C.G. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine – searching for the connections. Br. J. Pharmacol., 2012, 167(2), 324-352.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02057.x] [PMID: 22646481]
[74]
Hernandez, F.; Lucas, J.J.; Avila, J. GSK3 and tau: two convergence points in Alzheimer’s disease. J. Alzheimers Dis., 2012, 33(S1), S141-S144.
[http://dx.doi.org/10.3233/JAD-2012-129025] [PMID: 22710914]
[75]
Castellani, R.; Zhu, X.; Lee, H.G.; Smith, M.; Perry, G. Molecular pathogenesis of Alzheimer’s disease: Reductionist versus expansionist approaches. Int. J. Mol. Sci., 2009, 10(3), 1386-1406.
[http://dx.doi.org/10.3390/ijms10031386] [PMID: 19399255]
[76]
De Strooper, B.; Vassar, R.; Golde, T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(2), 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218] [PMID: 20139999]
[77]
Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: Possible role of the peripheral site of the enzyme. Neuron, 1996, 16(4), 881-891.
[http://dx.doi.org/10.1016/S0896-6273(00)80108-7] [PMID: 8608006]
[78]
Johnson, G.; Moore, S. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Curr. Pharm. Des., 2006, 12(2), 217-225.
[http://dx.doi.org/10.2174/138161206775193127] [PMID: 16454738]
[79]
Dinamarca, M.C.; Sagal, J.P.; Quintanilla, R.A.; Godoy, J.A.; Arrázola, M.S.; Inestrosa, N.C. Amyloid-β-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol. Neurodegener., 2010, 5(1), 4.
[http://dx.doi.org/10.1186/1750-1326-5-4] [PMID: 20205793]
[80]
Alvarez, A.; Alarcón, R.; Opazo, C.; Campos, E.O.; Muñoz, F.J.; Calderón, F.H.; Dajas, F.; Gentry, M.K.; Doctor, B.P.; De Mello, F.G.; Inestrosa, N.C. Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J. Neurosci., 1998, 18(9), 3213-3223.
[http://dx.doi.org/10.1523/JNEUROSCI.18-09-03213.1998] [PMID: 9547230]
[81]
Taneja, V.; Verma, M.; Vats, A. Toxic species in amyloid disorders: Oligomers or mature fibrils. Ann. Indian Acad. Neurol., 2015, 18(2), 138-145.
[http://dx.doi.org/10.4103/0972-2327.144284] [PMID: 26019408]
[82]
Pákáski, M.; Kálmán, J. Interactions between the amyloid and cholinergic mechanisms in Alzheimer’s disease. Neurochem. Int., 2008, 53(5), 103-111.
[http://dx.doi.org/10.1016/j.neuint.2008.06.005] [PMID: 18602955]
[83]
Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr. Ther. Res. Clin. Exp., 2003, 64(4), 216-235.
[http://dx.doi.org/10.1016/S0011-393X(03)00059-6] [PMID: 24944370]
[84]
Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The role of NMDA receptors in Alzheimer’s disease. Front. Neurosci., 2019, 13, 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[85]
Cisek, K.; Cooper, G.; Huseby, C.; Kuret, J. Structure and mechanism of action of tau aggregation inhibitors. Curr. Alzheimer Res., 2014, 11(10), 918-927.
[http://dx.doi.org/10.2174/1567205011666141107150331] [PMID: 25387336]
[86]
Leng, F.; Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol., 2021, 17(3), 157-172.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[87]
Pettit, G.R.; Herald, C.L.; Doubek, D.L.; Herald, D.L.; Arnold, E.; Clardy, J. Isolation and structure of bryostatin 1. J. Am. Chem. Soc., 1982, 104(24), 6846-6848.
[http://dx.doi.org/10.1021/ja00388a092]
[88]
Tan, Z.; Turner, R.C.; Leon, R.L.; Li, X.; Hongpaisan, J.; Zheng, W.; Logsdon, A.F.; Naser, Z.J.; Alkon, D.L.; Rosen, C.L.; Huber, J.D. Bryostatin improves survival and reduces ischemic brain injury in aged rats after acute ischemic stroke. Stroke, 2013, 44(12), 3490-3497.
[http://dx.doi.org/10.1161/STROKEAHA.113.002411] [PMID: 24172582]
[89]
Blanco, F.A.; Czikora, A.; Kedei, N.; You, Y.; Mitchell, G.A.; Pany, S.; Ghosh, A.; Blumberg, P.M.; Das, J. Munc13 is a molecular target of bryostatin 1. Biochemistry, 2019, 58(27), 3016-3030.
[http://dx.doi.org/10.1021/acs.biochem.9b00427] [PMID: 31243993]
[90]
Nelson, T.J.; Sun, M.K.; Lim, C.; Sen, A.; Khan, T.; Chirila, F.V.; Alkon, D.L. Bryostatin effects on cognitive function and PKCɛ in Alzheimer’s disease phase IIa and expanded access trials. J. Alzheimers Dis., 2017, 58(2), 521-535.
[http://dx.doi.org/10.3233/JAD-170161] [PMID: 28482641]
[91]
Malnar, M.; Hecimovic, S.; Mattsson, N.; Zetterberg, H. Bidirectional links between Alzheimer's disease and Niemann-Pick type C disease. Neurobiol Dis, 2014, 72(Pt A), 37-47.
[http://dx.doi.org/10.1016/j.nbd.2014.05.033]
[92]
Matsushima, H.; Shimohama, S.; Chachin, M.; Taniguchi, T.; Kimura, J. Ca2+-dependent and Ca2+-independent protein kinase C changes in the brain of patients with Alzheimer’s disease. J. Neurochem., 1996, 67(1), 317-323.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67010317.x] [PMID: 8667008]
[93]
Hongpaisan, J.; Sun, M.K.; Alkon, D.L. PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J. Neurosci., 2011, 31(2), 630-643.
[http://dx.doi.org/10.1523/JNEUROSCI.5209-10.2011] [PMID: 21228172]
[94]
Tian, Z.; Lu, X.T.; Jiang, X.; Tian, J. Bryostatin-1: A promising compound for neurological disorders. Front. Pharmacol., 2023, 14, 1187411.
[http://dx.doi.org/10.3389/fphar.2023.1187411] [PMID: 37351510]
[95]
Sun, M.K.; Alkon, D.L. Bryostatin-1: Pharmacology and therapeutic potential as a CNS drug. CNS Drug Rev., 2006, 12(1), 1-8.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00001.x] [PMID: 16834754]
[96]
Stone, R.M. Bryostatin 1: Differentiating agent from the depths. Leuk. Res., 1997, 21(5), 399-401.
[http://dx.doi.org/10.1016/S0145-2126(96)00123-3] [PMID: 9225066]
[97]
Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym., 2000, 46(1), 1-27.
[http://dx.doi.org/10.1016/S1381-5148(00)00038-9]
[98]
Jeon, Y.; Park, P.J.; Kim, S.K. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym., 2001, 44(1), 71-76.
[http://dx.doi.org/10.1016/S0144-8617(00)00200-9]
[99]
Pangestuti, R.; Kim, S.K. Neuroprotective properties of chitosan and its derivatives. Mar. Drugs, 2010, 8(7), 2117-2128.
[http://dx.doi.org/10.3390/md8072117] [PMID: 20714426]
[100]
Zhou, S.; Yang, Y.; Gu, X.; Ding, F. Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci. Lett., 2008, 444(3), 270-274.
[http://dx.doi.org/10.1016/j.neulet.2008.08.040] [PMID: 18755243]
[101]
AnjiReddy K.; Karpagam, S. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In vitro and in vivo evaluation. Int. J. Biol. Macromol., 2017, 105(Pt 1), 131-142.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.021] [PMID: 28698078]
[102]
Yang, C.; Ding, X.; Yang, C.; Shang, L.; Zhao, Y. Marine polymers-alginate/chitosan composited microcapsules for wound healing. Chem. Eng. J., 2023, 456, 140886.
[http://dx.doi.org/10.1016/j.cej.2022.140886]
[103]
Petroianu, G.A.; Manek, E. Chitosan-based nanoparticles in Alzheimer’s disease: Messenger or message? Neural Regen. Res., 2021, 16(11), 2204-2205.
[http://dx.doi.org/10.4103/1673-5374.310685] [PMID: 33818494]
[104]
Manek, E.; Darvas, F.; Petroianu, G.A. Use of biodegradable, chitosan-based nanoparticles in the treatment of Alzheimer’s disease. Molecules, 2020, 25(20), 4866.
[http://dx.doi.org/10.3390/molecules25204866] [PMID: 33096898]
[105]
Ouyang, Q.Q.; Zhao, S.; Li, S.D.; Song, C. Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer’s disease. Mar. Drugs, 2017, 15(11), 322.
[http://dx.doi.org/10.3390/md15110322] [PMID: 29112116]
[106]
Saini, S.; Sharma, T.; Jain, A.; Kaur, H.; Katare, O.P.; Singh, B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf. B Biointerfaces, 2021, 205, 111838.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111838] [PMID: 34022704]
[107]
Hu, L.; Tao, Y.; Jiang, Y.; Qin, F. Recent progress of nanomedicine in the treatment of Alzheimer’s disease. Front. Cell Dev. Biol., 2023, 11, 1228679.
[http://dx.doi.org/10.3389/fcell.2023.1228679] [PMID: 37457297]
[108]
Hu, Q.; Luo, Y. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. Int. J. Biol. Macromol., 2021, 179, 125-135.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.216] [PMID: 33667554]
[109]
Sarvaiya, J.; Agrawal, Y.K. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int. J. Biol. Macromol., 2015, 72, 454-465.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.052] [PMID: 25199867]
[110]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[111]
Chen, Q.; Ruan, D.; Shi, J.; Du, D.; Bian, C. The multifaceted roles of natural products in mitochondrial dysfunction. Front. Pharmacol., 2023, 14, 1093038.
[http://dx.doi.org/10.3389/fphar.2023.1093038] [PMID: 36860298]
[112]
Leirós, M.; Alonso, E.; Sanchez, J.A.; Rateb, M.E.; Ebel, R.; Houssen, W.E.; Jaspars, M.; Alfonso, A.; Botana, L.M. Mitigation of ROS insults by Streptomyces secondary metabolites in primary cortical neurons. ACS Chem. Neurosci., 2014, 5(1), 71-80.
[http://dx.doi.org/10.1021/cn4001878] [PMID: 24219236]
[113]
Liang, Z.; Currais, A.; Soriano-Castell, D.; Schubert, D.; Maher, P. Natural products targeting mitochondria: Emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther., 2021, 221, 107749.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107749] [PMID: 33227325]
[114]
Liu, R.; Cui, C.B.; Duan, L.; Gu, Q.Q.; Zhu, W.M. Potentin Vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomyceteSac-charopolyspora sp. nov. Arch. Pharm. Res., 2005, 28(12), 1341-1344.
[http://dx.doi.org/10.1007/BF02977899] [PMID: 16392666]
[115]
Leirós, M.; Alonso, E.; Rateb, M.E.; Ebel, R.; Jaspars, M.; Alfonso, A.; Botana, L.M. The Streptomyces metabolite anhydroexfoliamycin ameliorates hallmarks of Alzheimer’s disease in vitro and in vivo. Neuroscience, 2015, 305, 26-35.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.082] [PMID: 26247694]
[116]
Brunden, K.R.; Gardner, N.M.; James, M.J.; Yao, Y.; Trojanowski, J.Q.; Lee, V.M.Y.; Paterson, I.; Ballatore, C.; Smith, A.B. III MT-stabilizer, dictyostatin, exhibits prolonged brain retention and activity: potential therapeutic implications. ACS Med. Chem. Lett., 2013, 4(9), 886-889.
[http://dx.doi.org/10.1021/ml400233e] [PMID: 24900764]
[117]
Makani, V.; Zhang, B.; Han, H.; Yao, Y.; Lassalas, P.; Lou, K.; Paterson, I.; Lee, V.M.Y.; Trojanowski, J.Q.; Ballatore, C.; Smith, A.B., III; Brunden, K.R. Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy. Acta Neuropathol. Commun., 2016, 4(1), 106.
[http://dx.doi.org/10.1186/s40478-016-0378-4] [PMID: 27687527]
[118]
Paterson, I.; Britton, R.; Delgado, O.; Gardner, N.M.; Meyer, A.; Naylor, G.J.; Poullennec, K.G. Total synthesis of (−)-dictyostatin, a microtubule-stabilising anticancer macrolide of marine sponge origin. Tetrahedron, 2010, 66(33), 6534-6545.
[http://dx.doi.org/10.1016/j.tet.2010.01.083]
[119]
Kametani, F.; Hasegawa, M. Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front. Neurosci., 2018, 12, 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[120]
Williams, P.; Sorribas, A.; Howes, M.J.R. Natural products as a source of Alzheimer’s drug leads. Nat. Prod. Rep., 2011, 28(1), 48-77.
[http://dx.doi.org/10.1039/C0NP00027B] [PMID: 21072430]
[121]
Mayer, A.M.S.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2016-2017: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2021, 19(2), 49.
[http://dx.doi.org/10.3390/md19020049] [PMID: 33494402]
[122]
Olin, J.; Schneider, L. Galantamine for Alzheimer’s disease. Cochrane Database Syst. Rev., 2002, (3), CD001747.
[PMID: 12137632]
[123]
Lakshmi, S.; Prakash, P.; Essa, M.M.; Qoronfleh, W.M.; Akbar, M.; Song, B.J.; Kumar, S.; Elumalai, P. Marine derived bioactive compounds for treatment of Alzheimer’s disease. Front. Biosci., 2018, 10(3), 537-548.
[PMID: 29772526]
[124]
Hager, K.; Baseman, A.S.; Nye, J.S.; Brashear, H.R.; Han, J.; Sano, M.; Davis, B.; Richards, H.M. Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2014, 10, 391-401.
[PMID: 24591834]
[125]
Williams, P.; Sorribas, A.; Liang, Z. New methods to explore marine resources for Alzheimer’s therapeutics. Curr. Alzheimer Res., 2010, 7(3), 210-213.
[http://dx.doi.org/10.2174/156720510791050812] [PMID: 20088803]
[126]
Houghton, P.J.; Ren, Y.; Howes, M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep., 2006, 23(2), 181-199.
[http://dx.doi.org/10.1039/b508966m] [PMID: 16572227]
[127]
Maelicke, A. Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2000, 11(1), 11-18.
[http://dx.doi.org/10.1159/000051227] [PMID: 10971047]
[128]
Kubota, T.; Kurimoto, S.I.; Kobayashi, J. The manzamine alkaloids. In: The Alkaloids; Chemistry and Biology; , 2020; 84, pp. 1-124.
[http://dx.doi.org/10.1016/bs.alkal.2020.03.001]
[129]
Hamann, M.; Alonso, D.; Martín-Aparicio, E.; Fuertes, A.; Pérez-Puerto, M.J.; Castro, A.; Morales, S.; Navarro, M.L.; del Monte-Millán, M.; Medina, M.; Pennaka, H.; Balaiah, A.; Peng, J.; Cook, J.; Wahyuono, S.; Martínez, A. Glycogen synthase kinase-3 (GSK-3) inhibitory activity and structure-activity relationship (SAR) studies of the manzamine alkaloids. Potential for Alzheimer’s disease. J. Nat. Prod., 2007, 70(9), 1397-1405.
[http://dx.doi.org/10.1021/np060092r] [PMID: 17708655]
[130]
Doble, B.W.; Woodgett, J.R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci., 2003, 116(7), 1175-1186.
[http://dx.doi.org/10.1242/jcs.00384] [PMID: 12615961]
[131]
Eldar-Finkelman, H.; Martinez, A. GSK-3 inhibitors: Preclinical and clinical focus on CNS. Front. Mol. Neurosci., 2011, 4, 32.
[http://dx.doi.org/10.3389/fnmol.2011.00032] [PMID: 22065134]
[132]
Li, D.W.; Liu, Z.Q. Wei-Chen; Min-Yao; Li, G.R. Association of glycogen synthase kinase-3β with Parkinson’s disease (Review). Mol. Med. Rep., 2014, 9(6), 2043-2050.
[http://dx.doi.org/10.3892/mmr.2014.2080] [PMID: 24681994]
[133]
Leirós, M.; Alonso, E.; Rateb, M.E.; Houssen, W.E.; Ebel, R.; Jaspars, M.; Alfonso, A.; Botana, L.M. Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology, 2015, 93, 285-293.
[http://dx.doi.org/10.1016/j.neuropharm.2015.02.015] [PMID: 25724081]
[134]
Gegunde, S.; Alfonso, A.; Alonso, E.; Alvariño, R.; Botana, L.M. Gracilin-derivatives as lead compounds for anti-inflammatory effects. Cell. Mol. Neurobiol., 2020, 40(4), 603-615.
[http://dx.doi.org/10.1007/s10571-019-00758-5] [PMID: 31729596]
[135]
Rateb, M.E.; Houssen, W.E.; Schumacher, M.; Harrison, W.T.A.; Diederich, M.; Ebel, R.; Jaspars, M. Bioactive diterpene derivatives from the marine sponge Spongionella sp. J. Nat. Prod., 2009, 72(8), 1471-1476.
[http://dx.doi.org/10.1021/np900233c] [PMID: 19601607]
[136]
Gago, F. Computational approaches to enzyme inhibition by marine natural products in the search for new drugs. Mar. Drugs, 2023, 21(2), 100.
[http://dx.doi.org/10.3390/md21020100] [PMID: 36827141]
[137]
Nirmal, N.; Praba, G.O.; Velmurugan, D. Modeling studies on phospholipase A2-inhibitor complexes. Indian J. Biochem. Biophys., 2008, 45(4), 256-262.
[PMID: 18788476]
[138]
Sun, G.Y.; Xu, J.; Jensen, M.D.; Simonyi, A. Phospholipase A2 in the central nervous system. J. Lipid Res., 2004, 45(2), 205-213.
[http://dx.doi.org/10.1194/jlr.R300016-JLR200] [PMID: 14657205]
[139]
Yoon, N.Y.; Chung, H.Y.; Kim, H.R.; Choi, J.S. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci., 2008, 74(1), 200-207.
[http://dx.doi.org/10.1111/j.1444-2906.2007.01511.x]
[140]
Sugiura, Y.; Tanaka, R.; Katsuzaki, H.; Imai, K.; Matsushita, T. The anti-inflammatory effects of phlorotannins from Eisenia arborea on mouse ear edema by inflammatory inducers. J. Funct. Foods, 2013, 5(4), 2019-2023.
[http://dx.doi.org/10.1016/j.jff.2013.08.010]
[141]
Nho, J.A.; Shin, Y.S.; Jeong, H.R.; Cho, S.; Heo, H.J.; Kim, G.H.; Kim, D.O. Neuroprotective effects of phlorotannin-rich extract from brown seaweed Ecklonia cava on neuronal PC-12 and SH-SY5Y cells with oxidative stress. J. Microbiol. Biotechnol., 2020, 30(3), 359-367.
[http://dx.doi.org/10.4014/jmb.1910.10068] [PMID: 31752064]
[142]
Kang, S.M.; Cha, S.H.; Ko, J.Y.; Kang, M.C.; Kim, D.; Heo, S.J.; Kim, J.S.; Heu, M.S.; Kim, Y.T.; Jung, W.K.; Jeon, Y.J. Neuroprotective effects of phlorotannins isolated from a brown alga, Ecklonia cava, against H2O2-induced oxidative stress in murine hippocampal HT22 cells. Environ. Toxicol. Pharmacol., 2012, 34(1), 96-105.
[http://dx.doi.org/10.1016/j.etap.2012.03.006] [PMID: 22465981]
[143]
Cowan, C.M.; Thai, J.; Krajewski, S.; Reed, J.C.; Nicholson, D.W.; Kaufmann, S.H.; Roskams, A.J. Caspases 3 and 9 send a pro-apoptotic signal from synapse to cell body in olfactory receptor neurons. J. Neurosci., 2001, 21(18), 7099-7109.
[http://dx.doi.org/10.1523/JNEUROSCI.21-18-07099.2001] [PMID: 11549720]
[144]
Garrido, J.L.; Godoy, J.; Alvarez, A.; Bronfman, M.; Inestrosa, N.C. Protein kinase C inhibits amyloid β‐peptide neurotoxicity by acting on members of the Wnt pathway. FASEB J., 2002, 16(14), 1982-1984.
[http://dx.doi.org/10.1096/fj.02-0327fje] [PMID: 12397090]
[145]
Luo, D.; Zhang, Q.; Wang, H.; Cui, Y.; Sun, Z.; Yang, J.; Zheng, Y.; Jia, J.; Yu, F.; Wang, X.; Wang, X. Fucoidan protects against dopaminergic neuron death in vivo and in vitro. Eur. J. Pharmacol., 2009, 617(1-3), 33-40.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.015] [PMID: 19545563]
[146]
Eftekharzadeh, B.; Khodagholi, F.; Abdi, A.; Maghsoudi, N. Alginate protects NT2 neurons against H2O2-induced neurotoxicity. Carbohydr. Polym., 2010, 79(4), 1063-1072.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.040]
[147]
Lee, H.R.; Do, H.; Lee, S.R.; Sohn, E.S.; Pyo, S.N.; Son, E.W. Effects of fucoidan on neuronal cell proliferation-association with NO production through the iNOS pathway. Prev. Nutr. Food Sci., 2007, 12(2), 74-78.
[http://dx.doi.org/10.3746/jfn.2007.12.2.074]
[148]
Gao, Y.; Dong, C.; Yin, J.; Shen, J.; Tian, J.; Li, C. Neuroprotective effect of fucoidan on H2O2-induced apoptosis in PC12 cells via activation of PI3K/Akt pathway. Cell. Mol. Neurobiol., 2012, 32(4), 523-529.
[http://dx.doi.org/10.1007/s10571-011-9792-0] [PMID: 22222440]
[149]
Uhm, C.S.; Kim, K.B.; Lim, J.H.; Pee, D.H.; Kim, Y.H.; Kim, H.; Eun, B.L.; Tockgo, Y.C. Effective treatment with fucoidin for perinatal hypoxic–ischemic encephalopathy in rats. Neurosci. Lett., 2003, 353(1), 21-24.
[http://dx.doi.org/10.1016/j.neulet.2003.09.013] [PMID: 14642428]
[150]
Kim, H.; Ahn, J.H.; Song, M.; Kim, D.W.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Kim, J.D.; Cho, J.H.; Hwang, I.K.; Yan, B.C.; Won, M.H.; Park, J.H. Pretreated fucoidan confers neuroprotection against transient global cerebral ischemic injury in the gerbil hippocampal CA1 area via reducing of glial cell activation and oxidative stress. Biomed. Pharmacother., 2019, 109, 1718-1727.
[http://dx.doi.org/10.1016/j.biopha.2018.11.015] [PMID: 30551426]
[151]
Vila, M.; Przedborski, S. Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci., 2003, 4(5), 365-375.
[http://dx.doi.org/10.1038/nrn1100] [PMID: 12728264]
[152]
Akimoto, T.; Sorg, B.S.; Yan, Z. Real-time imaging of peroxisome proliferator-activated receptor-γ coactivator-1α promoter activity in skeletal muscles of living mice. Am. J. Physiol. Cell Physiol., 2004, 287(3), C790-C796.
[http://dx.doi.org/10.1152/ajpcell.00425.2003] [PMID: 15151904]
[153]
Kim, T.K.; Hewavitharana, A.K.; Shaw, P.N.; Fuerst, J.A. Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl. Environ. Microbiol., 2006, 72(3), 2118-2125.
[http://dx.doi.org/10.1128/AEM.72.3.2118-2125.2006] [PMID: 16517661]
[154]
Kilic, U.; Kilic, E.; Lingor, P.; Yulug, B.; Bähr, M. Rifampicin inhibits neurodegeneration in the optic nerve transection model in vivo and after 1-methyl-4-phenylpyridinium intoxication in vitro. Acta Neuropathol., 2004, 108(1), 65-68.
[http://dx.doi.org/10.1007/s00401-004-0867-6] [PMID: 15138778]
[155]
Dyrks, T.; Dyrks, E.; Masters, C.L.; Beyreuther, K. Amyloidogenicity of rodent and human beta A4 sequences. FEBS Lett., 1993, 324(2), 231-236.
[http://dx.doi.org/10.1016/0014-5793(93)81399-K] [PMID: 8508926]
[156]
Hensley, K.; Carney, J.M.; Mattson, M.P.; Aksenova, M.; Harris, M.; Wu, J.F.; Floyd, R.A.; Butterfield, D.A. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc. Natl. Acad. Sci., 1994, 91(8), 3270-3274.
[http://dx.doi.org/10.1073/pnas.91.8.3270] [PMID: 8159737]
[157]
Tomiyama, T.; Asano, S.; Suwa, Y.; Morita, T.; Kataoka, K.; Mori, H.; Endo, N. Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem. Biophys. Res. Commun., 1994, 204(1), 76-83.
[http://dx.doi.org/10.1006/bbrc.1994.2428] [PMID: 7945395]
[158]
Mindermann, T.; Landolt, H.; Zimmerli, W.; Rajacic, Z.; Gratzl, O. Penetration of rifampicin into the brain tissue and cerebral extracellular space of rats. J. Antimicrob. Chemother., 1993, 31(5), 731-737.
[http://dx.doi.org/10.1093/jac/31.5.731] [PMID: 8335500]
[159]
Tomiyama, T.; Kaneko, H.; Kataoka, K.; Asano, S.; Endo, N. Rifampicin inhibits the toxicity of pre-aggregated amyloid peptides by binding to peptide fibrils and preventing amyloid-cell interaction. Biochem. J., 1997, 322(3), 859-865.
[http://dx.doi.org/10.1042/bj3220859] [PMID: 9148761]
[160]
Findeis, M.A. Approaches to discovery and characterization of inhibitors of amyloid β-peptide polymerization. Biochim. Biophys. Acta Mol. Basis Dis., 2000, 1502(1), 76-84.
[http://dx.doi.org/10.1016/S0925-4439(00)00034-X] [PMID: 10899433]
[161]
Lieu, V.H.; Wu, J.W.; Wang, S.S.S.; Wu, C.H. Inhibition of amyloid fibrillization of hen egg-white lysozymes by rifampicin and p-benzoquinone. Biotechnol. Prog., 2007, 23(3), 698-706.
[http://dx.doi.org/10.1021/bp060353n] [PMID: 17492832]
[162]
Ono, K.; Hasegawa, K.; Yoshiike, Y.; Takashima, A.; Yamada, M.; Naiki, H. Nordihydroguaiaretic acid potently breaks down preformed Alzheimer’s β‐amyloid fibrils in vitro. J. Neurochem., 2002, 81(3), 434-440.
[http://dx.doi.org/10.1046/j.1471-4159.2002.00904.x] [PMID: 12065652]
[163]
Ono, K.; Hamaguchi, T.; Naiki, H.; Yamada, M. Anti-amyloidogenic effects of antioxidants: Implications for the prevention and therapeutics of Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2006, 1762(6), 575-586.
[http://dx.doi.org/10.1016/j.bbadis.2006.03.002] [PMID: 16644188]
[164]
Yulug, B.; Hanoglu, L.; Kilic, E.; Schabitz, W.R. RIFAMPICIN: An antibiotic with brain protective function. Brain Res. Bull., 2014, 107, 37-42.
[http://dx.doi.org/10.1016/j.brainresbull.2014.05.007] [PMID: 24905548]
[165]
Tsolaki, M. Future strategies of management of Alzheimer’s Disease. The role of homotaurine. Hell. J. Nucl. Med., 2019, 22, 82-94.
[PMID: 30877726]
[166]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[167]
Manzano, S.; Agüera, L.; Aguilar, M.; Olazarán, J. A review on tramiprosate (homotaurine) in Alzheimer’s disease and other neurocognitive disorders. Front. Neurol., 2020, 11, 614.
[http://dx.doi.org/10.3389/fneur.2020.00614] [PMID: 32733362]
[168]
Gervais, F.; Paquette, J.; Morissette, C.; Krzywkowski, P.; Yu, M.; Azzi, M.; Lacombe, D.; Kong, X.; Aman, A.; Laurin, J.; Szarek, W.A.; Tremblay, P. Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol. Aging, 2007, 28(4), 537-547.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.015] [PMID: 16675063]
[169]
Santa-Maria, I.; Hernández, F.; Del Rio, J.; Moreno, F.J.; Avila, J. Tramiprosate, a drug of potential interest for the treatment of Alzheimer’s disease, promotes an abnormal aggregation of tau. Mol. Neurodegener., 2007, 2(1), 17.
[http://dx.doi.org/10.1186/1750-1326-2-17] [PMID: 17822548]
[170]
Kem, W.; Soti, F.; Wildeboer, K.; LeFrancois, S.; MacDougall, K.; Wei, D.Q.; Chou, K.C.; Arias, H. The nemertine toxin anabaseine and its derivative DMXBA (GTS-21): Chemical and pharmacological properties. Mar. Drugs, 2006, 4(3), 255-273.
[http://dx.doi.org/10.3390/md403255]
[171]
Schaller, S.J.; Nagashima, M.; Schönfelder, M.; Sasakawa, T.; Schulz, F.; Khan, M.A.S.; Kem, W.R.; Schneider, G.; Schlegel, J.; Lewald, H.; Blobner, M.; Jeevendra Martyn, J.A. GTS-21 attenuates loss of body mass, muscle mass, and function in rats having systemic inflammation with and without disuse atrophy. Pflugers Arch., 2018, 470(11), 1647-1657.
[http://dx.doi.org/10.1007/s00424-018-2180-6] [PMID: 30006848]
[172]
Kem, W.R.; Mahnir, V.M.; Papke, R.L.; Lingle, C.J. Anabaseine is a potent agonist on muscle and neuronal alpha-bungarotoxin-sensitive nicotinic receptors. J. Pharmacol. Exp. Ther., 1997, 283(3), 979-992.
[PMID: 9399967]
[173]
Briggs, C.A.; Anderson, D.J.; Brioni, J.D.; Buccafusco, J.J.; Buckley, M.J.; Campbell, J.E.; Decker, M.W.; Donnelly-Roberts, D.; Elliott, R.L.; Gopalakrishnan, M.; Holladay, M.W.; Hui, Y.H.; Jackson, W.J.; Kim, D.J.B.; Marsh, K.C.; O’Neill, A.; Prendergast, M.A.; Ryther, K.B.; Sullivan, J.P.; Arneric, S.P. Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol. Biochem. Behav., 1997, 57(1-2), 231-241.
[http://dx.doi.org/10.1016/S0091-3057(96)00354-1] [PMID: 9164577]
[174]
Meyer, E.M.; Tay, E.T.; Papke, R.L.; Meyers, C.; Huang, G.; de Fiebre, C.M. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat α7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Res., 1997, 768(1-2), 49-56.
[http://dx.doi.org/10.1016/S0006-8993(97)00536-2] [PMID: 9369300]
[175]
Russo, P.; Bufalo, A.; Frustaci, A.; Fini, M.; Cesario, A. Beyond acetylcholinesterase inhibitors for treating Alzheimer’s disease: α7-nAChR agonists in human clinical trials. Curr. Pharm. Des., 2014, 20(38), 6014-6021.
[http://dx.doi.org/10.2174/1381612820666140316130720] [PMID: 24641224]
[176]
Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci., 2019, 20(9), 2313.
[http://dx.doi.org/10.3390/ijms20092313] [PMID: 31083327]
[177]
Alonso, E.; Vale, C.; Vieytes, M.R.; Laferla, F.M.; Giménez-Llort, L.; Botana, L.M. 13-Desmethyl spirolide-C is neuroprotective and reduces intracellular Aβ and hyperphosphorylated tau in vitro. Neurochem. Int., 2011, 59(7), 1056-1065.
[http://dx.doi.org/10.1016/j.neuint.2011.08.013] [PMID: 21907746]
[178]
Alonso, E.; Otero, P.; Vale, C.; Alfonso, A.; Antelo, A.; Giménez-Llort, L.; Chabaud, L.; Guillou, C.; Botana, L.M. Benefit of 13-desmethyl spirolide C treatment in triple transgenic mouse model of Alzheimer disease: Beta-amyloid and neuronal markers improvement. Curr. Alzheimer Res., 2013, 10(3), 279-289.
[http://dx.doi.org/10.2174/1567205011310030007] [PMID: 23036025]
[179]
Gribble, G.W. The diversity of naturally produced organohalogens. Chemosphere, 2003, 52(2), 289-297.
[http://dx.doi.org/10.1016/S0045-6535(03)00207-8] [PMID: 12738253]
[180]
Deng, C.M.; Liu, S.X.; Huang, C.H.; Pang, J.Y.; Lin, Y.C. Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No. GX7-3B) from the South China Sea. Mar. Drugs, 2013, 11(7), 2616-2624.
[http://dx.doi.org/10.3390/md11072616] [PMID: 23877026]
[181]
Lai, Y.J. Omega-3 fatty acid obtained from Nannochloropsis oceanica cultures grown under low urea protect against Abeta-induced neural damage. J. Food Sci. Technol., 2015, 52(5), 2982-2989.
[http://dx.doi.org/10.1007/s13197-014-1329-3] [PMID: 25892799]
[182]
Sangnoi, Y.; Sakulkeo, O.; Yuenyongsawad, S.; Kanjana-opas, A.; Ingkaninan, K.; Plubrukarn, A.; Suwanborirux, K. Acetylcholinesterase-inhibiting activity of pyrrole derivatives from a novel marine gliding bacterium, Rapidithrix thailandica. Mar. Drugs, 2008, 6(4), 578-586.
[http://dx.doi.org/10.3390/md6040578] [PMID: 19172195]
[183]
Liu, Y.W.; Shi, D.H.; Chen, A.J.; Zhu, Q.; Xu, J.T.; Zhang, X.X. Acetylcholinesterase inhibition effects of marine fungi. Pharm. Biol., 2014, 52(5), 539-543.
[http://dx.doi.org/10.3109/13880209.2013.850516] [PMID: 24236532]
[184]
Park, I.H. Jeon, S.Y.; Lee, H.J.; Kim, S.I.; Song, K.S. A β-secretase (BACE1) inhibitor hispidin from the mycelial cultures of Phellinus linteus. Planta Med., 2004, 70(2), 143-146.
[http://dx.doi.org/10.1055/s-2004-815491] [PMID: 14994192]
[185]
de Kivit, S.; Kraneveld, A.D.; Knippels, L.M.J.; van Kooyk, Y.; Garssen, J.; Willemsen, L.E.M. Intestinal epithelium-derived galectin-9 is involved in the immunomodulating effects of nondigestible oligosaccharides. J. Innate Immun., 2013, 5(6), 625-638.
[http://dx.doi.org/10.1159/000350515] [PMID: 23735749]
[186]
Custódio, L.; Justo, T.; Silvestre, L.; Barradas, A.; Duarte, C.V.; Pereira, H.; Barreira, L.; Rauter, A.P.; Alberício, F.; Varela, J. Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities. Food Chem., 2012, 131(1), 134-140.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.047] [PMID: 26434272]
[187]
Chen, Y.; Yang, C.; Wang, Z.J. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience, 2011, 193, 440-451.
[http://dx.doi.org/10.1016/j.neuroscience.2011.06.085] [PMID: 21763756]
[188]
Harms, H. Kehraus, S.; Nesaei-Mosaferan, D.; Hufendieck, P.; Meijer, L.; König, G.M. Aβ-42 lowering agents from the marine-derived fungus Dichotomomyces cejpii. Steroids, 2015, 104, 182-188.
[http://dx.doi.org/10.1016/j.steroids.2015.09.012] [PMID: 26440473]
[189]
Singh, L.; Kaur, N.; Bhatti, R. Neuroprotective potential of biochanin-A and review of the molecular mechanisms involved. Mol. Biol. Rep., 2023, 50(6), 5369-5378.
[http://dx.doi.org/10.1007/s11033-023-08397-2] [PMID: 37039995]
[190]
Vester, J.K.; Glaring, M.A.; Stougaard, P. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles, 2015, 19(1), 17-29.
[http://dx.doi.org/10.1007/s00792-014-0704-3] [PMID: 25399309]
[191]
Zengler, K.; Toledo, G.; Rappé, M.; Elkins, J.; Mathur, E.J.; Short, J.M.; Keller, M. Cultivating the uncultured. Proc. Natl. Acad. Sci., 2002, 99(24), 15681-15686.
[http://dx.doi.org/10.1073/pnas.252630999] [PMID: 12438682]
[192]
Song, J.; Oh, H.M.; Cho, J.C. Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea, West Pacific Ocean. FEMS Microbiol. Lett., 2009, 295(2), 141-147.
[http://dx.doi.org/10.1111/j.1574-6968.2009.01623.x] [PMID: 19459973]
[193]
Bollmann, A.; Lewis, K.; Epstein, S.S. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol., 2007, 73(20), 6386-6390.
[http://dx.doi.org/10.1128/AEM.01309-07] [PMID: 17720826]
[194]
Gavrish, E.; Bollmann, A.; Epstein, S.; Lewis, K. A trap for in situ cultivation of filamentous actinobacteria. J. Microbiol. Methods, 2008, 72(3), 257-262.
[http://dx.doi.org/10.1016/j.mimet.2007.12.009] [PMID: 18255181]
[195]
Pham, V.H.T.; Kim, J. Cultivation of unculturable soil bacteria. Trends Biotechnol., 2012, 30(9), 475-484.
[http://dx.doi.org/10.1016/j.tibtech.2012.05.007] [PMID: 22770837]
[196]
Nichols, D.; Cahoon, N.; Trakhtenberg, E.M.; Pham, L.; Mehta, A.; Belanger, A.; Kanigan, T.; Lewis, K.; Epstein, S.S. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl. Environ. Microbiol., 2010, 76(8), 2445-2450.
[http://dx.doi.org/10.1128/AEM.01754-09] [PMID: 20173072]
[197]
Berrue, F.; Withers, S.T.; Haltli, B.; Withers, J.; Kerr, R.G. Chemical screening method for the rapid identification of microbial sources of marine invertebrate-associated metabolites. Mar. Drugs, 2011, 9(3), 369-381.
[http://dx.doi.org/10.3390/md9030369] [PMID: 21556166]
[198]
Butler, M.S.; Fontaine, F.; Cooper, M.A. Natural product libraries: Assembly, maintenance, and screening. Planta Med., 2014, 80(14), 1161-1170.
[PMID: 24310213]
[199]
Ghareeb, M.A.; Tammam, M.A.; El-Demerdash, A.; Atanasov, A.G. Insights about clinically approved and Preclinically investigated marine natural products. CRBIOT, 2020, 2, 88-102.
[http://dx.doi.org/10.1016/j.crbiot.2020.09.001]
[200]
Mayer, A.M.S.; Pierce, M.; Reji, M.; Wu, A.C.; Jekielek, K.K.; Le, H.Q.; Howe, K.; Butt, M.; Seo, S.; Newman, D.J.; Glaser, K.B. Marine-derived pharmaceuticals in clinical trials in 2022. J. Pharmacol. Exp. Ther., 2023, 385(S3), 299.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy