Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Natural Excipients: Role in Nano Drug Delivery System

Author(s): Pranita Jirvankar, Surendra Agrawal*, Fuzail Shaikh and Kadambari Borse

Volume 10, Issue 3, 2025

Published on: 19 December, 2023

Page: [246 - 255] Pages: 10

DOI: 10.2174/0124054615248522231211105002

Price: $65

Abstract

Background: Excipients are increasingly employed in novel dosage forms to accomplish specialized roles, and they also directly or indirectly alter the extent and rate of drug release and absorption. The trend toward using plant-based and natural goods has raised demand and, in some ways, replaced synthetic additives with natural ones. Natural and semisynthetic materials offer various advantages over synthetic materials since they are chemically inert, less toxic, less expensive, biodegradable, increase product shelf life, and are widely accessible.

Objectives: This review aims to cover the natural excipients’ role in nanoformulations and associated prospects.

Methods: More than 500 manuscripts were collected from ScienceDirect, PubMed, google, and other sources; however the manuscripts were excluded based on their relevance to the subject and finally 80 manuscripts were analyzed for the data.

Results: The substation of synthetic lipids with natural and semisynthetic for developing lipid-based nano drug delivery, and the use of gelatin and chitosan in developing encapsulated and nano particulates are a few examples to understand the above-mentioned transition.

Conclusion: This review provides an overview of the types of excipients used in the formulation of novel drug delivery systems with special emphasis on their characteristics, safety aspects, benefits associated, and common methods through, which they are employed in nanoformulations.

Keywords: Natural excipients, nanoformulations, marine excipients, animal source polymers, nanomaterials, drug delivery system.

Graphical Abstract
[1]
Elder DP, Kuentz M, Holm R. Pharmaceutical excipients — quality, regulatory and biopharmaceutical considerations. Eur J Pharm Sci 2016; 87: 88-99.
[http://dx.doi.org/10.1016/j.ejps.2015.12.018] [PMID: 26699228]
[2]
Chavhan SA, Shinde SKA, Sapkal SB, Shrikhande VN. Herbal excipients in novel drug delivery systems. IJRDPL 2017; 6(3): 2597-605.
[http://dx.doi.org/10.21276/IJRDPL.2278-0238.2017.6(3).2597-2605]
[3]
Shirwaikar A, Shirwaikar A, Prabhu SL, Kumar GA. Herbal excipients in novel drug delivery systems. Indian J Pharm Sci 2008; 70(4): 415-22.
[http://dx.doi.org/10.4103/0250-474X.44587] [PMID: 20046764]
[4]
Limpongsa E, Tabboon P, Pongjanyakul T, Jaipakdee N. Preparation and evaluation of directly compressible orally disintegrating tablets of cannabidiol formulated using liquisolid technique. Pharmaceutics 2022; 14(11): 2407.
[http://dx.doi.org/10.3390/pharmaceutics14112407] [PMID: 36365225]
[5]
Shargel L, Andrew B, Wu-Pong S. Applied biopharmaceutics & pharmacokinetics. Appleton & Lange Stamford 1999.
[6]
Liu L, Fishman ML, Hicks KB. Pectin in controlled drug delivery – a review. Cellulose 2006; 14(1): 15-24.
[http://dx.doi.org/10.1007/s10570-006-9095-7]
[7]
Ramachandran S, Shaheedha S, Thirumurugan G, Dhanaraju M. Floating controlled drug delivery system of famotidine loaded hollow microspheres (microballoons) in the stomach. Curr Drug Deliv 2010; 7(1): 93-7.
[http://dx.doi.org/10.2174/156720110790396436] [PMID: 20044907]
[8]
Saravanan M, Bhaskar K, Srinivasa Rao G, Dhanaraju MD. Ibuprofen-loaded ethylcellulose/polystyrene microspheres: an approach to get prolonged drug release with reduced burst effect and low ethylcellulose content. J Microencapsul 2003; 20(3): 289-302.
[PMID: 12881111]
[9]
Malaker A, Ahmad SAI. Therapeutic potency of anticancer peptides derived from marine organisms. Int J Eng 2013; 2: 2305-8269.
[10]
Mano JF. Stimuli‐responsive polymeric systems for biomedical applications. Adv Eng Mater 2008; 10(6): 515-27.
[http://dx.doi.org/10.1002/adem.200700355]
[11]
Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs 2010; 8(9): 2435-65.
[http://dx.doi.org/10.3390/md8092435] [PMID: 20948899]
[12]
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008; 126(3): 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[13]
Sonawane RO, Patil SD. Fabrication and statistical optimization of starch-κ-carrageenan cross-linked hydrogel composite for extended release pellets of zaltoprofen. Int J Biol Macromol 2018; 120(Pt B): 2324-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.177] [PMID: 30171959]
[14]
Bornhöft M, Thommes M, Kleinebudde P. Preliminary assessment of carrageenan as excipient for extrusion/spheronisation. Eur J Pharm Biopharm 2005; 59(1): 127-31.
[http://dx.doi.org/10.1016/j.ejpb.2004.05.007] [PMID: 15567309]
[15]
Sezer AD, Akbuğa J. Fucosphere—New microsphere carriers for peptide and protein delivery: Preparation and in vitro characterization. J Microencapsul 2006; 23(5): 513-22.
[http://dx.doi.org/10.1080/02652040600687563] [PMID: 16980273]
[16]
Pinheiro AC, Bourbon AI, Cerqueira MA, et al. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr Polym 2015; 115: 1-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.016] [PMID: 25439860]
[17]
Alves A, Sousa RA, Reis RL. A practical perspective on ulvan extracted from green algae. J Appl Phycol 2013; 25(2): 407-24.
[http://dx.doi.org/10.1007/s10811-012-9875-4]
[18]
Morelli A, Chiellini F. Ulvan as a new type of biomaterial from renewable resources: Functionalization and hydrogel preparation. Macromol Chem Phys 2010; 211(7): 821-32.
[http://dx.doi.org/10.1002/macp.200900562]
[19]
Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv 2004; 12(1): 41-57.
[http://dx.doi.org/10.1080/10717540590889781] [PMID: 15801720]
[20]
Felt O, Buri P, Gurny R. Chitosan: A unique polysaccharide for drug delivery. Drug Dev Ind Pharm 1998; 24(11): 979-93.
[http://dx.doi.org/10.3109/03639049809089942] [PMID: 9876553]
[21]
Santo VE, Gomes ME, Mano JF, Reis RL. Chitosan-chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. J Tissue Eng Regen Med 2012; 6(S3): s47-59.
[http://dx.doi.org/10.1002/term.1519] [PMID: 22684916]
[22]
Guo Y, Shi X, Fang Q, et al. Facile preparation of hydroxyapatite–chondroitin sulfate hybrid mesoporous microrods for controlled and sustained release of antitumor drugs. Mater Lett 2014; 125: 111-5.
[http://dx.doi.org/10.1016/j.matlet.2014.03.084]
[23]
Vitale C, Berutti S, Bagnis C, et al. Dermatan sulfate: An alternative to unfractionated heparin for anticoagulation in hemodialysis patients. J Nephrol 2013; 26(1): 158-63.
[http://dx.doi.org/10.5301/jn.5000105] [PMID: 22419236]
[24]
Knelson EH, Nee JC, Blobe GC. Heparan sulfate signaling in cancer. Trends Biochem Sci 2014; 39(6): 277-88.
[http://dx.doi.org/10.1016/j.tibs.2014.03.001] [PMID: 24755488]
[25]
Dash R, Ragauskas AJ. Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Advances 2012; 2(8): 3403-9.
[http://dx.doi.org/10.1039/c2ra01071b]
[26]
Ndong Ntoutoume GMA, Granet R, Mbakidi JP, et al. Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg Med Chem Lett 2016; 26(3): 941-5.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.060] [PMID: 26739777]
[27]
Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC. In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules 2015; 16(8): 2522-8.
[http://dx.doi.org/10.1021/acs.biomac.5b00801] [PMID: 26196600]
[28]
Cao X, Peng X, Zhong L, Sun R. Multiresponsive hydrogels based on xylan-type hemicelluloses and photoisomerized azobenzene copolymer as drug delivery carrier. J Agric Food Chem 2014; 62(41): 10000-7.
[http://dx.doi.org/10.1021/jf504040s] [PMID: 25260117]
[29]
Kumar PTS, Ramya C, Jayakumar R, Nair SV, Lakshmanan VK. Drug delivery and tissue engineering applications of biocompatible pectin–chitin/nano CaCO3 composite scaffolds. Colloids Surf B Biointerfaces 2013; 106: 109-16.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.048] [PMID: 23434699]
[30]
George A, Shah PA, Shrivastav PS. Guar gum: Versatile natural polymer for drug delivery applications. Eur Polym J 2019; 112: 722-35.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.10.042]
[31]
Kumar B, Kulanthaivel S, Mondal A, et al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B Biointerfaces 2017; 150: 352-61.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.049] [PMID: 27847225]
[32]
Pettinelli N, Rodríguez-Llamazares S, Farrag Y, et al. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. Int J Biol Macromol 2020; 146: 110-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.193] [PMID: 31881300]
[33]
Sagbas S, Sahiner N. Modifiable natural gum based microgel capsules as sustainable drug delivery systems. Carbohydr Polym 2018; 200: 128-36.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.085] [PMID: 30177149]
[34]
Tan C, Xie J, Zhang X, Cai J, Xia S. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll 2016; 57: 236-45.
[http://dx.doi.org/10.1016/j.foodhyd.2016.01.021]
[35]
Sarika PR, Nirmala RJ. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Mater Sci Eng C 2016; 65: 331-7.
[http://dx.doi.org/10.1016/j.msec.2016.04.044] [PMID: 27157759]
[36]
Shehabeldine A, Hasanin M. Green synthesis of hydrolyzed starch–chitosan nano-composite as drug delivery system to gram negative bacteria. Environ Nanotechnol Monit Manag 2019; 12: 100252.
[http://dx.doi.org/10.1016/j.enmm.2019.100252]
[37]
Yang J, Li F, Li M, et al. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydr Polym 2017; 173: 223-32.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.006] [PMID: 28732861]
[38]
de Souza ML, dos Santos WM, de Sousa ALMD, et al. Lipid nanoparticles as a skin wound healing drug delivery system: Discoveries and advances. Curr Pharm Des 2020; 26(36): 4536-50.
[http://dx.doi.org/10.2174/1381612826666200417144530] [PMID: 32303163]
[39]
Tran THY, Hoang TH, Vu TTG. Preparation of nano niosomes loaded with rutin and aloe gel extract. VNU J Sci 2020; 36(1)
[40]
Kar M, Chourasiya Y, Maheshwari R, Tekade RK. Current Developments in Excipient Science: Implication of Quantitative Selection of Each Excipient in Product Development. Basic Fundamentals of Drug Delivery Advances in Pharmaceutical Product Development and Research. 2019; pp. 29-83.
[41]
McConville JT, Ross AC, Chambers AR, Smith G, Florence AJ, Stevens HNE. The effect of wet granulation on the erosion behaviour of an HPMC–lactose tablet, used as a rate-controlling component in a pulsatile drug delivery capsule formulation. Eur J Pharm Biopharm 2004; 57(3): 541-9.
[http://dx.doi.org/10.1016/j.ejpb.2004.01.004] [PMID: 15093604]
[42]
Can M, Ayyala RS, Sahiner N. Crosslinked poly(Lactose) microgels and nanogels for biomedical applications. J Colloid Interface Sci 2019; 553: 805-12.
[http://dx.doi.org/10.1016/j.jcis.2019.06.078] [PMID: 31255942]
[43]
Hathout RM, Omran MK. Gelatin-based particulate systems in ocular drug delivery. Pharm Dev Technol 2016; 21(3): 379-86.
[http://dx.doi.org/10.3109/10837450.2014.999786] [PMID: 25567143]
[44]
Bakravi A, Ahamadian Y, Hashemi H, Namazi H. Synthesis of gelatin‐based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol 2018; 37(7): 2625-35.
[http://dx.doi.org/10.1002/adv.21938]
[45]
Baig MS, Ahad A, Aslam M, Imam SS, Aqil M, Ali A. Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromol 2016; 85: 258-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.077] [PMID: 26740466]
[46]
Prüfert F, Fischer F, Leichner C, Zaichik S, Bernkop-Schnürch A. Development and in vitro evaluation of stearic acid phosphotyrosine amide as new excipient for zeta potential changing self-emulsifying drug delivery systems. Pharm Res 2020; 37(4): 79.
[http://dx.doi.org/10.1007/s11095-020-02802-2] [PMID: 32253523]
[47]
Dantas IL, Bastos KTS, Machado M, et al. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. J Therm Anal Calorim 2018; 132(3): 1557-66.
[http://dx.doi.org/10.1007/s10973-018-7072-7]
[48]
Singh RP, Gangadharappa HV, Mruthunjaya K. Phospholipids: Unique carriers for drug delivery systems. J Drug Deliv Sci Technol 2017; 39: 166-79.
[http://dx.doi.org/10.1016/j.jddst.2017.03.027]
[49]
Rasouli E, Basirun WJ, Johan MR, et al. Facile and greener hydrothermal honey‐based synthesis of Fe 3 O 4 /Au core/shell nanoparticles for drug delivery applications. J Cell Biochem 2019; 120(4): 6624-31.
[http://dx.doi.org/10.1002/jcb.27958] [PMID: 30368873]
[50]
Prateeksha , Singh BR, Shoeb M, et al. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol 2017; 7: 93.
[http://dx.doi.org/10.3389/fcimb.2017.00093] [PMID: 28386534]
[51]
Sharma G, Devi N, Thakur K, Jain A, Katare OP. Lanolin-based organogel of salicylic acid: evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model. Drug Deliv Transl Res 2018; 8(2): 398-413.
[http://dx.doi.org/10.1007/s13346-017-0364-9] [PMID: 28224375]
[52]
Varshosaz J, Tavakoli N, Eram SA. Use of natural gums and cellulose derivatives in production of sustained release metoprolol tablets. Drug Deliv 2006; 13(2): 113-9.
[http://dx.doi.org/10.1080/10717540500313356] [PMID: 16423799]
[53]
Chaurasia M, Chourasia MK, Jain NK, et al. Cross-linked guar gum microspheres: A viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. AAPS PharmSciTech 2006; 7(3): E143-51.
[http://dx.doi.org/10.1208/pt070374] [PMID: 17025254]
[54]
Satturwar PM, Fulzele SV, Dorle AK. Biodegradation and in vivo biocompatibility of rosin: A natural film-forming polymer. AAPS PharmSciTech 2003; 4(4): 434-9.
[http://dx.doi.org/10.1208/pt040455] [PMID: 15198550]
[55]
Lam KS. New aspects of natural products in drug discovery. Trends Microbiol 2007; 15(6): 279-89.
[http://dx.doi.org/10.1016/j.tim.2007.04.001] [PMID: 17433686]
[56]
McChesney JD, Venkataraman SK, Henri JT. Plant natural products: Back to the future or into extinction? Phytochemistry 2007; 68(14): 2015-22.
[http://dx.doi.org/10.1016/j.phytochem.2007.04.032] [PMID: 17574638]
[57]
Chamarthy SP, Pinal R. Plasticizer concentration and the performance of a diffusion-controlled polymeric drug delivery system. Colloids Surf A Physicochem Eng Asp 2008; 331(1-2): 25-30.
[http://dx.doi.org/10.1016/j.colsurfa.2008.05.047]
[58]
Venkata R. Chemical and biological aspects of selected polysaccharides. Indian J Pharm Sci 1992; 54: 90-7.
[59]
Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm 2009; 72(2): 453-62.
[http://dx.doi.org/10.1016/j.ejpb.2008.02.005] [PMID: 18511246]
[60]
Jiang G, Jia H, Qiu J, et al. PLGA nanoparticle platform for trans-ocular barrier to enhance drug delivery: A comparative study based on the application of oligosaccharides in the outer membrane of carriers. Int J Nanomedicine 2020; 15: 9373-87.
[http://dx.doi.org/10.2147/IJN.S272750] [PMID: 33262593]
[61]
Mills S, Ed. Pharmaceutical Excipients–An overview including considerations for paediatric dosing. Training Workshop: Pharmaceutical Development with Focus on Paediatric Formulations. Beijing. 2010.
[62]
Sabalingam S, Jayasuriya W. Pharmaceutical excipients of marine and animal origin: A Review. Bio Chem Res 2019; 6: 184-96.
[63]
Elzoghby AO. Gelatin-based nanoparticles as drug and gene delivery systems: Reviewing three decades of research. J Control Release 2013; 172(3): 1075-91.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.019] [PMID: 24096021]
[64]
Gómez-Guillén MC, Giménez B, López-Caballero ME, Montero MP. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll 2011; 25(8): 1813-27.
[http://dx.doi.org/10.1016/j.foodhyd.2011.02.007]
[65]
Babu US, Bunning VK, Wiesenfeld P, Raybourne RB, O’Donnell M. Effect of dietary flaxseed on fatty acid composition, superoxide, nitric oxide generation and antilisterial activity of peritoneal macrophages from female Sprague-Dawley rats. Life Sci 1997; 60(8): 545-54.
[http://dx.doi.org/10.1016/S0024-3205(96)00638-8] [PMID: 9042389]
[66]
Strickland WA Jr, Nelson E, Busse LW, Higuchi T. The physics of tablet compression. IX. Fundamental aspects of tablet lubrication. J Am Pharm Assoc 1956; 45(1): 51-5.
[http://dx.doi.org/10.1002/jps.3030450116] [PMID: 13278264]
[67]
Bogdanov S. Quality and standards of pollen and beeswax. Apiacta 2004; 38(11): 334-41.
[68]
Hogendoorn EA, Sommeijer MJ, Vredenbregt MJ. Alternative method for measuring beeswax content in propolis from the Netherlands. J Apic Sci 2013; 57(2): 81.
[69]
Wise PM, Breslin PAS, Dalton P. Effect of taste sensation on cough reflex sensitivity. Lung 2014; 192(1): 9-13.
[http://dx.doi.org/10.1007/s00408-013-9515-z] [PMID: 24173385]
[70]
Sial AR, Shah S, Rasool F, Ranjha NM, Murtaza G. Effect of different hydrophillic binders on the dissolution profiles of mefenamic acid. Lat Am J Pharm 2012; 31(3): 362-67.
[71]
Dubald M, Bourgeois S, Andrieu V, Fessi H. Ophthalmic drug delivery systems for antibiotherapy—a review. Pharmaceutics 2018; 10(1): 10.
[http://dx.doi.org/10.3390/pharmaceutics10010010] [PMID: 29342879]
[72]
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2(1): 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[73]
Groneberg DA, Rabe KF, Fischer A. Novel concepts of neuropeptide-based drug therapy: Vasoactive intestinal polypeptide and its receptors. Eur J Pharmacol 2006; 533(1-3): 182-94.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.055] [PMID: 16473346]
[74]
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2(5): 347-60.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[75]
de Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[76]
Martinho N, Damgé C, Reis CP. Recent advances in drug delivery systems. J Biomater Nanobiotechnol 2011; 2(5): 510-26.
[http://dx.doi.org/10.4236/jbnb.2011.225062]
[77]
Jahangirian H, Ghasemian lemraski E, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 2017; 12: 2957-78.
[http://dx.doi.org/10.2147/IJN.S127683] [PMID: 28442906]
[78]
Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 2011; 13(7): 2981-8.
[http://dx.doi.org/10.1007/s11051-010-0193-y]
[79]
Ajazuddin , Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010; 81(7): 680-9.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[80]
Arpita S, Nidhi G, Amresh G. A review on herbal excipients. IJIHD 2021; 6(1)
[81]
Martins SM, Sarmento B, Nunes C, Lúcio M, Reis S, Ferreira DC. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur J Pharm Biopharm 2013; 85(3): 488-502.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.011] [PMID: 23994244]
[82]
Topal GR, Mészáros M, Porkoláb G, et al. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood–brain barrier. Pharmaceutics 2020; 13(1): 38.
[http://dx.doi.org/10.3390/pharmaceutics13010038] [PMID: 33383743]
[83]
Lu Y, Huang J, Wang H, et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated PEG-lipid nanoparticles. Biomaterials 2014; 35(1): 530-7.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.093] [PMID: 24120040]
[84]
Singh I, Swami R, Pooja D, Jeengar MK, Khan W, Sistla R. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting. J Drug Target 2016; 24(3): 212-23.
[http://dx.doi.org/10.3109/1061186X.2015.1068320] [PMID: 26219519]
[85]
Jain A, Agarwal A, Majumder S, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 2010; 148(3): 359-67.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.003] [PMID: 20854859]
[86]
Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: Enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm 2010; 398(1-2): 190-203.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.021] [PMID: 20655375]
[87]
Zhai J, Luwor RB, Ahmed N, et al. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS Appl Mater Interfaces 2018; 10(30): 25174-85.
[http://dx.doi.org/10.1021/acsami.8b08125] [PMID: 29963859]
[88]
Wang W, Zhu R, Xie Q, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine 2012; 7: 3667-77.
[http://dx.doi.org/10.2147/IJN.S30428] [PMID: 22888226]
[89]
Bhandari R, Kaur IP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 2013; 441(1-2): 202-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.042] [PMID: 23220081]
[90]
Grillone A, Riva ER, Mondini A, et al. Active targeting of sorafenib: Preparation, characterization, and in vitro testing of drug‐loaded magnetic solid lipid nanoparticles. Adv Healthc Mater 2015; 4(11): 1681-90.
[http://dx.doi.org/10.1002/adhm.201500235] [PMID: 26039933]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy