Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Unlocking the Benefits of Fasting: A Review of its Impact on Various Biological Systems and Human Health

Author(s): Rawan Mackieh, Nadia Al-Bakkar, Milena Kfoury, Nathalie Okdeh, Hervé Pietra, Rabih Roufayel, Christian Legros, Ziad Fajloun* and Jean-Marc Sabatier*

Volume 31, Issue 14, 2024

Published on: 24 November, 2023

Page: [1781 - 1803] Pages: 23

DOI: 10.2174/0109298673275492231121062033

Price: $65

conference banner
Abstract

Fasting has gained significant attention in recent years for its potential health benefits in various body systems. This review aims to comprehensively examine the effects of fasting on human health, specifically focusing on its impact on different body’s physiological systems. The cardiovascular system plays a vital role in maintaining overall health, and fasting has shown promising effects in improving cardiovascular health markers such as blood pressure, cholesterol levels, and triglyceride levels. Additionally, fasting has been suggested to enhance insulin sensitivity, promote weight loss, and improve metabolic health, thus offering potential benefits to individuals with diabetes and metabolic disorders. Furthermore, fasting can boost immune function, reduce inflammation, enhance autophagy, and support the body's defense against infections, cancer, and autoimmune diseases. Fasting has also demonstrated a positive effect on the brain and nervous system. It has been associated with neuroprotective properties, improving cognitive function, and reducing the risk of neurodegenerative diseases, besides the ability of increasing the lifespan. Hence, understanding the potential advantages of fasting can provide valuable insights for individuals and healthcare professionals alike in promoting health and wellbeing. The data presented here may have significant implications for the development of therapeutic approaches and interventions using fasting as a potential preventive and therapeutic strategy.

Keywords: Fasting, cardiovascular system, renin-angiotensin system, immune system, cancer, autophagy, diabetes, nervous system, obesity, COVID-19.

Next »
[1]
Attinà, A.; Leggeri, C.; Paroni, R.; Pivari, F.; Dei Cas, M.; Mingione, A.; Dri, M.; Marchetti, M.; Di Renzo, L. Fasting: How to guide. Nutrients, 2021, 13(5), 1570.
[2]
Bagherniya, M.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res. Rev., 2018, 47, 183-197.
[http://dx.doi.org/10.1016/j.arr.2018.08.004] [PMID: 30172870]
[3]
Nygren, J. The metabolic effects of fasting and surgery. Baillieres. Best Pract. Res. Clin. Anaesthesiol., 2006, 20(3), 429-438.
[http://dx.doi.org/10.1016/j.bpa.2006.02.004] [PMID: 17080694]
[4]
Castro-Sepúlveda, M.; Morio, B.; Tuñón-Suárez, M.; Jannas-Vela, S.; Díaz-Castro, F.; Rieusset, J.; Zbinden-Foncea, H. The fasting-feeding metabolic transition regulates mitochondrial dynamics. FASEB J., 2021, 35(10), e21891.
[5]
Wang, Y.; Wu, R. The effect of fasting on human metabolism and psychological health. Dis. Markers, 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/5653739] [PMID: 35035610]
[6]
Chen, L.; Tian, F.Y.; Hu, X.H.; Wu, J.W.; Xu, W.D.; Huang, Q. Intermittent fasting in type 2 diabetes: from fundamental science to clinical applications. Eur. Rev. Med. Pharmacol. Sci., 2023, 27(1), 333-351.
[PMID: 36647882]
[7]
Dong, T.A.; Sandesara, P.B.; Dhindsa, D.S.; Mehta, A.; Arneson, L.C.; Dollar, A.L.; Taub, P.R.; Sperling, L.S. Intermittent fasting: A heart healthy dietary pattern? Am. J. Med., 2020, 133(8), 901-907.
[http://dx.doi.org/10.1016/j.amjmed.2020.03.030] [PMID: 32330491]
[8]
Maughan, R.J.; Fallah, J.; Coyle, E.F. The effects of fasting on metabolism and performance. BJSM, 2010, 44(7)
[9]
Sarri, K.O.; Tzanakis, N.E.; Linardakis, M.K.; Mamalakis, G.D.; Kafatos, A.G. Effects of Greek Orthodox Christian Church fasting on serum lipids and obesity. BMC Public Health, 2003, 3(1), 16.
[PMID: 12753698]
[10]
Quinton, R.K.; Ciccazzo, M. Influences on Eastern Orthodox Christian fasting beliefs and practices. Ecol. Food Nutr., 2007, 46(5-6), 469-491.
[http://dx.doi.org/10.1080/03670240701486768]
[11]
Sarri, K.O.; Linardakis, M.K.; Bervanaki, F.N.; Tzanakis, N.E.; Kafatos, A.G. Greek Orthodox fasting rituals: a hidden characteristic of the Mediterranean diet of Crete. Br. J. Nutr., 2004, 92(2), 277-284.
[http://dx.doi.org/10.1079/BJN20041197] [PMID: 15333159]
[12]
Negm, M.; Bahaa, A.; Farrag, A.; Lithy, R.M.; Badary, H.A.; Essam, M.; Kamel, S.; Sakr, M.; Abd El Aaty, W.; Shamkh, M.; Basiony, A.; Dawoud, I.; Shehab, H. Effect of Ramadan intermittent fasting on inflammatory markers, disease severity, depression, and quality of life in patients with inflammatory bowel diseases: A prospective cohort study. BMC Gastroenterol., 2022, 22(1), 203.
[http://dx.doi.org/10.1186/s12876-022-02272-3] [PMID: 35462542]
[13]
Al-barha, N.S.; Aljaloud, K.S. The effect of ramadan fasting on body composition and metabolic syndrome in apparently healthy men. Am. J. Men Health, 2019, 13(1), 1557988318816925.
[http://dx.doi.org/10.1177/1557988318816925] [PMID: 30541365]
[14]
Zouhal, H.; Bagheri, R.; Triki, R.; Saeidi, A.; Wong, A.; Hackney, A.C.; Laher, I.; Suzuki, K.; Ben Abderrahman, A. Effects of ramadan intermittent fasting on gut hormones and body composition in males with obesity. Int. J. Environ. Res. Public Health, 2020, 17(15), 5600.
[http://dx.doi.org/10.3390/ijerph17155600] [PMID: 32756479]
[15]
Grindrod, K.; Alsabbagh, W. Managing medications during Ramadan fasting. Can. Pharm. J., 2017, 150(3), 146-149.
[http://dx.doi.org/10.1177/1715163517700840] [PMID: 28507649]
[16]
Moothadeth, A.; Waqar, S.; Ghouri, N.; Iqbal, Z.; Alam, J.; Ahmed, S.; Abbas, S.Z. Fasting during Ramadan and the COVID-19 pandemic. Occup. Med., 2020, 70(5), 306-308.
[http://dx.doi.org/10.1093/occmed/kqaa103] [PMID: 32428236]
[17]
Varady, K.A.; Bhutani, S.; Klempel, M.C.; Kroeger, C.M.; Trepanowski, J.F.; Haus, J.M.; Hoddy, K.K.; Calvo, Y. Alternate day fasting for weight loss in normal weight and overweight subjects: A randomized controlled trial. Nutr. J., 2013, 12(1), 146.
[http://dx.doi.org/10.1186/1475-2891-12-146] [PMID: 24215592]
[18]
Bowen, J.; Brindal, E.; James-Martin, G.; Noakes, M. Randomized trial of a high protein, partial meal replacement program with or without alternate day fasting: Similar effects on weight loss, retention status, nutritional, metabolic, and behavioral outcomes. Nutrients, 2018, 10(9), 1145.
[http://dx.doi.org/10.3390/nu10091145] [PMID: 30142886]
[19]
Razavi, R.; Parvaresh, A.; Abbasi, B.; Yaghoobloo, K.; Hassanzadeh, A.; Mohammadifard, N.; Clark, C.C.T.; Morteza Safavi, S. The alternate-day fasting diet is a more effective approach than a calorie restriction diet on weight loss and hs-CRP levels. Int. J. Vitam. Nutr. Res., 2021, 91(3-4), 242-250.
[http://dx.doi.org/10.1024/0300-9831/a000623] [PMID: 32003649]
[20]
Cai, H.; Qin, Y.L.; Shi, Z.Y.; Chen, J.H.; Zeng, M.J.; Zhou, W.; Chen, R.Q.; Chen, Z.Y. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: A randomised controlled trial. BMC Gastroenterol., 2019, 19(1), 219.
[http://dx.doi.org/10.1186/s12876-019-1132-8] [PMID: 31852444]
[21]
Cheng, C.W.; Adams, G.B.; Perin, L.; Wei, M.; Zhou, X.; Lam, B.S.; Da Sacco, S.; Mirisola, M.; Quinn, D.I.; Dorff, T.B.; Kopchick, J.J.; Longo, V.D. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell, 2014, 14(6), 810-823.
[http://dx.doi.org/10.1016/j.stem.2014.04.014] [PMID: 24905167]
[22]
Brandhorst, S.; Choi, I.Y.; Wei, M.; Cheng, C.W.; Sedrakyan, S.; Navarrete, G.; Dubeau, L.; Yap, L.P.; Park, R.; Vinciguerra, M.; Di Biase, S.; Mirzaei, H.; Mirisola, M.G.; Childress, P.; Ji, L.; Groshen, S.; Penna, F.; Odetti, P.; Perin, L.; Conti, P.S.; Ikeno, Y.; Kennedy, B.K.; Cohen, P.; Morgan, T.E.; Dorff, T.B.; Longo, V.D. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab., 2015, 22(1), 86-99.
[http://dx.doi.org/10.1016/j.cmet.2015.05.012] [PMID: 26094889]
[23]
Bak, A.M.; Vendelbo, M.H.; Christensen, B.; Viggers, R.; Bibby, B.M.; Rungby, J.; Jørgensen, J.O.L.; Viggers, R.; Møller, N.; Jessen, N. Prolonged fasting-induced metabolic signatures in human skeletal muscle of lean and obese men. PLoS ONE, 2018, 13(9), e0200817.
[24]
Jørgensen, S.W.; Hjort, L.; Gillberg, L.; Justesen, L.; Madsbad, S.; Brøns, C.; Vaag, A.A. Impact of prolonged fasting on insulin secretion, insulin action, and hepatic versus whole body insulin secretion disposition indices in healthy young males. Am. J. Physiol. Endocrinol. Metab., 2021, 320(2), E281-E290.
[http://dx.doi.org/10.1152/ajpendo.00433.2020] [PMID: 33284087]
[25]
Zajac, I.; Herreen, D.; Hunkin, H.; James-Martin, G.; Doyen, M.; Kakoschke, N.; Brindal, E. Modified fasting compared to true fasting improves blood glucose levels and subjective experiences of hunger, food cravings and mental fatigue, but not cognitive function: Results of an acute randomised cross-over trial. Nutrients, 2020, 13(1), 65.
[http://dx.doi.org/10.3390/nu13010065] [PMID: 33379191]
[26]
Patterson, R.E.; Laughlin, G.A.; LaCroix, A.Z.; Hartman, S.J.; Natarajan, L.; Senger, C.M.; Martínez, M.E.; Villaseñor, A.; Sears, D.D.; Marinac, C.R.; Gallo, L.C. Intermittent fasting and human metabolic health. J. Acad. Nutr. Diet., 2015, 115(8), 1203-1212.
[http://dx.doi.org/10.1016/j.jand.2015.02.018] [PMID: 25857868]
[27]
Varady, K.A.; Bhutani, S.; Church, E.C.; Klempel, M.C. Short-term modified alternate-day fasting: A novel dietary strategy for weight loss and cardioprotection in obese adults. Am. J. Clin. Nutr., 2009, 90(5), 1138-1143.
[http://dx.doi.org/10.3945/ajcn.2009.28380] [PMID: 19793855]
[28]
Varady, K.A.; Roohk, D.J.; Hellerstein, M.K. Dose effects of modified alternate-day fasting regimens on in vivo cell proliferation and plasma insulin-like growth factor-1 in mice. J. Appl. Physiol., 2007, 103(2), 547-551.
[http://dx.doi.org/10.1152/japplphysiol.00209.2007] [PMID: 17495119]
[29]
Varady, K.A.; Hudak, C.S.; Hellerstein, M.K. Modified alternate-day fasting and cardioprotection: Relation to adipose tissue dynamics and dietary fat intake. Metab. Clin. Exp., 2009, 58(6), P803-811.
[30]
Trouwborst, I.; Bowser, S.M.; Goossens, G.H.; Blaak, E.E. Ectopic fat accumulation in distinct insulin resistant phenotypes; targets for personalized nutritional interventions. Front. Nutr., 2018, 5, 77.
[http://dx.doi.org/10.3389/fnut.2018.00077] [PMID: 30234122]
[31]
Borén, J.; Taskinen, M.R.; Olofsson, S.O.; Levin, M. Ectopic lipid storage and insulin resistance: A harmful relationship. J. Intern. Med., 2013, 274(1), 25-40.
[http://dx.doi.org/10.1111/joim.12071] [PMID: 23551521]
[32]
Bolze, F.; Bast, A.; Mocek, S.; Morath, V.; Yuan, D.; Rink, N.; Schlapschy, M.; Zimmermann, A.; Heikenwalder, M.; Skerra, A.; Klingenspor, M. Treatment of diet-induced lipodystrophic C57BL/6J mice with long-acting PASylated leptin normalises insulin sensitivity and hepatic steatosis by promoting lipid utilisation. Diabetologia, 2016, 59(9), 2005-2012.
[http://dx.doi.org/10.1007/s00125-016-4004-6] [PMID: 27272237]
[33]
Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223.
[http://dx.doi.org/10.1152/physrev.00063.2017] [PMID: 30067154]
[34]
Minokoshi, Y.; Toda, C.; Okamoto, S. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian J. Endocrinol. Metab., 2012, 16(9)(Suppl. 3), 562.
[http://dx.doi.org/10.4103/2230-8210.105573] [PMID: 23565491]
[35]
Abdella, N.A.; Mojiminiyi, O.A.; Moussa, M.A.; Zaki, M.; Al Mohammedi, H.; Al Ozairi, E.S.S.; Al Jebely, S. Plasma leptin concentration in patients with Type 2 diabetes: Relationship to cardiovascular disease risk factors and insulin resistance. Diabetic Medicine, 2005, 22(3), 278-285.
[36]
Asakawa, H.; Tokunaga, K.; Kawakami, F. Relationship of leptin level with metabolic disorders and hypertension in Japanese type 2 diabetes mellitus patients. J. Diabetes Complications, 2001, 15(2), 57-62.
[http://dx.doi.org/10.1016/S1056-8727(00)00145-8] [PMID: 11274900]
[37]
Sattar, N.; Wannamethee, G.; Sarwar, N.; Chernova, J.; Lawlor, D.A.; Kelly, A.; Wallace, A.M.; Danesh, J.; Whincup, P.H. Leptin and coronary heart disease: Prospective study and systematic review. J. Am. Coll. Cardiol., 2009, 53(2), 167-175.
[http://dx.doi.org/10.1016/j.jacc.2008.09.035] [PMID: 19130985]
[38]
Headland, M.L.; Clifton, P.M.; Keogh, J.B. Effect of intermittent compared to continuous energy restriction on weight loss and weight maintenance after 12 months in healthy overweight or obese adults. Int. J. Obes., 2019, 43(10), 2028-2036.
[http://dx.doi.org/10.1038/s41366-018-0247-2] [PMID: 30470804]
[39]
Hoddy, K.K.; Kroeger, C.M.; Trepanowski, J.F.; Barnosky, A.; Bhutani, S.; Varady, K.A. Meal timing during alternate day fasting: Impact on body weight and cardiovascular disease risk in obese adults. Obesity, 2014, 22(12), 2524-2531.
[http://dx.doi.org/10.1002/oby.20909] [PMID: 25251676]
[40]
Hutchison, A.T.; Liu, B.; Wood, R.E.; Vincent, A.D.; Thompson, C.H.; O’Callaghan, N.J.; Wittert, G.A.; Heilbronn, L.K. Effects of intermittent versus continuous energy intakes on insulin sensitivity and metabolic risk in women with overweight. Obesity, 2019, 27(1), 50-58.
[http://dx.doi.org/10.1002/oby.22345] [PMID: 30569640]
[41]
Bhutani, S.; Klempel, M.C.; Kroeger, C.M.; Trepanowski, J.F.; Varady, K.A. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity, 2013, 21(7), 1370-1379.
[http://dx.doi.org/10.1002/oby.20353] [PMID: 23408502]
[42]
Catenacci, V.A.; Pan, Z.; Ostendorf, D.; Brannon, S.; Gozansky, W.S.; Mattson, M.P.; Martin, B.; MacLean, P.S.; Melanson, E.L.; Troy Donahoo, W. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. Obesity, 2016, 24(9), 1874-1883.
[http://dx.doi.org/10.1002/oby.21581] [PMID: 27569118]
[43]
Cho, A.R.; Moon, J.Y.; Kim, S.; An, K.Y.; Oh, M.; Jeon, J.Y.; Jung, D.H.; Choi, M.H.; Lee, J.W. Effects of alternate day fasting and exercise on cholesterol metabolism in overweight or obese adults: A pilot randomized controlled trial. Metabolism, 2019, 93, 52-60.
[http://dx.doi.org/10.1016/j.metabol.2019.01.002] [PMID: 30615947]
[44]
Coutinho, S.R.; Halset, E.H.; Gåsbakk, S.; Rehfeld, J.F.; Kulseng, B.; Truby, H.; Martins, C. Compensatory mechanisms activated with intermittent energy restriction: A randomized control trial. Clin. Nutr., 2018, 37(3), 815-823.
[http://dx.doi.org/10.1016/j.clnu.2017.04.002] [PMID: 28446382]
[45]
Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; Ravussin, E.; Varady, K.A. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults. JAMA Intern. Med., 2017, 177(7), 930-938.
[http://dx.doi.org/10.1001/jamainternmed.2017.0936] [PMID: 28459931]
[46]
Varady, K.A.; Hoddy, K.K.; Kroeger, C.M.; Trepanowski, J.F.; Klempel, M.C.; Barnosky, A.; Bhutani, S. Determinants of weight loss success with alternate day fasting. Obes. Res. Clin. Pract., 2016, 10(4), 476-480.
[http://dx.doi.org/10.1016/j.orcp.2015.08.020] [PMID: 26385599]
[47]
Mi, M.; Ljb, M.; Wm, A.R.; Dn, A. Ramadan diurnal intermittent fasting is associated with attenuated FTO gene expression in subjects with overweight and obesity: A prospective cohort study. Front. Nutr., 2022, 8, 741811.
[48]
Albosta, M.; Bakke, J. Intermittent fasting: Is there a role in the treatment of diabetes? A review of the literature and guide for primary care physicians. Clin. Diabetes Endocrinol., 2021, 7(1), 3.
[http://dx.doi.org/10.1186/s40842-020-00116-1] [PMID: 33531076]
[49]
Arnason, T.G.; Bowen, M.W.; Mansell, K.D. Effects of intermittent fasting on health markers in those with type 2 diabetes: A pilot study. World J. Diabetes, 2017, 8(4), 154-164.
[http://dx.doi.org/10.4239/wjd.v8.i4.154] [PMID: 28465792]
[50]
Kahleova, H.; Belinova, L.; Malinska, H.; Oliyarnyk, O.; Trnovska, J.; Skop, V.; Kazdova, L.; Dezortova, M.; Hajek, M.; Tura, A.; Hill, M.; Pelikanova, T. Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: A randomised crossover study. Diabetologia, 2014, 57(8), 1552-1560.
[http://dx.doi.org/10.1007/s00125-014-3253-5] [PMID: 24838678]
[51]
Teong, X.T.; Liu, K.; Vincent, A.D.; Bensalem, J.; Liu, B.; Hattersley, K.J.; Zhao, L.; Feinle-Bisset, C.; Sargeant, T.J.; Wittert, G.A.; Hutchison, A.T.; Heilbronn, L.K. Intermittent fasting plus early time-restricted eating versus calorie restriction and standard care in adults at risk of type 2 diabetes: A randomized controlled trial. Nat. Med., 2023, 29(4), 963-972.
[http://dx.doi.org/10.1038/s41591-023-02287-7] [PMID: 37024596]
[52]
Carter, S.; Clifton, P.M.; Keogh, J.B. Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes. JAMA Netw. Open, 2018, 1(3), e180756.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.0756] [PMID: 30646030]
[53]
Obermayer, A.; Tripolt, N.J.; Pferschy, P.N.; Kojzar, H.; Aziz, F.; Müller, A.; Schauer, M.; Oulhaj, A.; Aberer, F.; Sourij, C.; Habisch, H.; Madl, T.; Pieber, T.; Obermayer-Pietsch, B.; Stadlbauer, V.; Sourij, H. Efficacy and safety of intermittent fasting in people with insulin-treated type 2 diabetes (INTERFAST-2)-a randomized controlled trial. Diabetes Care, 2023, 46(2), 463-468.
[http://dx.doi.org/10.2337/dc22-1622] [PMID: 36508320]
[54]
Corley, B.T.; Carroll, R.W.; Hall, R.M.; Weatherall, M.; Parry-Strong, A.; Krebs, J.D. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: A randomized controlled trial. Diabet. Med., 2018, 35(5), 588-594.
[http://dx.doi.org/10.1111/dme.13595] [PMID: 29405359]
[55]
Gabel, K.; Kroeger, C.M.; Trepanowski, J.F.; Hoddy, K.K.; Cienfuegos, S.; Kalam, F.; Varady, K.A. Differential effects of alternate day fasting versus daily calorie restriction on insulin resistance. Obesity, 2019, 27(9), 1443-1450.
[http://dx.doi.org/10.1002/oby.22564] [PMID: 31328895]
[56]
Silver, DT; Pekari, TB A review of intermittent fasting as a treatment for type 2 diabetes mellitus. Med. J. (Ft Sam Houst Tex)., 2023, (Per 23-4/5/6), 65-71.
[57]
Cardiovascular diseases. Available from: https://www.who.int/health-topics/cardiovascular-diseases
[58]
Tanuseputro, P.; Manuel, D.G.; Leung, M.; Nguyen, K.; Johansen, H. Canadian cardiovascular outcomes research team. Risk factors for cardiovascular disease in Canada. Can. J. Cardiol., 2003, 19(11), 1249-59.
[59]
Onat, A. Risk factors and cardiovascular disease in Turkey. Atherosclerosis, 2001, 156(1), 1-10.
[http://dx.doi.org/10.1016/S0021-9150(01)00500-7] [PMID: 11368991]
[60]
Casas, R.; Castro-Barquero, S.; Estruch, R.; Sacanella, E. Nutrition and cardiovascular health. Int. J. Mol. Sci., 2018, 19(12), 3988.
[61]
Yu, E.; Malik, V.S.; Hu, F.B. Cardiovascular disease prevention by diet modification. J. Am. Coll. Cardiol., 2018, 72(8), 914-926.
[http://dx.doi.org/10.1016/j.jacc.2018.02.085] [PMID: 30115231]
[62]
Naz, H.; Haider, R.; Rashid, H.; Ul Haq, Z.; Malik, J.; Zaidi, S.M.J.; Ishaq, U.; Trevisan, R. Islamic fasting: Cardiovascular disease perspective. Expert Rev. Cardiovasc. Ther., 2022, 20(10), 795-805.
[http://dx.doi.org/10.1080/14779072.2022.2138344] [PMID: 36260858]
[63]
Ben Ahmed, H.; Allouche, E.; Bouzid, K.; Zrelli, S.; Hmaidi, W.; Molahedh, Y.; Ouechtati, W.; Bezdah, L. Impact of Ramadan fasting on lipid profile and cardiovascular risk factors in patients with stable coronary artery disease. Ann. Cardiol. Angeiol., 2022, 71(1), 36-40.
[http://dx.doi.org/10.1016/j.ancard.2020.11.001] [PMID: 33642044]
[64]
Nematy, M.; Alinezhad-Namaghi, M.; Rashed, M.M.; Mozhdehifard, M.; Sajjadi, S.S.; Akhlaghi, S.; Sabery, M.; Mohajeri, S.A.R.; Shalaey, N.; Moohebati, M.; Norouzy, A. Effects of Ramadan fasting on cardiovascular risk factors: A prospective observational study. Nutr. J., 2012, 11(1), 69.
[http://dx.doi.org/10.1186/1475-2891-11-69] [PMID: 22963582]
[65]
Mager, D.E.; Wan, R.; Brown, M.; Cheng, A.; Wareski, P.; Abernethy, D.R.; Mattson, M.P. Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats. FASEB J., 2006, 20(6), 631-637.
[http://dx.doi.org/10.1096/fj.05-5263com] [PMID: 16581971]
[66]
Wilhelmi de Toledo, F.; Grundler, F.; Bergouignan, A.; Drinda, S.; Michalsen, A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS One, 2019, 14(1), e0209353.
[http://dx.doi.org/10.1371/journal.pone.0209353] [PMID: 30601864]
[67]
Eldeeb, A.; Mahmoud, M.; Ibrahim, A.; Yousef, E.; Sabry, A. Effect of Ramadan fasting on arterial stiffness parameters among Egyptian hypertensive patients with and without chronic kidney disease. Saudi J. Kidney Dis. Transpl., 2020, 31(3), 582-588.
[http://dx.doi.org/10.4103/1319-2442.289444] [PMID: 32655044]
[68]
Hammoud, S.; Saad, I.; Karam, R.; Abou Jaoude, F.; van den Bemt, B.J.F.; Kurdi, M. Impact of Ramadan intermittent fasting on the heart rate variability and cardiovascular parameters of patients with controlled hypertension. J. Nutr. Metab., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6610455] [PMID: 33859841]
[69]
Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab., 2018, 27(6), 1212-1221.e3.
[http://dx.doi.org/10.1016/j.cmet.2018.04.010] [PMID: 29754952]
[70]
Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res., 2016, 118(4), 535-546.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307611] [PMID: 26892956]
[71]
Lee, Y.T.; Lin, H.Y.; Chan, Y.W.F.; Li, K.H.C.; To, O.T.L.; Yan, B.P.; Liu, T.; Li, G.; Wong, W.T.; Keung, W.; Tse, G. Mouse models of atherosclerosis: A historical perspective and recent advances. Lipids Health Dis., 2017, 16(1), 12.
[http://dx.doi.org/10.1186/s12944-016-0402-5] [PMID: 28095860]
[72]
Aksungar, F.B.; Topkaya, A.E.; Akyildiz, M. Interleukin-6, C-reactive protein and biochemical parameters during prolonged intermittent fasting. Ann. Nutr. Metab., 2007, 51(1), 88-95.
[http://dx.doi.org/10.1159/000100954] [PMID: 17374948]
[73]
Chandrasekar, B.; Nelson, J.F.; Colston, J.T.; Freeman, G.L. Calorie restriction attenuates inflammatory responses to myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2001, 280(5), H2094-H2102.
[http://dx.doi.org/10.1152/ajpheart.2001.280.5.H2094] [PMID: 11299211]
[74]
Bhutani, S.; Klempel, M.C.; Berger, R.A.; Varady, K.A. Improvements in coronary heart disease risk indicators by alternate-day fasting involve adipose tissue modulations. Obesity, 2010, 18(11), 2152-2159.
[http://dx.doi.org/10.1038/oby.2010.54] [PMID: 20300080]
[75]
Khalfallah, M.; Elnagar, B.; Soliman, S.S.; Eissa, A.; Allaithy, A. The value of intermittent fasting and low carbohydrate diet in prediabetic patients for the prevention of cardiovascular diseases. Arq. Bras. Cardiol., 2023, 120(4), e20220606.
[http://dx.doi.org/10.36660/abc.20220606] [PMID: 37042857]
[76]
Bartholomew, C.L.; Muhlestein, J.B.; Anderson, J.L.; May, H.T.; Knowlton, K.U.; Bair, T.L.; Le, V.T.; Bailey, B.W.; Horne, B.D. Association of periodic fasting lifestyles with survival and incident major adverse cardiovascular events in patients undergoing cardiac catheterization. Eur. J. Prev. Cardiol., 2022, 28(16), 1774-1781.
[http://dx.doi.org/10.1093/eurjpc/zwaa050] [PMID: 33624026]
[77]
Moro, T.; Tinsley, G.; Pacelli, F.Q.; Marcolin, G.; Bianco, A.; Paoli, A. Twelve months of time-restricted eating and resistance training improves inflammatory markers and cardiometabolic risk factors. Med. Sci. Sports Exerc., 2021, 53(12), 2577-2585.
[http://dx.doi.org/10.1249/MSS.0000000000002738] [PMID: 34649266]
[78]
Klempel, M.C.; Kroeger, C.M.; Bhutani, S.; Trepanowski, J.F.; Varady, K.A. Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women. Nutr. J., 2012, 11(1), 98.
[http://dx.doi.org/10.1186/1475-2891-11-98] [PMID: 23171320]
[79]
Becker, A.; Gaballa, D.; Roslin, M.; Gianos, E.; Kane, J. Novel nutritional and dietary approaches to weight loss for the prevention of cardiovascular disease: ketogenic diet, intermittent fasting, and bariatric surgery. Curr. Cardiol. Rep., 2021, 23(7), 85.
[http://dx.doi.org/10.1007/s11886-021-01515-1] [PMID: 34081228]
[80]
Schroder, J.D.; Falqueto, H.; Mânica, A.; Zanini, D.; de Oliveira, T.; de Sá, C.A.; Cardoso, A.M.; Manfredi, L.H. Effects of time-restricted feeding in weight loss, metabolic syndrome and cardiovascular risk in obese women. J. Transl. Med., 2021, 19(1), 3.
[http://dx.doi.org/10.1186/s12967-020-02687-0] [PMID: 33407612]
[81]
Camelo, L.; Marinho, T.S.; Águila, M.B.; Souza-Mello, V.; Barbosa-da-Silva, S. Intermittent fasting exerts beneficial metabolic effects on blood pressure and cardiac structure by modulating local renin-angiotensin system in the heart of mice fed high-fat or high-fructose diets. Nutr. Res., 2019, 63, 51-62.
[http://dx.doi.org/10.1016/j.nutres.2018.12.005] [PMID: 30824397]
[82]
Lakatta, E.G. Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail. Rev., 2002, 7(1), 29-49.
[http://dx.doi.org/10.1023/A:1013797722156] [PMID: 11790921]
[83]
Badreh, F.; Joukar, S.; Badavi, M.; Rashno, M. Restoration of the renin–angiotensin system balance is a part of the effect of fasting on cardiovascular rejuvenation: Role of age and fasting models. Rejuvenation Res., 2020, 23(4), 302-312.
[http://dx.doi.org/10.1089/rej.2019.2254] [PMID: 31571520]
[84]
Demirci, E.; Çalapkorur, B.; Celik, O.; Koçer, D.; Demirelli, S.; Şimsek, Z. Improvement in blood pressure after intermittent fasting in hipertension: Could renin-angiotensin system and autonomic nervous system have a role? Arq. Bras. Cardiol., 2023, 120(5), e20220756.
[http://dx.doi.org/10.36660/abc.20220756] [PMID: 37098959]
[85]
He, Z.; Xu, H.; Li, C.; Yang, H.; Mao, Y. Intermittent fasting and immunomodulatory effects: A systematic review. Front. Nutr., 2023, 10, 1048230.
[http://dx.doi.org/10.3389/fnut.2023.1048230] [PMID: 36925956]
[86]
Bhatti, S.I.; Mindikoglu, A.L. The impact of dawn to sunset fasting on immune system and its clinical significance in COVID-19 pandemic. Metabolism Open, 2022, 13, 100162.
[http://dx.doi.org/10.1016/j.metop.2021.100162] [PMID: 34977523]
[87]
Johnson, J.B.; Summer, W.; Cutler, R.G.; Martin, B.; Hyun, D.H.; Dixit, V.D.; Pearson, M.; Nassar, M.; Tellejohan, R.; Maudsley, S.; Carlson, O.; John, S.; Laub, D.R.; Mattson, M.P. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic. Biol. Med., 2007, 42(5), 665-674.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.12.005] [PMID: 17291990]
[88]
Faris, A.I.E.; Kacimi, S.; Al-Kurd, R.A.; Fararjeh, M.A.; Bustanji, Y.K.; Mohammad, M.K.; Salem, M.L. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr. Res., 2012, 32(12), 947-955.
[http://dx.doi.org/10.1016/j.nutres.2012.06.021] [PMID: 23244540]
[89]
Gasmi, M.; Sellami, M.; Denham, J.; Padulo, J.; Kuvacic, G.; Selmi, W.; Khalifa, R. Time-restricted feeding influences immune responses without compromising muscle performance in older men. Nutrition, 2018, 51-52, 29-37.
[http://dx.doi.org/10.1016/j.nut.2017.12.014] [PMID: 29571007]
[90]
Mindikoglu, A.L.; Abdulsada, M.M.; Jain, A.; Choi, J.M.; Jalal, P.K.; Devaraj, S.; Mezzari, M.P.; Petrosino, J.F.; Opekun, A.R.; Jung, S.Y. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J. Proteomics, 2020, 217, 103645.
[http://dx.doi.org/10.1016/j.jprot.2020.103645] [PMID: 31927066]
[91]
Madkour, M.I.; El-Serafi, A.T.; Jahrami, H.A.; Sherif, N.M.; Hassan, R.E.; Awadallah, S.; Al-Islam E Faris, M. Ramadan diurnal intermittent fasting modulates SOD2, TFAM, Nrf2, and sirtuins (SIRT1, SIRT3) gene expressions in subjects with overweight and obesity. Diabetes Res. Clin. Pract., 2019, 155, 107801.
[92]
Faris, M.A.I.E.; Jahrami, H.A.; Obaideen, A.A.; Madkour, M.I. Impact of diurnal intermittent fasting during Ramadan on inflammatory and oxidative stress markers in healthy people: Systematic review and meta-analysis. J. Nutr. Intermed. Metab., 2019, 15, 18-26.
[http://dx.doi.org/10.1016/j.jnim.2018.11.005]
[93]
Song, S.; Bai, M.; Ling, Z.; Lin, Y.; Wang, S.; Chen, Y. Intermittent administration of a fasting-mimicking diet reduces intestinal inflammation and promotes repair to ameliorate inflammatory bowel disease in mice. J. Nutr. Biochem., 2021, 96, 108785.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108785] [PMID: 34087411]
[94]
Nobari, H.; Saedmocheshi, S.; Murawska-Ciałowicz, E.; Clemente, F.M.; Suzuki, K.; Silva, A.F. Exploring the effects of energy constraints on performance, body composition, endocrinological/hematological biomarkers, and immune system among athletes: An overview of the fasting state. Nutrients, 2022, 14(15), 3197.
[http://dx.doi.org/10.3390/nu14153197] [PMID: 35956373]
[95]
Janssen, H.; Kahles, F.; Liu, D.; Downey, J.; Koekkoek, L.L.; Roudko, V.; D’Souza, D.; McAlpine, C.S.; Halle, L.; Poller, W.C.; Chan, C.T.; He, S.; Mindur, J.E.; Kiss, M.G.; Singh, S.; Anzai, A.; Iwamoto, Y.; Kohler, R.H.; Chetal, K.; Sadreyev, R.I.; Weissleder, R.; Kim-Schulze, S.; Merad, M.; Nahrendorf, M.; Swirski, F.K. Monocytes re-enter the bone marrow during fasting and alter the host response to infection. Immunity, 2023, 56(4), 783-796.e7.
[http://dx.doi.org/10.1016/j.immuni.2023.01.024] [PMID: 36827982]
[96]
Jordan, S.; Tung, N.; Casanova-Acebes, M.; Chang, C.; Cantoni, C.; Zhang, D.; Wirtz, T.H.; Naik, S.; Rose, S.A.; Brocker, C.N.; Gainullina, A.; Hornburg, D.; Horng, S.; Maier, B.B.; Cravedi, P.; LeRoith, D.; Gonzalez, F.J.; Meissner, F.; Ochando, J.; Rahman, A.; Chipuk, J.E.; Artyomov, M.N.; Frenette, P.S.; Piccio, L.; Berres, M.L.; Gallagher, E.J.; Merad, M. Dietary intake regulates the circulating inflammatory monocyte pool. Cell, 2019, 178(5), 1102-1114.e17.
[http://dx.doi.org/10.1016/j.cell.2019.07.050] [PMID: 31442403]
[97]
Nagai, M.; Noguchi, R.; Takahashi, D.; Morikawa, T.; Koshida, K.; Komiyama, S.; Ishihara, N.; Yamada, T.; Kawamura, Y.; Muroi, K.; Hattori, K. Fasting-refeeding impacts immune cell dynamics and mucosal immune responses. Cell., 2019, 178(5), 1072-1087.e14.
[98]
Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; Zhou, Y.; Piccio, L. Intermittent fasting confers protection in cns autoimmunity by altering the gut microbiota. Cell Metab., 2018, 27(6), 1222-1235.e6.
[http://dx.doi.org/10.1016/j.cmet.2018.05.006] [PMID: 29874567]
[99]
Furusawa, Y.; Obata, Y.; Hase, K. Commensal microbiota regulates T cell fate decision in the gut. Semin. Immunopathol., 2015, 37(1), 17-25.
[http://dx.doi.org/10.1007/s00281-014-0455-3] [PMID: 25315350]
[100]
Fitzgerald, K.C.; Bhargava, P.; Smith, M.D.; Vizthum, D.; Henry-Barron, B.; Kornberg, M.D.; Cassard, S.D.; Kapogiannis, D.; Sullivan, P.; Baer, D.J.; Calabresi, P.A.; Mowry, E.M. Intermittent calorie restriction alters T cell subsets and metabolic markers in people with multiple sclerosis. EBioMedicine, 2022, 82, 104124.
[http://dx.doi.org/10.1016/j.ebiom.2022.104124] [PMID: 35816900]
[101]
Hong, S.M.; Lee, J.; Jang, S.G.; Song, Y.; Kim, M.; Lee, J.; Cho, M.L.; Kwok, S.K.; Park, S.H. Intermittent fasting aggravates lupus nephritis through increasing survival and autophagy of antibody secreting cells in MRL/lpr mice. Int. J. Mol. Sci., 2020, 21(22), 8477.
[http://dx.doi.org/10.3390/ijms21228477] [PMID: 33187196]
[102]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[103]
Miranda-Filho, A.; Bray, F.; Charvat, H.; Rajaraman, S.; Soerjomataram, I. The world cancer patient population (WCPP): An updated standard for international comparisons of population-based survival. Cancer Epidemiol., 2020, 69, 101802.
[http://dx.doi.org/10.1016/j.canep.2020.101802] [PMID: 32942139]
[104]
Safdie, F.M.; Dorff, T.; Quinn, D.; Fontana, L.; Wei, M.; Lee, C.; Cohen, P.; Longo, V.D. Fasting and cancer treatment in humans: A case series report. Aging, 2009, 1(12), 988-1007.
[http://dx.doi.org/10.18632/aging.100114] [PMID: 20157582]
[105]
Bauersfeld, S.P.; Kessler, C.S.; Wischnewsky, M.; Jaensch, A.; Steckhan, N.; Stange, R.; Kunz, B.; Brückner, B.; Sehouli, J.; Michalsen, A. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: A randomized cross-over pilot study. BMC Cancer, 2018, 18(1), 476.
[http://dx.doi.org/10.1186/s12885-018-4353-2] [PMID: 29699509]
[106]
de Groot, S.; Vreeswijk, M.P.G.; Welters, M.J.P.; Gravesteijn, G.; Boei, J.J.W.A.; Jochems, A.; Houtsma, D.; Putter, H.; van der Hoeven, J.J.M.; Nortier, J.W.R.; Pijl, H.; Kroep, J.R. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: A randomized pilot study. BMC Cancer, 2015, 15(1), 652.
[http://dx.doi.org/10.1186/s12885-015-1663-5] [PMID: 26438237]
[107]
Dorff, T.B.; Groshen, S.; Garcia, A.; Shah, M.; Tsao-Wei, D.; Pham, H.; Cheng, C.W.; Brandhorst, S.; Cohen, P.; Wei, M.; Longo, V.; Quinn, D.I. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer, 2016, 16(1), 360.
[http://dx.doi.org/10.1186/s12885-016-2370-6] [PMID: 27282289]
[108]
Vernieri, C.; Fucà, G.; Ligorio, F.; Huber, V.; Vingiani, A.; Iannelli, F.; Raimondi, A.; Rinchai, D.; Frigè, G.; Belfiore, A.; Lalli, L.; Chiodoni, C.; Cancila, V.; Zanardi, F.; Ajazi, A.; Cortellino, S.; Vallacchi, V.; Squarcina, P.; Cova, A.; Pesce, S.; Frati, P.; Mall, R.; Corsetto, P.A.; Rizzo, A.M.; Ferraris, C.; Folli, S.; Garassino, M.C.; Capri, G.; Bianchi, G.; Colombo, M.P.; Minucci, S.; Foiani, M.; Longo, V.D.; Apolone, G.; Torri, V.; Pruneri, G.; Bedognetti, D.; Rivoltini, L.; de Braud, F. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer. Cancer Discov., 2022, 12(1), 90-107.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0030] [PMID: 34789537]
[109]
Alshammari, K.; Alhaidal, H.A.; Alharbi, R.; Alrubaiaan, A.; Abdel-Razaq, W.; Alyousif, G.; Alkaiyat, M. The impact of fasting the holy month of ramadan on colorectal cancer patients and two tumor biomarkers: A tertiary-care hospital experience. Cureus, 2023, 15(1), e33920.
[http://dx.doi.org/10.7759/cureus.33920] [PMID: 36819321]
[110]
Raffaghello, L.; Lee, C.; Safdie, F.M.; Wei, M.; Madia, F.; Bianchi, G.; Longo, V.D. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl. Acad. Sci. USA, 2008, 105(24), 8215-8220.
[http://dx.doi.org/10.1073/pnas.0708100105] [PMID: 18378900]
[111]
Di Biase, S.; Shim, H.S.; Kim, K.H.; Vinciguerra, M.; Rappa, F.; Wei, M.; Brandhorst, S.; Cappello, F.; Mirzaei, H.; Lee, C.; Longo, V.D. Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy. PLoS Biol., 2017, 15(3), e2001951.
[http://dx.doi.org/10.1371/journal.pbio.2001951] [PMID: 28358805]
[112]
Lin, S.J.; Kaeberlein, M.; Andalis, A.A.; Sturtz, L.A.; Defossez, P.A.; Culotta, V.C.; Fink, G.R.; Guarente, L. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 2002, 418(6895), 344-348.
[http://dx.doi.org/10.1038/nature00829] [PMID: 12124627]
[113]
de Groot, S.; Pijl, H.; van der Hoeven, J.J.M.; Kroep, J.R. Effects of short-term fasting on cancer treatment. J. Exp. Clin. Cancer Res., 2019, 38(1), 209.
[http://dx.doi.org/10.1186/s13046-019-1189-9] [PMID: 31113478]
[114]
Lee, C; Raffaghello, L; Brandhorst, S; Safdie, FM; Bianchi, G; Martin-Montalvo, A Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med., 2012, 4(124), 124ra27-124ra27.
[http://dx.doi.org/10.1126/scitranslmed.3003293]
[115]
Lee, C.; Fernando, M.; Raffaghello, L.; Wei, M.; Madia, F.; Parrella, E.; Hwang, D.; Cohen, P.; Bianchi, G.; Longo1, V.D. Reduced IGF-I differentially protects normal and cancer cells and improves chemotherapeutic index in mice. Cancer Res., 2010, 70(4), 1564-1572.
[116]
Dhanyamraju, P.K.; Schell, T.D.; Amin, S.; Robertson, G.P. Drug-tolerant persister cells in cancer therapy resistance. Cancer Res., 2022, 82(14), 2503-2514.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-3844] [PMID: 35584245]
[117]
Liu, X.; Peng, S.; Tang, G.; Xu, G.; Xie, Y.; Shen, D.; Zhu, M.; Huang, Y.; Wang, X.; Yu, H.; Huang, M.; Luo, Y. Fasting-mimicking diet synergizes with ferroptosis against quiescent, chemotherapy-resistant cells. EBioMedicine, 2023, 90, 104496.
[http://dx.doi.org/10.1016/j.ebiom.2023.104496] [PMID: 36863257]
[118]
Erlangga, Z.; Ghashang, S.K.; Hamdan, I.; Melk, A.; Gutenbrunner, C.; Nugraha, B. The effect of prolonged intermittent fasting on autophagy, inflammasome and senescence genes expressions: An exploratory study in healthy young males. Human Nutr. Metab., 2023, 32, 200189.
[http://dx.doi.org/10.1016/j.hnm.2023.200189]
[119]
Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell, 2015, 28(6), 690-714.
[http://dx.doi.org/10.1016/j.ccell.2015.10.012] [PMID: 26678337]
[120]
Gardai, S.J.; McPhillips, K.A.; Frasch, S.C.; Janssen, W.J.; Starefeldt, A.; Murphy-Ullrich, J.E.; Bratton, D.L.; Oldenborg, P.A.; Michalak, M.; Henson, P.M. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005, 123(2), 321-334.
[http://dx.doi.org/10.1016/j.cell.2005.08.032] [PMID: 16239148]
[121]
Garg, A.D.; Galluzzi, L.; Apetoh, L.; Baert, T.; Raymond, B.; Bravo-San, J.M.; Breckpot, K.; Brough, D.; Chaurio, R.; Cirone, M.; Coosemans, A.; Coulie, P.G. Molecular and translational classifications of DAMPs in immunogenic cell death. Front. Immunol., 2015, 6, 588.
[122]
Thorburn, J.; Horita, H.; Redzic, J.; Hansen, K.; Frankel, A.E.; Thorburn, A. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ., 2009, 16, 175-183.
[123]
Michaud, M.; Martins, I.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Pellegatti, P.; Shen, S.; Kepp, O.; Scoazec, M.; Mignot, G.; Rello-Varona, S.; Tailler, M.; Menger, L.; Vacchelli, E.; Galluzzi, L.; Ghiringhelli, F.; di Virgilio, F.; Zitvogel, L.; Kroemer, G. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science, 2011, 334(6062), 1573-1577.
[http://dx.doi.org/10.1126/science.1208347] [PMID: 22174255]
[124]
Pietrocola, F.; Pol, J.; Vacchelli, E.; Rao, S.; Enot, D.P.; Baracco, E.E.; Levesque, S.; Castoldi, F.; Jacquelot, N.; Yamazaki, T.; Senovilla, L.; Marino, G.; Aranda, F.; Durand, S.; Sica, V.; Chery, A.; Lachkar, S.; Sigl, V.; Bloy, N.; Buque, A.; Falzoni, S.; Ryffel, B.; Apetoh, L.; Di Virgilio, F.; Madeo, F.; Maiuri, M.C.; Zitvogel, L.; Levine, B.; Penninger, J.M.; Kroemer, G. Caloric restriction mimetics enhance anticancer immunosurveillance. Cancer Cell, 2016, 30(1), 147-160.
[http://dx.doi.org/10.1016/j.ccell.2016.05.016] [PMID: 27411589]
[125]
Ponpuak, M.; Mandell, M.A.; Kimura, T.; Chauhan, S.; Cleyrat, C.; Deretic, V. Secretory autophagy. Curr. Opin. Cell Biol., 2015, 35, 106-116.
[http://dx.doi.org/10.1016/j.ceb.2015.04.016] [PMID: 25988755]
[126]
Norbury, C.C.; Hewlett, L.J.; Prescott, A.R.; Shastri, N.; Watts, C. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity, 1995, 3(6), 783-791.
[http://dx.doi.org/10.1016/1074-7613(95)90067-5] [PMID: 8777723]
[127]
Paludan, C.; Schmid, D.; Landthaler, M.; Vockerodt, M.; Kube, D.; Tuschl, T.; Münz, C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science, 2005, 307(5709), 593-596.
[http://dx.doi.org/10.1126/science.1104904] [PMID: 15591165]
[128]
Schmid, D.; Pypaert, M.; Münz, C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity, 2007, 26(1), 79-92.
[http://dx.doi.org/10.1016/j.immuni.2006.10.018] [PMID: 17182262]
[129]
Chemali, M.; Radtke, K.; Desjardins, M.; English, L. Alternative pathways for MHC class I presentation: A new function for autophagy. Cell. Mol. Life Sci., 2011, 68(9), 1533-1541.
[http://dx.doi.org/10.1007/s00018-011-0660-3] [PMID: 21390546]
[130]
Dengjel, J.; Schoor, O.; Fischer, R.; Reich, M.; Kraus, M.; Müller, M.; Kreymborg, K.; Altenberend, F.; Brandenburg, J.; Kalbacher, H.; Brock, R.; Driessen, C.; Rammensee, H.G.; Stevanovic, S. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. USA, 2005, 102(22), 7922-7927.
[http://dx.doi.org/10.1073/pnas.0501190102] [PMID: 15894616]
[131]
Trollmo, C.; Verdrengh, M.; Tarkowski, A. Fasting enhances mucosal antigen specific B cell responses in rheumatoid arthritis. Ann. Rheum. Dis., 1997, 56(2), 130-4.
[132]
Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[133]
Botti, J.; Djavaheri-Mergny, M.; Pilatte, Y.; Codogno, P. Autophagy signaling and the cogwheels of cancer. Autophagy, 2006, 2(2), 67-73.
[http://dx.doi.org/10.4161/auto.2.2.2458] [PMID: 16874041]
[134]
Antunes, F.; Erustes, A.G.; Costa, A.J.; Nascimento, A.C.; Bincoletto, C.; Ureshino, R.P.; Pereira, G.J.S.; Smaili, S.S. Autophagy and intermittent fasting: The connection for cancer therapy? Clinics, 2018, 73(Suppl. 1), e814s.
[http://dx.doi.org/10.6061/clinics/2018/e814s] [PMID: 30540126]
[135]
Tiwari, S.; Sapkota, N.; Han, Z. Effect of fasting on cancer: A narrative review of scientific evidence. Cancer Sci., 2022, 113(10), 3291-3302.
[http://dx.doi.org/10.1111/cas.15492] [PMID: 35848874]
[136]
Amaravadi, R.; Kimmelman, A.C.; White, E. Recent insights into the function of autophagy in cancer. Genes Dev., 2016, 30(17), 1913-1930.
[http://dx.doi.org/10.1101/gad.287524.116] [PMID: 27664235]
[137]
Liu, J.; Debnath, J. The evolving, multifaceted roles of autophagy in cancer. Adv. Cancer Res., 2016, 130, 1-53.
[http://dx.doi.org/10.1016/bs.acr.2016.01.005] [PMID: 27037750]
[138]
Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y.; Nelson, D.A.; Jin, S.; White, E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006, 10(1), 51-64.
[http://dx.doi.org/10.1016/j.ccr.2006.06.001] [PMID: 16843265]
[139]
White, E.; Mehnert, J.M.; Chan, C.S. Autophagy, metabolism, and cancer. Clin. Cancer Res., 2015, 21(22), 5037-5046.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0490] [PMID: 26567363]
[140]
WHO Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int (Accessed on: 2023 Jun 25).
[141]
van Eijk, L.E.; Binkhorst, M.; Bourgonje, A.R.; Offringa, A.K.; Mulder, D.J.; Bos, E.M.; Kolundzic, N.; Abdulle, A.E.; van der Voort, P.H.J.; Olde Rikkert, M.G.M.; van der Hoeven, J.G.; den Dunnen, W.F.A.; Hillebrands, J.L.; van Goor, H. COVID-19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol., 2021, 254(4), 307-331.
[http://dx.doi.org/10.1002/path.5642] [PMID: 33586189]
[142]
Wang, Z.; Fu, Y.; Guo, Z.; Li, J.; Li, J.; Cheng, H.; Lu, B.; Sun, Q. Transmission and prevention of SARS-CoV-2. Biochem. Soc. Trans., 2020, 48(5), 2307-2316.
[http://dx.doi.org/10.1042/BST20200693] [PMID: 33084885]
[143]
Hannan, M.A.; Rahman, M.A.; Rahman, M.S.; Sohag, A.A.M.; Dash, R.; Hossain, K.S.; Farjana, M.; Uddin, M.J. Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response. Immunol. Lett., 2020, 226, 38-45.
[http://dx.doi.org/10.1016/j.imlet.2020.07.001] [PMID: 32659267]
[144]
McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev., 2020, 19(6), 102537.
[http://dx.doi.org/10.1016/j.autrev.2020.102537] [PMID: 32251717]
[145]
Wang, W.; Liu, X.; Wu, S.; Chen, S.; Li, Y.; Nong, L.; Lie, P.; Huang, L.; Cheng, L.; Lin, Y.; He, J. Definition and risks of cytokine release syndrome in 11 critically Ill COVID-19 patients with pneumonia: Analysis of disease characteristics. J. Infect. Dis., 2020, 222(9), 1444-1451.
[http://dx.doi.org/10.1093/infdis/jiaa387] [PMID: 32601708]
[146]
Umare, V.; Pradhan, V.; Nadkar, M.; Rajadhyaksha, A.; Patwardhan, M.; Ghosh, K.K.; Nadkarni, A.H. Effect of proinflammatory cytokines (IL-6, TNF-α, and IL-1β) on clinical manifestations in Indian SLE patients. Mediators Inflamm., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/385297] [PMID: 25548434]
[147]
Qi, J.; Gan, L.; Fang, J.; Zhang, J.; Yu, X.; Guo, H.; Cai, D.; Cui, H.; Gou, L.; Deng, J.; Wang, Z.; Zuo, Z. Beta-Hydroxybutyrate: A dual function molecular and immunological barrier function regulator. Front. Immunol., 2022, 13, 805881.
[http://dx.doi.org/10.3389/fimmu.2022.805881] [PMID: 35784364]
[148]
Hirschberger, S.; Strauß, G.; Effinger, D.; Marstaller, X.; Ferstl, A.; Müller, M.B.; Wu, T.; Hübner, M.; Rahmel, T.; Mascolo, H.; Exner, N.; Heß, J.; Kreth, F.W.; Unger, K.; Kreth, S. Very-low-carbohydrate diet enhances human T- cell immunity through immunometabolic reprogramming. EMBO Mol. Med., 2021, 13(8), e14323.
[http://dx.doi.org/10.15252/emmm.202114323] [PMID: 34151532]
[149]
Karagiannis, F.; Peukert, K.; Surace, L.; Michla, M.; Nikolka, F.; Fox, M.; Weiss, P.; Feuerborn, C.; Maier, P.; Schulz, S.; Al, B. Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19. Nature, 2022, 609, 801-807.
[150]
Chapman, N.M.; Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity, 2022, 55(1), 14-30.
[http://dx.doi.org/10.1016/j.immuni.2021.12.012] [PMID: 35021054]
[151]
Wang, Y.; Chi, H. Fasting as key tone for COVID immunity. Nature Metabolism, 2022, 4, 1229-1231.
[152]
Sousa, A.M.M.; Meyer, K.A.; Santpere, G.; Gulden, F.O.; Sestan, N. Evolution of the human nervous system function, structure, and development. Cell, 2017, 170(2), 226-247.
[http://dx.doi.org/10.1016/j.cell.2017.06.036] [PMID: 28708995]
[153]
Rr, A. Principles of Neural Science Kandel. Available from: https://www.academia.edu/11639811/Principles_ of_Neural_Science_Kandel_4th_Ed (Accessed on: 2023 Jul 6).
[154]
Mattson, M.P.; Moehl, K.; Ghena, N.; Schmaedick, M.; Cheng, A. Intermittent metabolic switching, neuroplasticity and brain health. Nat. Rev. Neurosci., 2018, 19(2), 81-94.
[http://dx.doi.org/10.1038/nrn.2017.156] [PMID: 29321682]
[155]
Stampanoni Bassi, M.; Iezzi, E.; Gilio, L.; Centonze, D.; Buttari, F. Synaptic plasticity shapes brain connectivity: Implications for network topology. Int. J. Mol. Sci., 2019, 20(24), 6193.
[http://dx.doi.org/10.3390/ijms20246193] [PMID: 31817968]
[156]
Alirezaei, M.; Kemball, C.C.; Flynn, C.T.; Wood, M.R.; Whitton, J.L.; Kiosses, W.B. Short-term fasting induces profound neuronal autophagy. Autophagy, 2010, 6(6), 702-710.
[http://dx.doi.org/10.4161/auto.6.6.12376] [PMID: 20534972]
[157]
Tavernarakis, N. Regulation and roles of autophagy in the brain. Adv. Exp. Med. Biol., 2020, 1195, 33.
[http://dx.doi.org/10.1007/978-3-030-32633-3_5] [PMID: 32468455]
[158]
Vasconcelos, A.R; Kinoshita, P.F; Yshii, L.M; Orellana, A.M.M; Böhmer, A.E; de Sá Lima , L; Alves, R; Andreotti, D.Z; Marcourakis, T; Scavone, C; Kawamoto, E.M Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus. Neurobiol. Aging, 2015, 36(5), 1914-1923.
[159]
Cheng, A.; Yang, Y.; Zhou, Y.; Maharana, C.; Lu, D.; Peng, W.; Liu, Y.; Wan, R.; Marosi, K.; Misiak, M.; Bohr, V.A.; Mattson, M.P. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab., 2016, 23(1), 128-42.
[160]
Vasconcelos, A.R.; Vasconcelos, A.R.; Vasconcelos, A.R.; Vasconcelos, A.R. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front Immunol., 2020, 11, 493.
[161]
Vasconcelos, A.R.; Yshii, L.M.; Viel, T.A.; Buck, H.S.; Mattson, M.P.; Scavone, C.; Kawamoto, E.M. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment. J. Neuroinflammation., 2014, 11, 85.
[162]
Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev., 2017, 39, 46-58.
[http://dx.doi.org/10.1016/j.arr.2016.10.005] [PMID: 27810402]
[163]
Madeo, F.; Carmona-Gutierrez, D.; Hofer, S.J.; Kroemer, G. Caloric restriction mimetics against age-associated disease: Targets, mechanisms, and therapeutic potential. Cell Metab., 2019, 29(3), 592-610.
[http://dx.doi.org/10.1016/j.cmet.2019.01.018] [PMID: 30840912]
[164]
Beli, E.; Yan, Y.; Moldovan, L.; Vieira, C.P.; Gao, R.; Duan, Y.; Prasad, R.; Bhatwadekar, A.; White, F.A.; Townsend, S.D.; Chan, L.; Ryan, C.N.; Morton, D.; Moldovan, E.G.; Chu, F.I.; Oudit, G.Y.; Derendorf, H.; Adorini, L.; Wang, X.X.; Evans-Molina, C.; Mirmira, R.G.; Boulton, M.E.; Yoder, M.C.; Li, Q.; Levi, M.; Busik, J.V.; Grant, M.B. Restructuring of the gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice. Diabetes, 2018, 67(9), 1867-1879.
[http://dx.doi.org/10.2337/db18-0158] [PMID: 29712667]
[165]
Weir, HJ.; Yao, P.; Huynh, F.K.; Escoubas, C.C.; Goncalves, R.L.; Burkewitz, K.; Laboy, R.; Hirschey, M.D.; Mair, W.B. Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metab., 2017, 26(6), 884-896.e5.
[166]
Hassan, S.; Hassan, F.; Abbas, N.; Hassan, K.; Khatib, N.; Edgim, R.; Fadol, R.; Khazim, K. Does ramadan fasting affect hydration status and kidney function in CKD patients? Ann. Nutr. Metab., 2018, 72(3), 241-247.
[http://dx.doi.org/10.1159/000486799] [PMID: 29518785]
[167]
Bello, A.K.; Kurzawa, J.; Osman, M.A.; Olah, M.E.; Lloyd, A.; Wiebe, N.; Habib, S.; Qarni, U.; Shojai, S.; Pauly, R.P. Impact of Ramadan fasting on kidney function and related outcomes in patients with chronic kidney disease: a systematic review protocol. BMJ Open, 2019, 9(8), e022710.
[http://dx.doi.org/10.1136/bmjopen-2018-022710] [PMID: 31446401]
[168]
Al Mahayni, A.O.; Alkhateeb, S.S.; Abusaq, I.H.; Al Mufarrih, A.A.; Jaafari, M.I.; Bawazir, A.A. Does fasting in Ramadan increase the risk of developing urinary stones? Saudi Med. J., 2018, 39(5), 481-486.
[http://dx.doi.org/10.15537/smj.2018.5.22160] [PMID: 29738008]
[169]
Pickel, L.; Iliuta, I.A.; Scholey, J.; Pei, Y.; Sung, H.K. Dietary interventions in autosomal dominant polycystic kidney disease. Adv. Nutr., 2022, 13(2), 652-666.
[http://dx.doi.org/10.1093/advances/nmab131] [PMID: 34755831]
[170]
Rojas-Morales, P.; León-Contreras, J.C.; Aparicio-Trejo, O.E.; Reyes-Ocampo, J.G.; Medina-Campos, O.N.; Jiménez-Osorio, A.S.; González-Reyes, S.; Marquina- Castillo, B.; Hernández-Pando, R.; Barrera-Oviedo, D.; Sánchez-Lozada, L.G.; Pedraza-Chaverri, J.; Tapia, E. Fasting reduces oxidative stress, mitochondrial dysfunction and fibrosis induced by renal ischemia-reperfusion injury. Free Radic. Biol. Med., 2019, 135, 60-67.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.02.018] [PMID: 30818054]
[171]
Rojas-Morales, P.; Tapia, E.; León-Contreras, J.C.; González-Reyes, S.; Jiménez-Osorio, A.S.; Trujillo, J.; Pavón, N.; Granados-Pineda, J.; Hernández-Pando, R.; Sánchez-Lozada, L.G.; Osorio-Alonso, H.; Pedraza- Chaverri, J. Mechanisms of fasting-mediated protection against renal injury and fibrosis development after ischemic acute kidney injury. Biomolecules, 2019, 9(9), 404.
[http://dx.doi.org/10.3390/biom9090404] [PMID: 31443530]
[172]
Huynh, L.M.; Liang, K.; Osman, M.M.; El-Khatib, F.M.; Dianatnejad, S.; Towe, M.; Roberts, N.H.; Yafi, F.A. Organic diet and intermittent fasting are associated with improved erectile function. Urology, 2020, 144, 147-151.
[http://dx.doi.org/10.1016/j.urology.2020.07.019] [PMID: 32717247]
[173]
Lettieri-Barbato, D.; Aquilano, K. Pushing the limits of cancer therapy: The nutrient game. Front. Oncol., 2018, 8, 148.
[http://dx.doi.org/10.3389/fonc.2018.00148] [PMID: 29868472]
[174]
AlHilli, M.M.; Bae-Jump, V. Diet and gut microbiome interactions in gynecologic cancer. Gynecol. Oncol., 2020, 159(2), 299-308.
[http://dx.doi.org/10.1016/j.ygyno.2020.08.027] [PMID: 32933758]
[175]
Cienfuegos, S.; Corapi, S.; Gabel, K.; Ezpeleta, M.; Kalam, F.; Lin, S.; Pavlou, V.; Varady, K.A. Effect of intermittent fasting on reproductive hormone levels in females and males: A review of human trials. Nutrients, 2022, 14(11), 2343.
[http://dx.doi.org/10.3390/nu14112343] [PMID: 35684143]
[176]
Jakubowicz, D.; Barnea, M.; Wainstein, J.; Froy, O. Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome. Clin. Sci., 2013, 125(9), 423-432.
[http://dx.doi.org/10.1042/CS20130071] [PMID: 23688334]
[177]
Li, C.; Xing, C.; Zhang, J.; Zhao, H.; Shi, W.; He, B. Eight-hour time-restricted feeding improves endocrine and metabolic profiles in women with anovulatory polycystic ovary syndrome. J. Transl. Med., 2021, 19(1), 148.
[http://dx.doi.org/10.1186/s12967-021-02817-2] [PMID: 33849562]
[178]
Kim, B.H.; Joo, Y.; Kim, M.S.; Choe, H.K.; Tong, Q.; Kwon, O. Effects of intermittent fasting on the circulating levels and circadian rhythms of hormones. Endocrinol. Metab., 2021, 36(4), 745-756.
[http://dx.doi.org/10.3803/EnM.2021.405] [PMID: 34474513]
[179]
Varady, K.A. Intermittent versus daily calorie restriction: Which diet regimen is more effective for weight loss? Obes. Rev., 2011, 12(7), e593-e601.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00873.x] [PMID: 21410865]
[180]
Halberg, N; Henriksen, M; Söderhamn, N; Stallknecht, B; Ploug, T; Schjerling, P Effect of intermittent fasting and refeeding on insulin action in healthy men. J. Appl. Physiol. (1985)., 2005, 99(6), 2128-36.
[181]
Tinsley, G.M.; La Bounty, P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev., 2015, 73(10), 661-674.
[http://dx.doi.org/10.1093/nutrit/nuv041] [PMID: 26374764]
[182]
Longo, V.D.; Mattson, M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab., 2014, 19(2), 181-192.
[http://dx.doi.org/10.1016/j.cmet.2013.12.008] [PMID: 24440038]
[183]
Faris, M.; Jahrami, H.; Abdelrahim, D.; Bragazzi, N.; BaHammam, A. The effects of Ramadan intermittent fasting on liver function in healthy adults: A systematic review, meta-analysis, and meta-regression. Diabetes Res. Clin. Pract., 2021, 178, 108951.
[http://dx.doi.org/10.1016/j.diabres.2021.108951] [PMID: 34273453]
[184]
Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord., 2022, 22(1), 63.
[http://dx.doi.org/10.1186/s12902-022-00980-1] [PMID: 35287643]
[185]
Ebrahimi, S.; Gargari, B.P.; Aliasghari, F.; Asjodi, F.; Izadi, A. Ramadan fasting improves liver function and total cholesterol in patients with nonalcoholic fatty liver disease. Int. J. Vitam. Nutr. Res., 2020, 90(1-2), 95-102.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy