Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Pharmacological Effects of FTY720 and its Derivatives

Author(s): Mengyuan Han, Xiangran Liu, Sendaer Hailati, Nulibiya Maihemuti, Nurbiya Nurahmat, Dilihuma Dilimulati, Alhar Baishan, Alifeiye Aikebaier, Wenting Zhou* and Yan Pan*

Volume 24, Issue 3, 2024

Published on: 05 January, 2024

Page: [192 - 200] Pages: 9

DOI: 10.2174/0115680266273421231222061620

Price: $65

Open Access Journals Promotions 2
Abstract

FTY720 is an analog of sphingosine-1-phosphate (S1P) derived from the ascomycete Cordyceps sinensis. As a new immunosuppressant, FTY720 is widely used to treat multiple sclerosis. FTY720 binds to the S1P receptor after phosphorylation, thereby exerting immunosuppressive effects. The nonphosphorylated form of FTY720 can induce cell apoptosis, enhance chemotherapy sensitivity, and inhibit tumor metastasis of multiple tumors by inhibiting SPHK1 (sphingosine kinase 1) and activating PP2A (protein phosphatase 2A) and various cell death pathways. FTY720 can induce neutrophil extracellular traps to neutralize and kill pathogens in vitro, thus exerting anti- infective effects. At present, a series of FTY720 derivatives, which have pharmacological effects such as anti-tumor and alleviating airway hyperresponsiveness, have been developed through structural modification. This article reviews the pharmacological effects of FTY720 and its derivatives.

Keywords: FTY720, Immunosuppression, Anti-tumor, Anti-infection, Derivative, Pharmacological effects.

Graphical Abstract
[1]
(a) Fujita, T.; Matsumoto, N.; Uchida, S.; Kohno, T.; Shimizu, T.; Hirose, R.; Yanada, K.; Kurio, W.; Watabe, K. Antibody against a novel, myriocin (ISP-I)-Based immunosuppressant, FTY720. Bioorg. Med. Chem. Lett., 2000, 10(4), 337-339.
[http://dx.doi.org/10.7164/antibiotics.47.208] [PMID: 8150717];
(b) Fujita, T, Inoue K, Yamamoto S, Ikumoto T, Sasaki S, Toyama R, Chiba K, Hoshino Y, Okumoto T. Fungal metabolites. part 11. A potent immunosuppressive activity found in isaria sinclairii metabolite. J. Antibiot., 1994, 47, 208-15.
[http://dx.doi.org/10.7164/antibiotics.47.208] [PMID: 8150717];
(c) Fujita, T, Hamamichi N, Kiuchi M, Matsuzaki T, Kitao Y, Inoue K, Hirose R, Yoneta M, Sasaki S, Chiba K. Determination of absolute configuration and biological activity of new immunosuppressants, mycestericins D, E, F and G. J. Antibiot., 1996, 49, 846-53. Erratum in: J Antibiot (Tokyo) 1996 Dec;49(12):C-3
[http://dx.doi.org/10.7164/antibiotics.49.846.] [PMID: 8931716]
[2]
Brinkmann, V.; Davis, M.D.; Heise, C.E.; Albert, R.; Cottens, S.; Hof, R.; Bruns, C.; Prieschl, E.; Baumruker, T.; Hiestand, P.; Foster, C.A.; Zollinger, M.; Lynch, K.R. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem., 2002, 277(24), 21453-21457.
[http://dx.doi.org/10.1074/jbc.C200176200] [PMID: 11967257]
[3]
Suzuki, S.; Ogawa, M.; Miyazaki, M.; Ota, K.; Kazama, H.; Hirota, A.; Takano, N.; Hiramoto, M.; Miyazawa, K. Lysosome-targeted drug combination induces multiple organelle dysfunctions and non-canonical death in pancreatic cancer cells. Oncol. Rep., 2021, 47(2), 40.
[http://dx.doi.org/10.3892/or.2021.8251] [PMID: 34958115]
[4]
Hirata, N.; Yamada, S.; Yanagida, S.; Ono, A.; Kanda, Y. FTY720 inhibits expansion of breast cancer stem cells via PP2A activation. Int. J. Mol. Sci., 2021, 22(14), 7259.
[http://dx.doi.org/10.3390/ijms22147259] [PMID: 34298877]
[5]
Wei, L.Q.; Tan, J.C.; Wang, Y.; Mei, Y.K.; Xue, J.Y.; Tian, L.; Song, K.Y.; Han, L.; Cui, Y.C.; Peng, Y.B.; Li, J.Q.; Liu, N.N.; Wang, H. Fingolimod potentiates the antifungal activity of amphotericin B. Front. Cell. Infect. Microbiol., 2021, 11, 627917.
[http://dx.doi.org/10.3389/fcimb.2021.627917] [PMID: 33968796]
[6]
Najarzadegan, N.; Madani, M.; Etemadifar, M.; Sedaghat, N. Immunomodulatory drug fingolimod (FTY720) restricts the growth of opportunistic yeast Candida albicans in vitro and in a mouse candidiasis model. PLoS One, 2022, 17(12), e0278488.
[http://dx.doi.org/10.1371/journal.pone.0278488] [PMID: 36477491]
[7]
Omar, H.A.; Tolba, M.F.; Hung, J.H.; Al-Tel, T.H. OSU-2S/Sorafenib synergistic antitumor combination against hepatocellular carcinoma: The role of PKCδ/p53. Front. Pharmacol., 2016, 7, 463.
[http://dx.doi.org/10.3389/fphar.2016.00463] [PMID: 27965580]
[8]
Zhu, C.; Wen, S.; Li, J.; Meng, H.; Zhang, J.; Zhao, K.; Wang, L.; Zhang, Y. FTY720 inhibits the development of collagen-induced arthritis in mice by suppressing the recruitment of CD4+ T lymphocytes. Drug Des. Devel. Ther., 2021, 15, 1981-1992.
[http://dx.doi.org/10.2147/DDDT.S293876] [PMID: 34007158]
[9]
Yoshida, Y.; Mikami, N.; Nakanishi, Y.; Saimoto, M.; Nagaike, A.; Shimono, H.; Nakano, S.; Tsuji, T.; Kohno, T. Characterization of an expanded IL-10-producing-suppressive T cell population associated with immune tolerance. Biol. Pharm. Bull., 2021, 44(4), 585-589.
[http://dx.doi.org/10.1248/bpb.b19-01072] [PMID: 33504740]
[10]
Wang, Z.; Kawabori, M.; Houkin, K. FTY720 (Fingolimod) ameliorates brain injury through multiple mechanisms and is a strong candidate for stroke treatment. Curr. Med. Chem., 2020, 27(18), 2979-2993.
[http://dx.doi.org/10.2174/0929867326666190308133732] [PMID: 31785606]
[11]
Zhang, L.; Wang, H. FTY720 in CNS injuries: Molecular mechanisms and therapeutic potential. Brain Res. Bull., 2020, 164, 75-82.
[http://dx.doi.org/10.1016/j.brainresbull.2020.08.013] [PMID: 32846199]
[12]
Chiba, K.; Matsuyuki, H.; Maeda, Y.; Sugahara, K. Role of sphingosine 1-phosphate receptor type 1 in lymphocyte egress from secondary lymphoid tissues and thymus. Cell. Mol. Immunol., 2006, 3(1), 11-19.
[PMID: 16549044]
[13]
Sehr, T.; Akgün, K.; Haase, R.; Ziemssen, T. Fingolimod leads to immediate immunological changes within 6 h after first administration. Front. Neurol., 2020, 11, 391.
[http://dx.doi.org/10.3389/fneur.2020.00391] [PMID: 32477253]
[14]
Baer, A.; Colon-Moran, W.; Bhattarai, N. Characterization of the effects of immunomodulatory drug fingolimod (FTY720) on human T cell receptor signaling pathways. Sci. Rep., 2018, 8(1), 10910.
[http://dx.doi.org/10.1038/s41598-018-29355-0] [PMID: 30026610]
[15]
Ryu, J.; Jhun, J.; Park, M.J.; Baek, J.; Kim, S.Y.; Cho, K.H.; Choi, J.W.; Park, S.H.; Choi, J.Y.; Cho, M.L. FTY720 ameliorates GvHD by blocking T lymphocyte migration to target organs and by skin fibrosis inhibition. J. Transl. Med., 2020, 18(1), 225.
[http://dx.doi.org/10.1186/s12967-020-02386-w] [PMID: 32505218]
[16]
Chen, W.; Chen, W.; Chen, S.; Uosef, A.; Ghobrial, R.M.; Kloc, M. Fingolimod (FTY720) prevents chronic rejection of rodent cardiac allografts through inhibition of the RhoA pathway. Transpl. Immunol., 2021, 65, 101347.
[http://dx.doi.org/10.1016/j.trim.2020.101347] [PMID: 33131698]
[17]
Najafian, S.A.; Farbood, Y.; Sarkaki, A.; Ghafouri, S. FTY720 administration following hypoxia-induced neonatal seizure reverse cognitive impairments and severity of seizures in male and female adult rats: The role of inflammation. Neurosci. Lett., 2021, 748, 135675.
[http://dx.doi.org/10.1016/j.neulet.2021.135675] [PMID: 33516800]
[18]
Dong, Y.F.; Guo, R.B.; Ji, J.; Cao, L.L.; Zhang, L.; Chen, Z.Z.; Huang, J.Y.; Wu, J.; Lu, J.; Sun, X.L. S1 PR 3 is essential for phosphorylated fingolimod to protect astrocytes against oxygen-glucose deprivation-induced neuroinflammation via inhibiting TLR 2/4- NF κB signalling. J. Cell. Mol. Med., 2018, 22(6), 3159-3166.
[http://dx.doi.org/10.1111/jcmm.13596] [PMID: 29536648]
[19]
Geffin, R.; Martinez, R.; de las Pozas, A.; Issac, B.; McCarthy, M. Fingolimod induces neuronal-specific gene expression with potential neuroprotective outcomes in maturing neuronal progenitor cells exposed to HIV. J. Neurovirol., 2017, 23(6), 808-824.
[http://dx.doi.org/10.1007/s13365-017-0571-7] [PMID: 28913617]
[20]
Yi, Y.; Hu, W.; Lv, W.; Zhao, C.; Xiong, M.; Wu, M.; Zhang, Q.; Wu, Y. FTY720 improves the survival of autologous fat grafting by modulating macrophages toward M2 polarization via STAT3 pathway. Cell Transplant., 2021, 30
[http://dx.doi.org/10.1177/09636897211052975] [PMID: 34662222]
[21]
Schaier, M.; Vorwalder, S.; Sommerer, C.; Dikow, R.; Hug, F.; Gross, M.L.; Waldherr, R.; Zeier, M. Role of FTY720 on M1 and M2 macrophages, lymphocytes, and chemokines in 5/6 nephrectomized rats. Am. J. Physiol. Renal Physiol., 2009, 297(3), F769-F780.
[http://dx.doi.org/10.1152/ajprenal.90530.2008] [PMID: 19535570]
[22]
Das, A.; Segar, C.E.; Hughley, B.B.; Bowers, D.T.; Botchwey, E.A. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials, 2013, 34(38), 9853-9862.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.015] [PMID: 24064148]
[23]
Aoki, M.; Kondo, A.; Matsunaga, N.; Honda, A.; Okubo, Y.; Takabe, K.; Ogawa, R. The immunosuppressant fingolimod (FTY720) for the treatment of mechanical force-induced abnormal scars. J. Immunol. Res., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/7057195] [PMID: 32377536]
[24]
Ballestas, S.A.; Turner, T.C.; Kamalakar, A.; Stephenson, Y.C.; Willett, N.J.; Goudy, S.L.; Botchwey, E.A. Improving hard palate wound healing using immune modulatory autotherapies. Acta Biomater., 2019, 91, 209-219.
[http://dx.doi.org/10.1016/j.actbio.2019.04.052] [PMID: 31029828]
[25]
Miron, V.E.; Schubart, A.; Antel, J.P. Central nervous system-directed effects of FTY720 (fingolimod). J. Neurol. Sci., 2008, 274(1-2), 13-17.
[http://dx.doi.org/10.1016/j.jns.2008.06.031] [PMID: 18678377]
[26]
Groves, A.; Kihara, Y.; Chun, J. Fingolimod: Direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy. J. Neurol. Sci., 2013, 328(1-2), 9-18.
[http://dx.doi.org/10.1016/j.jns.2013.02.011] [PMID: 23518370]
[27]
Kihara, Y.; Chun, J. Molecular and neuroimmune pharmacology of S1P receptor modulators and other disease-modifying therapies for multiple sclerosis. Pharmacol. Ther., 2023, 246, 108432.
[http://dx.doi.org/10.1016/j.pharmthera.2023.108432] [PMID: 37149155]
[28]
Dev, K.K.; Mullershausen, F.; Mattes, H.; Kuhn, R.R.; Bilbe, G.; Hoyer, D.; Mir, A. Brain sphingosine-1-phosphate receptors: Implication for FTY720 in the treatment of multiple sclerosis. Pharmacol. Ther., 2008, 117(1), 77-93.
[http://dx.doi.org/10.1016/j.pharmthera.2007.08.005] [PMID: 17961662]
[29]
Brinkmann, V.; Billich, A.; Baumruker, T.; Heining, P.; Schmouder, R.; Francis, G.; Aradhye, S.; Burtin, P. Fingolimod (FTY720): Discovery and development of an oral drug to treat multiple sclerosis. Nat. Rev. Drug Discov., 2010, 9(11), 883-897.
[http://dx.doi.org/10.1038/nrd3248] [PMID: 21031003]
[30]
Chun, J.; Hartung, H.P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol., 2010, 33(2), 91-101.
[http://dx.doi.org/10.1097/WNF.0b013e3181cbf825] [PMID: 20061941]
[31]
Coelho, R.P.; Payne, S.G.; Bittman, R.; Spiegel, S.; Sato-Bigbee, C. The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J. Pharmacol. Exp. Ther., 2007, 323(2), 626-635.
[http://dx.doi.org/10.1124/jpet.107.123927] [PMID: 17726159]
[32]
Goldschmidt, T.; Antel, J.; König, F.B.; Brück, W.; Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology, 2009, 72(22), 1914-1921.
[http://dx.doi.org/10.1212/WNL.0b013e3181a8260a] [PMID: 19487649]
[33]
Li, S.; Sakurai, K.; Ohgidani, M.; Kato, T.A.; Hikida, T. Ameliorative effects of Fingolimod (FTY720) on microglial activation and psychosis-related behavior in short term cuprizone exposed mice. Mol. Brain, 2023, 16(1), 59.
[http://dx.doi.org/10.1186/s13041-023-01047-5] [PMID: 37438826]
[34]
Yazdi, A.; Ghasemi-Kasman, M.; Javan, M. Possible regenerative effects of fingolimod (FTY720) in multiple sclerosis disease: An overview on remyelination process. J. Neurosci. Res., 2020, 98(3), 524-536.
[http://dx.doi.org/10.1002/jnr.24509] [PMID: 31385341]
[35]
Yazdi, A.; Baharvand, H.; Javan, M. Enhanced remyelination following lysolecithin-induced demyelination in mice under treatment with fingolimod (FTY720). Neuroscience, 2015, 311, 34-44.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.013] [PMID: 26475743]
[36]
Leo, H.; Kipp, M. Remyelination in multiple sclerosis: Findings in the cuprizone model. Int. J. Mol. Sci., 2022, 23(24), 16093.
[http://dx.doi.org/10.3390/ijms232416093] [PMID: 36555733]
[37]
Hashemian, M.; Ghasemi-Kasman, M.; Parsian, H.; Sadeghi, F. Fingolimod (FTY720) improves the functional recovery and myelin preservation of the optic pathway in focal demyelination model of rat optic chiasm. Brain Res. Bull., 2019, 153, 109-121.
[http://dx.doi.org/10.1016/j.brainresbull.2019.08.014] [PMID: 31442591]
[38]
Miron, V.E.; Ludwin, S.K.; Darlington, P.J.; Jarjour, A.A.; Soliven, B.; Kennedy, T.E.; Antel, J.P. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am. J. Pathol., 2010, 176(6), 2682-2694.
[http://dx.doi.org/10.2353/ajpath.2010.091234] [PMID: 20413685]
[39]
Pournajaf, S.; Dargahi, L.; Javan, M.; Pourgholami, M.H. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front. Pharmacol., 2022, 13, 807639.
[http://dx.doi.org/10.3389/fphar.2022.807639] [PMID: 35250559]
[40]
Göttle, P.; Dietrich, M.; Küry, P. Multiple sclerosis drug repurposing for neuroregeneration. Neural Regen. Res., 2024, 19(3), 507-508.
[http://dx.doi.org/10.4103/1673-5374.380901] [PMID: 37721276]
[41]
Rodriguez, A.M. Association of Sphingosine-1-phosphate (S1P)/S1P receptor-1 pathway with cell proliferation and survival in canine hemangiosarcoma. J. Vet. Intern. Med., 2018, 32(6), 2311.
[http://dx.doi.org/10.1111/jvim.15309] [PMID: 30506615]
[42]
Sykes, D.A.; Riddy, D.M.; Stamp, C.; Bradley, M.E.; McGuiness, N.; Sattikar, A.; Guerini, D.; Rodrigues, I.; Glaenzel, A.; Dowling, M.R.; Mullershausen, F.; Charlton, S.J. Investigating the molecular mechanisms through which FTY 720- P causes persistent S1P 1 receptor internalization. Br. J. Pharmacol., 2014, 171(21), 4797-4807.
[http://dx.doi.org/10.1111/bph.12620] [PMID: 24641481]
[43]
Du, J.; Qian, M.; Yuan, T.; Zhang, B.; Chen, X.; An, N.; He, Q.; Yang, B.; Ye, S.; Zhu, H. Fingolimod exerts in vitro anticancer activity against hepatocellular carcinoma cell lines via YAP/TAZ suppression. Acta Pharm., 2022, 72(3), 427-436.
[http://dx.doi.org/10.2478/acph-2022-0029] [PMID: 36651547]
[44]
Guo, X.D.; Ji, J.; Xue, T.F.; Sun, Y.Q.; Guo, R.B.; Cheng, H.; Sun, X.L. FTY720 exerts anti-glioma effects by regulating the glioma microenvironment through increased CXCR4 internalization by glioma-associated microglia. Front. Immunol., 2020, 11, 178.
[http://dx.doi.org/10.3389/fimmu.2020.00178] [PMID: 32194542]
[45]
Zhong, Y.; Tian, F.; Ma, H.; Wang, H.; Yang, W.; Liu, Z.; Liao, A. FTY720 induces ferroptosis and autophagy via PP2A/AMPK pathway in multiple myeloma cells. Life Sci., 2020, 260, 118077.
[http://dx.doi.org/10.1016/j.lfs.2020.118077] [PMID: 32810509]
[46]
Rosa, R.; Marciano, R.; Malapelle, U.; Formisano, L.; Nappi, L.; D’Amato, C.; D’Amato, V.; Damiano, V.; Marfè, G.; Del Vecchio, S.; Zannetti, A.; Greco, A.; De Stefano, A.; Carlomagno, C.; Veneziani, B.M.; Troncone, G.; De Placido, S.; Bianco, R. Sphingosine kinase 1 overexpression contributes to cetuximab resistance in human colorectal cancer models. Clin. Cancer Res., 2013, 19(1), 138-147.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1050] [PMID: 23166225]
[47]
Tonelli, F.; Lim, K.G.; Loveridge, C.; Long, J.; Pitson, S.M.; Tigyi, G.; Bittman, R.; Pyne, S.; Pyne, N.J. FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell. Signal., 2010, 22(10), 1536-1542.
[http://dx.doi.org/10.1016/j.cellsig.2010.05.022] [PMID: 20570726]
[48]
White, C.; Alshaker, H.; Cooper, C.; Winkler, M.; Pchejetski, D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget, 2016, 7(17), 23106-23127.
[http://dx.doi.org/10.18632/oncotarget.7145] [PMID: 27036015]
[49]
Chaudhry, B.Z.; Cohen, J.A.; Conway, D.S. Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics, 2017, 14(4), 859-873.
[http://dx.doi.org/10.1007/s13311-017-0565-4] [PMID: 28812220]
[50]
Kotelevets, N.; Fabbro, D.; Huwiler, A.; Zangemeister-Wittke, U. Targeting sphingosine kinase 1 in carcinoma cells decreases proliferation and survival by compromising PKC activity and cytokinesis. PLoS One, 2012, 7(6), e39209.
[http://dx.doi.org/10.1371/journal.pone.0039209] [PMID: 22761740]
[51]
Nagahashi, M.; Ramachandran, S.; Kim, E.Y.; Allegood, J.C.; Rashid, O.M.; Yamada, A.; Zhao, R.; Milstien, S.; Zhou, H.; Spiegel, S.; Takabe, K. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res., 2012, 72(3), 726-735.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2167] [PMID: 22298596]
[52]
Ma, Y.; Xing, X.; Kong, R.; Cheng, C.; Li, S.; Yang, X.; Li, S.; Zhao, F.; Sun, L.; Cao, G. SphK1 promotes development of non-small cell lung cancer through activation of STAT3. Int. J. Mol. Med., 2020, 47(1), 374-386.
[http://dx.doi.org/10.3892/ijmm.2020.4796] [PMID: 33236138]
[53]
Long, J.; Yao, Z.; Sui, Y.; Fang, S. SphK1 promotes cancer progression through activating JAK/STAT pathway and up-regulating S1PR1 expression in colon cancer cells. Anticancer. Agents Med. Chem., 2022, 22(2), 254-260.
[http://dx.doi.org/10.2174/1871520621666210401105344] [PMID: 33797381]
[54]
Lin, Z.; Li, Y.; Han, X.; Fu, Z.; Tian, Z.; Li, C. Targeting SPHK1/PBX1 axis induced cell cycle arrest in non-small cell lung cancer. Int. J. Mol. Sci., 2022, 23(21), 12741.
[http://dx.doi.org/10.3390/ijms232112741] [PMID: 36361531]
[55]
Yu, M.; Zhang, K.; Wang, S.; Xue, L.; Chen, Z.; Feng, N.; Ning, C.; Wang, L.; Li, J.; Zhang, B.; Yang, C.; Zhang, Z. Increased SPHK1 and HAS2 expressions correlate to poor prognosis in pancreatic cancer. BioMed Res. Int., 2021, 2021(8861766), 1-8.
[http://dx.doi.org/10.1155/2021/8861766] [PMID: 33506044]
[56]
Chen, Z.; Liu, B. Sphk1 participates in malignant progression of breast cancer by regulating epithelial-mesenchymal transition and stem cell characteristics. Tissue Cell, 2020, 65, 101380.
[http://dx.doi.org/10.1016/j.tice.2020.101380] [PMID: 32746988]
[57]
Agarwal, A.; MacKenzie, R.J.; Pippa, R.; Eide, C.A.; Oddo, J.; Tyner, J.W.; Sears, R.; Vitek, M.P.; Odero, M.D.; Christensen, D.J.; Druker, B.J. Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia. Clin. Cancer Res., 2014, 20(8), 2092-2103.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2575] [PMID: 24436473]
[58]
Janghorban, M.; Farrell, A.S.; Allen-Petersen, B.L.; Pelz, C.; Daniel, C.J.; Oddo, J.; Langer, E.M.; Christensen, D.J.; Sears, R.C. Targeting c-MYC by antagonizing PP2A inhibitors in breast cancer. Proc. Natl. Acad. Sci. USA, 2014, 111(25), 9157-9162.
[http://dx.doi.org/10.1073/pnas.1317630111] [PMID: 24927563]
[59]
De Palma, R.M.; Parnham, S.R.; Li, Y.; Oaks, J.J.; Peterson, Y.K.; Szulc, Z.M.; Roth, B.M.; Xing, Y.; Ogretmen, B. The NMR-based characterization of the FTY720-SET complex reveals an alternative mechanism for the attenuation of the inhibitory SET-PP2A interaction. FASEB J., 2019, 33(6), 7647-7666.
[http://dx.doi.org/10.1096/fj.201802264R] [PMID: 30917007]
[60]
Rincón, R.; Cristóbal, I.; Zazo, S.; Arpí, O.; Menéndez, S.; Manso, R.; Lluch, A.; Eroles, P.; Rovira, A.; Albanell, J.; García-Foncillas, J.; Madoz-Gúrpide, J.; Rojo, F. PP2A inhibition determines poor outcome and doxorubicin resistance in early breast cancer and its activation shows promising therapeutic effects. Oncotarget, 2015, 6(6), 4299-4314.
[http://dx.doi.org/10.18632/oncotarget.3012] [PMID: 25726524]
[61]
Baldacchino, S.; Saliba, C.; Petroni, V.; Fenech, A.G.; Borg, N.; Grech, G. Deregulation of the phosphatase, PP2A is a common event in breast cancer, predicting sensitivity to FTY720. EPMA J., 2014, 5(1), 3.
[http://dx.doi.org/10.1186/1878-5085-5-3] [PMID: 24460909]
[62]
Xie, F.; Bao, X.; Yu, J.; Chen, W.; Wang, L.; Zhang, Z.; Xu, Q. Disruption and inactivation of the PP2A complex promotes the proliferation and angiogenesis of hemangioma endothelial cells through activating AKT and ERK. Oncotarget, 2015, 6(28), 25660-25676.
[http://dx.doi.org/10.18632/oncotarget.4705] [PMID: 26308070]
[63]
Lee, T.K.; Man, K.; Ho, J.W.; Wang, X.H.; Poon, R.T.; Sun, C.K.; Ng, K.T.; Ng, I.O.; Xu, R.; Fan, S.T. Significance of the Rac signaling pathway in HCC cell motility: Implications for a new therapeutic target. Carcinogenesis, 2005, 26(3), 681-687.
[http://dx.doi.org/10.1093/carcin/bgi002] [PMID: 15604094]
[64]
ten Klooster, J.P.; Leeuwen, I.; Scheres, N.; Anthony, E.C.; Hordijk, P.L. Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET. EMBO J., 2007, 26(2), 336-345.
[http://dx.doi.org/10.1038/sj.emboj.7601518] [PMID: 17245428]
[65]
Lee, Y.S.; Nakajima, H.; Tsuruga, M.; Magae, J. Elimination of cell-cycle regulators during caspase-3-dependent apoptosis caused by an immunosuppressant, FTY720. Biosci. Biotechnol. Biochem., 2003, 67(3), 467-474.
[http://dx.doi.org/10.1271/bbb.67.467] [PMID: 12723592]
[66]
Shah, M.V.; Zhang, R.; Irby, R.; Kothapalli, R.; Liu, X.; Arrington, T.; Frank, B.; Lee, N.H.; Loughran, T.P., Jr Molecular profiling of LGL leukemia reveals role of sphingolipid signaling in survival of cytotoxic lymphocytes. Blood, 2008, 112(3), 770-781.
[http://dx.doi.org/10.1182/blood-2007-11-121871] [PMID: 18477771]
[67]
Azuma, H.; Takahara, S.; Ichimaru, N.; Wang, J.D.; Itoh, Y.; Otsuki, Y.; Morimoto, J.; Fukui, R.; Hoshiga, M.; Ishihara, T.; Nonomura, N.; Suzuki, S.; Okuyama, A.; Katsuoka, Y. Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent, FTY720, in mouse breast cancer models. Cancer Res., 2002, 62(5), 1410-1419.
[PMID: 11888913]
[68]
Nganga, R.; Oleinik, N.; Kim, J.; Selvam, S.P.; De Palma, R.; Johnson, K.A.; Parikh, R.Y.; Gangaraju, V.; Peterson, Y.; Dany, M.; Stahelin, R.V.; Voelkel-Johnson, C.; Szulc, Z.M.; Bieberich, E.; Ogretmen, B. Receptor-interacting Ser/Thr kinase 1 (RIPK1) and myosin IIA–dependent ceramidosomes form membrane pores that mediate blebbing and necroptosis. J. Biol. Chem., 2019, 294(2), 502-519.
[http://dx.doi.org/10.1074/jbc.RA118.005865] [PMID: 30420430]
[69]
Young, M.M.; Bui, V.; Chen, C.; Wang, H.G. FTY720 induces non-canonical phosphatidylserine externalization and cell death in acute myeloid leukemia. Cell Death Dis., 2019, 10(11), 847.
[http://dx.doi.org/10.1038/s41419-019-2080-5] [PMID: 31699964]
[70]
Bai, L.Y.; Chiu, C.F.; Chiu, S.J.; Chu, P.C.; Weng, J.R. Author correction: FTY720 induces autophagy-associated apoptosis in human oral squamous carcinoma cells, in part, through a reactive oxygen species/Mcl-1-dependent mechanism. Sci. Rep., 2020, 10(1), 3322.
[http://dx.doi.org/10.1038/s41598-020-60297-8] [PMID: 32076097]
[71]
Ota, K.; Okuma, T.; Lorenzo, A.; Yokota, A.; Hino, H.; Kazama, H.; Moriya, S.; Takano, N.; Hiramoto, M.; Miyazawa, K. Fingolimod sensitizes EGFR wild-type non-small cell lung cancer cells to lapatinib or sorafenib and induces cell cycle arrest. Oncol. Rep., 2019, 42(1), 231-242.
[http://dx.doi.org/10.3892/or.2019.7140] [PMID: 31059070]
[72]
Min, K.; Kwon, T.K. Induction of lysosomal membrane permeabilization is a major event of FTY720-mediated non-apoptotic cell death in human glioma cells. Cancers, 2020, 12(11), 3388.
[http://dx.doi.org/10.3390/cancers12113388] [PMID: 33207629]
[73]
Yipp, B.G.; Kubes, P. NETosis: How vital is it? Blood, 2013, 122(16), 2784-2794.
[http://dx.doi.org/10.1182/blood-2013-04-457671] [PMID: 24009232]
[74]
Shrestha, J.; Ki, S.; Shin, S.; Kim, S.; Lee, J.Y.; Jun, H.S.; Lee, T.; Kim, S.; Baek, D.; Park, E.Y. Synthesis of novel FTY720 analogs with anticancer activity through PP2A activation. Molecules, 2018, 23(11), 2750.
[http://dx.doi.org/10.3390/molecules23112750] [PMID: 30355990]
[75]
Adachi, K.; Chiba, K. FTY720 story. Its discovery and the following accelerated development of sphingosine 1-phosphate receptor agonists as immunomodulators based on reverse pharmacology. Perspect. Medicin. Chem., 2007, 1, 1177391X0700100.
[http://dx.doi.org/10.1177/1177391X0700100002] [PMID: 19812733]
[76]
Mao, Y.; Wang, J.; Zhao, Y.; Yan, R.; Li, H.; Chen, C.S.; Lee, R.J.; Byrd, J.C.; Lee, L.J.; Muthusamy, N.; Phelps, M.A. Quantification of OSU-2S, a novel derivative of FTY720, in mouse plasma by liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal., 2014, 98, 160-165.
[http://dx.doi.org/10.1016/j.jpba.2014.05.022] [PMID: 24927402]
[77]
Mani, R.; Chiang, C.L.; Frissora, F.W.; Yan, R.; Mo, X.; Baskar, S.; Rader, C.; Klisovic, R.; Phelps, M.A.; Chen, C.S.; Lee, R.J.; Byrd, J.C.; Baiocchi, R.; Lee, L.J.; Muthusamy, N. ROR1-targeted delivery of OSU-2S, a nonimmunosuppressive FTY720 derivative, exerts potent cytotoxicity in mantle-cell lymphoma in vitro and in vivo. Exp. Hematol., 2015, 43(9), 770-774.e2.
[http://dx.doi.org/10.1016/j.exphem.2015.04.008] [PMID: 25937048]
[78]
Mani, R.; Mao, Y.; Frissora, F.W.; Chiang, C-L.; Wang, J.; Zhao, Y.; Wu, Y.; Yu, B.; Yan, R.; Mo, X.; Yu, L.; Flynn, J.; Jones, J.; Andritsos, L.; Baskar, S.; Rader, C.; Phelps, M.A.; Chen, C-S.; Lee, R.J.; Byrd, J.C.; Lee, L.J.; Muthusamy, N. Tumor antigen ROR1 targeted drug delivery mediated selective leukemic but not normal B-cell cytotoxicity in chronic lymphocytic leukemia. Leukemia, 2015, 29(2), 346-355.
[http://dx.doi.org/10.1038/leu.2014.199] [PMID: 24947019]
[79]
Zonta, F.; Pagano, M.A.; Trentin, L.; Tibaldi, E.; Frezzato, F.; Trimarco, V.; Facco, M.; Zagotto, G.; Pavan, V.; Ribaudo, G.; Bordin, L.; Semenzato, G.; Brunati, A.M. Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A. Blood, 2015, 125(24), 3747-3755.
[http://dx.doi.org/10.1182/blood-2014-12-619155] [PMID: 25931585]
[80]
Vicente, C.; Arriazu, E.; Martínez-Balsalobre, E.; Peris, I.; Marcotegui, N.; García-Ramírez, P.; Pippa, R.; Rabal, O.; Oyarzábal, J.; Guruceaga, E.; Prósper, F.; Mateos, M.C.; Cayuela, M.L.; Odero, M.D. A novel FTY720 analogue targets SET-PP2A interaction and inhibits growth of acute myeloid leukemia cells without inducing cardiac toxicity. Cancer Lett., 2020, 468, 1-13.
[http://dx.doi.org/10.1016/j.canlet.2019.10.007] [PMID: 31593801]
[81]
Imeri, F.; Fallegger, D.; Zivkovic, A.; Schwalm, S.; Enzmann, G.; Blankenbach, K.; Meyer zu Heringdorf, D.; Homann, T.; Kleuser, B.; Pfeilschifter, J.; Engelhardt, B.; Stark, H.; Huwiler, A. Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice. Neuropharmacology, 2014, 85, 314-327.
[http://dx.doi.org/10.1016/j.neuropharm.2014.05.012] [PMID: 24863045]
[82]
Imeri, F.; Stepanovska Tanturovska, B.; Zivkovic, A.; Enzmann, G.; Schwalm, S.; Pfeilschifter, J.; Homann, T.; Kleuser, B.; Engelhardt, B.; Stark, H.; Huwiler, A. Novel compounds with dual S1P receptor agonist and histamine H3 receptor antagonist activities act protective in a mouse model of multiple sclerosis. Neuropharmacology, 2021, 186, 108464.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108464] [PMID: 33460688]
[83]
Imeri, F.; Schwalm, S.; Lyck, R.; Zivkovic, A.; Stark, H.; Engelhardt, B.; Pfeilschifter, J.; Huwiler, A. Sphingosine kinase 2 deficient mice exhibit reduced experimental autoimmune encephalomyelitis: Resistance to FTY720 but not ST-968 treatments. Neuropharmacology, 2016, 105, 341-350.
[http://dx.doi.org/10.1016/j.neuropharm.2016.01.031] [PMID: 26808312]
[84]
Camp, S.M.; Chiang, E.T.; Sun, C.; Usatyuk, P.V.; Bittman, R.; Natarajan, V.; Garcia, J.G.N.; Dudek, S.M. Pulmonary endothelial cell barrier enhancement by novel FTY720 analogs: Methoxy-FTY720, fluoro-FTY720, and β-glucuronide-FTY720. Chem. Phys. Lipids, 2016, 194, 85-93.
[http://dx.doi.org/10.1016/j.chemphyslip.2015.10.004] [PMID: 26496151]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy