Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Ferroptosis Inducers as Promising Radiosensitizer Agents in Cancer Radiotherapy

Author(s): Fatemeh-Jalali Zefrei, Mohammd Shormij, Leila Dastranj, Maryam Alvandi, Zahra Shaghaghi, Soghra Farzipour* and Nasim Zarei-Polgardani

Volume 17, Issue 1, 2024

Published on: 16 November, 2023

Page: [14 - 29] Pages: 16

DOI: 10.2174/0118744710262369231110065230

Price: $65

conference banner
Abstract

Radiotherapy (RT) failure has historically been mostly attributed to radioresistance. Ferroptosis is a type of controlled cell death that depends on iron and is caused by polyunsaturated fatty acid peroxidative damage. Utilizing a ferroptosis inducer may be a successful tactic for preventing tumor growth and radiotherapy-induced cell death. A regulated form of cell death known as ferroptosis is caused by the peroxidation of phospholipids containing polyunsaturated fatty acids in an iron-dependent manner (PUFA-PLs). The ferroptosis pathway has a number of important regulators. By regulating the formation of PUFA-PLs, the important lipid metabolism enzyme ACSL4 promotes ferroptosis, whereas SLC7A11 and (glutathione peroxidase 4) GPX4 prevent ferroptosis. In addition to introducing the ferroptosis inducer chemicals that have recently been demonstrated to have a radiosensitizer effect, this review highlights the function and methods by which ferroptosis contributes to RT-induced cell death and tumor suppression in vitro and in vivo.

Keywords: Ferroptosis, radiotherapy, radiosensitizer, radioresistance, cancer, cell death.

Graphical Abstract
[1]
Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomedicine, 2021, 16, 1083-1102.
[http://dx.doi.org/10.2147/IJN.S290438] [PMID: 33603370]
[2]
Kim, W.; Lee, S.; Seo, D.; Kim, D.; Kim, K.; Kim, E.; Kang, J.; Seong, K.M.; Youn, H.; Youn, B. Cellular stress responses in radiotherapy. Cells, 2019, 8(9), 1105.
[http://dx.doi.org/10.3390/cells8091105] [PMID: 31540530]
[3]
Wang, D. Progress in the study of ferroptosis in cancer treatment: State-of-the-Art. Chem. Biol. Interact., 2023, 371, 110348.
[http://dx.doi.org/10.1016/j.cbi.2023.110348] [PMID: 36646403]
[4]
Franzone, P.; Fiorentino, A.; Barra, S.; Cante, D.; Masini, L.; Cazzulo, E.; Todisco, L.; Gabriele, P.; Garibaldi, E.; Merlotti, A.; Redda, M.G.R.; Alongi, F.; Corvò, R. Image-guided radiation therapy (IGRT): practical recommendations of Italian Association of Radiation Oncology (AIRO). Radiol. Med. (Torino), 2016, 121(12), 958-965.
[http://dx.doi.org/10.1007/s11547-016-0674-x] [PMID: 27601141]
[5]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Mirtavoos-mahyari, H.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin. Transl. Oncol., 2019, 21(3), 268-279.
[http://dx.doi.org/10.1007/s12094-018-1934-0] [PMID: 30136132]
[6]
Hosseinimehr, S.J.; Allahgholipour, S.Z.; Farzipour, S.; Ghasemi, A.; Asgarian-Omran, H. The radiosensitizing effect of olanzapine as an antipsychotic medication on glioblastoma cell. Curr. Radiopharm., 2022, 15(1), 50-55.
[http://dx.doi.org/10.2174/1874471014666210120100448] [PMID: 33494694]
[7]
Shaghaghi, Z.; Alvandi, M.; Farzipour, S.; Dehbanpour, M.R.; Nosrati, S. A review of effects of atorvastatin in cancer therapy. Med. Oncol., 2022, 40(1), 27.
[http://dx.doi.org/10.1007/s12032-022-01892-9] [PMID: 36459301]
[8]
Jiao, Y.; Cao, F.; Liu, H. Radiation-induced cell death and its mechanisms. Health Phys., 2022, 123(5), 376-386.
[http://dx.doi.org/10.1097/HP.0000000000001601] [PMID: 36069830]
[9]
Maier, P.; Hartmann, L.; Wenz, F.; Herskind, C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci., 2016, 17(1), 102.
[http://dx.doi.org/10.3390/ijms17010102] [PMID: 26784176]
[10]
Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular mechanisms of radiation-induced cancer cell death: A primer. Front. Cell Dev. Biol., 2020, 8, 41.
[http://dx.doi.org/10.3389/fcell.2020.00041] [PMID: 32117972]
[11]
Eriksson, D.; Stigbrand, T. Radiation-induced cell death mechanisms. Tumour Biol., 2010, 31(4), 363-372.
[http://dx.doi.org/10.1007/s13277-010-0042-8] [PMID: 20490962]
[12]
Krysko, D.V.; Vandenabeele, P. Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases. Apoptosis, 2010, 15(9), 995-997.
[http://dx.doi.org/10.1007/s10495-010-0524-6] [PMID: 20645005]
[13]
Kroemer, G.; Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol., 2008, 9(12), 1004-1010.
[http://dx.doi.org/10.1038/nrm2529] [PMID: 18971948]
[14]
Dou, Z.; Ghosh, K.; Vizioli, M.G.; Zhu, J.; Sen, P.; Wangensteen, K.J.; Simithy, J.; Lan, Y.; Lin, Y.; Zhou, Z.; Capell, B.C.; Xu, C.; Xu, M.; Kieckhaefer, J.E.; Jiang, T.; Shoshkes-Carmel, M.; Tanim, K.M.A.A.; Barber, G.N.; Seykora, J.T.; Millar, S.E.; Kaestner, K.H.; Garcia, B.A.; Adams, P.D.; Berger, S.L. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 2017, 550(7676), 402-406.
[http://dx.doi.org/10.1038/nature24050] [PMID: 28976970]
[15]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/10.1038/nrc.2017.53] [PMID: 28751651]
[16]
Lei, P.; Bai, T.; Sun, Y. Mechanisms of ferroptosis and relations with regulated cell death: A review. Front. Physiol., 2019, 10, 139.
[http://dx.doi.org/10.3389/fphys.2019.00139] [PMID: 30863316]
[17]
Farzipour, S.; Shaghaghi, Z.; Motieian, S.; Alvandi, M.; Yazdi, A.; Asadzadeh, B.; Abbasi, S. Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease. Mini Rev. Med. Chem., 2022, 22(17), 2271-2286.
[http://dx.doi.org/10.2174/1389557522666220218123404] [PMID: 35184711]
[18]
Liu, Y.; Duan, C.; Dai, R.; Zeng, Y. Ferroptosis-mediated crosstalk in the tumor microenvironment implicated in cancer progression and therapy. Front. Cell Dev. Biol., 2021, 9, 739392.
[http://dx.doi.org/10.3389/fcell.2021.739392] [PMID: 34796174]
[19]
Mackenzie, E.L.; Iwasaki, K.; Tsuji, Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid. Redox Signal., 2008, 10(6), 997-1030.
[http://dx.doi.org/10.1089/ars.2007.1893] [PMID: 18327971]
[20]
Shaghaghi, Z.; Farzipour, S.; Jalali, F.; Alvandi, M. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(1), 2-9.
[http://dx.doi.org/10.2174/1871525720666220713101736] [PMID: 35838214]
[21]
Zhang, Y.; Lu, X.; Tai, B.; Li, W.; Li, T. Ferroptosis and its multifaceted roles in cerebral stroke. Front. Cell. Neurosci., 2021, 15, 615372.
[http://dx.doi.org/10.3389/fncel.2021.615372] [PMID: 34149358]
[22]
Maiorino, M.; Conrad, M.; Ursini, F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid. Redox Signal., 2018, 29(1), 61-74.
[http://dx.doi.org/10.1089/ars.2017.7115] [PMID: 28462584]
[23]
Singh, N.K.; Rao, G.N. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog. Lipid Res., 2019, 73, 28-45.
[http://dx.doi.org/10.1016/j.plipres.2018.11.001] [PMID: 30472260]
[24]
Dai, C.; Chen, X.; Li, J.; Comish, P.; Kang, R.; Tang, D. Transcription factors in ferroptotic cell death. Cancer Gene Ther., 2020, 27(9), 645-656.
[http://dx.doi.org/10.1038/s41417-020-0170-2] [PMID: 32123318]
[25]
Sun, X.; Ou, Z.; Chen, R.; Niu, X.; Chen, D.; Kang, R.; Tang, D. Activation of the p62‐Keap1‐NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology, 2016, 63(1), 173-184.
[http://dx.doi.org/10.1002/hep.28251] [PMID: 26403645]
[26]
Almanza, A.; Carlesso, A.; Chintha, C.; Creedican, S.; Doultsinos, D.; Leuzzi, B.; Luís, A.; McCarthy, N.; Montibeller, L.; More, S.; Papaioannou, A.; Püschel, F.; Sassano, M.L.; Skoko, J.; Agostinis, P.; de Belleroche, J.; Eriksson, L.A.; Fulda, S.; Gorman, A.M.; Healy, S.; Kozlov, A.; Muñoz-Pinedo, C.; Rehm, M.; Chevet, E.; Samali, A. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J., 2019, 286(2), 241-278.
[http://dx.doi.org/10.1111/febs.14608] [PMID: 30027602]
[27]
Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; Stockwell, B.R. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife, 2014, 3, e02523.
[http://dx.doi.org/10.7554/eLife.02523] [PMID: 24844246]
[28]
De Andrade, J.P.; Park, J.M.; Gu, V.W.; Woodfield, G.W.; Kulak, M.V.; Lorenzen, A.W.; Wu, V.T.; Van Dorin, S.E.; Spanheimer, P.M.; Weigel, R.J. EGFR is regulated by TFAP2C in luminal breast cancer and is a target for vandetanib. Mol. Cancer Ther., 2016, 15(3), 503-511.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0548-T] [PMID: 26832794]
[29]
Kulak, M.V.; Cyr, A.R.; Woodfield, G.W.; Bogachek, M.; Spanheimer, P.M.; Li, T.; Price, D.H.; Domann, F.E.; Weigel, R.J. Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer. Oncogene, 2013, 32(34), 4043-4051.
[http://dx.doi.org/10.1038/onc.2012.400] [PMID: 22964634]
[30]
Liu, J.; Yang, M.; Kang, R.; Klionsky, D.J.; Tang, D. Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy, 2019, 15(11), 2033-2035.
[http://dx.doi.org/10.1080/15548627.2019.1659623] [PMID: 31441366]
[31]
Chen, X.; Comish, P.B.; Tang, D.; Kang, R. Characteristics and biomarkers of ferroptosis. Front. Cell Dev. Biol., 2021, 9, 637162.
[http://dx.doi.org/10.3389/fcell.2021.637162] [PMID: 33553189]
[32]
Lu, M.; Zhou, Y.; Sun, L.; Shafi, S.; Ahmad, N.; Sun, M.; Dong, J. The molecular mechanisms of ferroptosis and its role in glioma progression and treatment. Front. Oncol., 2022, 12, 917537.
[http://dx.doi.org/10.3389/fonc.2022.917537] [PMID: 36091118]
[33]
Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[34]
Yu, H.; Yang, C.; Jian, L.; Guo, S.; Chen, R.; Li, K.; Qu, F.; Tao, K.; Fu, Y.; Luo, F.; Liu, S. Sulfasalazine induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol. Rep., 2019, 42(2), 826-838.
[http://dx.doi.org/10.3892/or.2019.7189] [PMID: 31173262]
[35]
Yang, J.; Zhou, Y.; Xie, S.; Wang, J.; Li, Z.; Chen, L.; Mao, M.; Chen, C.; Huang, A.; Chen, Y.; Zhang, X.; Khan, N.U.H.; Wang, L.; Zhou, J. Metformin induces Ferroptosis by inhibiting UFMylation of SLC7A11 in breast cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 206.
[http://dx.doi.org/10.1186/s13046-021-02012-7] [PMID: 34162423]
[36]
Brown, C.W.; Amante, J.J.; Chhoy, P.; Elaimy, A.L.; Liu, H.; Zhu, L.J.; Baer, C.E.; Dixon, S.J.; Mercurio, A.M. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell, 2019, 51(5), 575-586.e4.
[http://dx.doi.org/10.1016/j.devcel.2019.10.007] [PMID: 31735663]
[37]
Li, Y.; Xia, J.; Shao, F.; Zhou, Y.; Yu, J.; Wu, H.; Du, J.; Ren, X. Sorafenib induces mitochondrial dysfunction and exhibits synergistic effect with cysteine depletion by promoting HCC cells ferroptosis. Biochem. Biophys. Res. Commun., 2021, 534, 877-884.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.083] [PMID: 33162029]
[38]
Louandre, C.; Ezzoukhry, Z.; Godin, C.; Barbare, J.C.; Mazière, J.C.; Chauffert, B.; Galmiche, A. Iron‐dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer, 2013, 133(7), 1732-1742.
[http://dx.doi.org/10.1002/ijc.28159] [PMID: 23505071]
[39]
Louandre, C.; Marcq, I.; Bouhlal, H.; Lachaier, E.; Godin, C.; Saidak, Z.; François, C.; Chatelain, D.; Debuysscher, V.; Barbare, J.C.; Chauffert, B.; Galmiche, A. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett., 2015, 356(2)(2 Pt B), 971-977.
[http://dx.doi.org/10.1016/j.canlet.2014.11.014] [PMID: 25444922]
[40]
Wang, Q.; Guo, Y.; Wang, W.; Liu, B.; Yang, G.; Xu, Z.; Li, J.; Liu, Z. RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp. Cell Res., 2021, 399(1), 112453.
[http://dx.doi.org/10.1016/j.yexcr.2020.112453] [PMID: 33358859]
[41]
Yuan, H.; Li, X.; Zhang, X.; Kang, R.; Tang, D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem. Biophys. Res. Commun., 2016, 478(2), 838-844.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.034] [PMID: 27510639]
[42]
Wang, C.; Shi, M.; Ji, J.; Cai, Q.; Zhao, Q.; Jiang, J. liu, J.; Zhang, H.; Zhu, Z.; Zhang, J. Stearoyl-CoA desaturase 1 (SCD1) facilitates the growth and anti-ferroptosis of gastric cancer cells and predicts poor prognosis of gastric cancer. Aging (Albany NY), 2020, 12(15), 15374-15391.
[http://dx.doi.org/10.18632/aging.103598] [PMID: 32726752]
[43]
Cai, S.; Fu, S.; Zhang, W.; Yuan, X.; Cheng, Y.; Fang, J. SIRT6 silencing overcomes resistance to sorafenib by promoting ferroptosis in gastric cancer. Biochem. Biophys. Res. Commun., 2021, 577, 158-164.
[http://dx.doi.org/10.1016/j.bbrc.2021.08.080] [PMID: 34530350]
[44]
Zhao, L.; Peng, Y.; He, S.; Li, R.; Wang, Z.; Huang, J.; Lei, X.; Li, G.; Ma, Q. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer, 2021, 24(3), 642-654.
[http://dx.doi.org/10.1007/s10120-021-01159-8] [PMID: 33544270]
[45]
Kuang, Y.; Wang, Q. Iron and lung cancer. Cancer Lett., 2019, 464, 56-61.
[http://dx.doi.org/10.1016/j.canlet.2019.08.007] [PMID: 31437477]
[46]
Tang, Z.; Jiang, W.; Mao, M.; Zhao, J.; Chen, J.; Cheng, N. Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin. Transl. Med., 2021, 11(4), e390.
[http://dx.doi.org/10.1002/ctm2.390] [PMID: 33931967]
[47]
Alvarez, S.W.; Sviderskiy, V.O.; Terzi, E.M.; Papagiannakopoulos, T.; Moreira, A.L.; Adams, S.; Sabatini, D.M.; Birsoy, K.; Possemato, R. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 2017, 551(7682), 639-643.
[http://dx.doi.org/10.1038/nature24637] [PMID: 29168506]
[48]
Kremer, D.M.; Nelson, B.S.; Lin, L.; Yarosz, E.L.; Halbrook, C.J.; Kerk, S.A.; Sajjakulnukit, P.; Myers, A.; Thurston, G.; Hou, S.W.; Carpenter, E.S.; Andren, A.C.; Nwosu, Z.C.; Cusmano, N.; Wisner, S.; Mbah, N.E.; Shan, M.; Das, N.K.; Magnuson, B.; Little, A.C.; Savani, M.R.; Ramos, J.; Gao, T.; Sastra, S.A.; Palermo, C.F.; Badgley, M.A.; Zhang, L.; Asara, J.M.; McBrayer, S.K.; di Magliano, M.P.; Crawford, H.C.; Shah, Y.M.; Olive, K.P.; Lyssiotis, C.A. GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis. Nat. Commun., 2021, 12(1), 4860.
[http://dx.doi.org/10.1038/s41467-021-24859-2] [PMID: 34381026]
[49]
Badgley, M.A.; Kremer, D.M.; Maurer, H.C.; DelGiorno, K.E.; Lee, H.J.; Purohit, V.; Sagalovskiy, I.R.; Ma, A.; Kapilian, J.; Firl, C.E.M.; Decker, A.R.; Sastra, S.A.; Palermo, C.F.; Andrade, L.R.; Sajjakulnukit, P.; Zhang, L.; Tolstyka, Z.P.; Hirschhorn, T.; Lamb, C.; Liu, T.; Gu, W.; Seeley, E.S.; Stone, E.; Georgiou, G.; Manor, U.; Iuga, A.; Wahl, G.M.; Stockwell, B.R.; Lyssiotis, C.A.; Olive, K.P. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368(6486), 85-89.
[http://dx.doi.org/10.1126/science.aaw9872] [PMID: 32241947]
[50]
Dai, E.; Han, L.; Liu, J.; Xie, Y.; Zeh, H.J.; Kang, R.; Bai, L.; Tang, D. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat. Commun., 2020, 11(1), 6339.
[http://dx.doi.org/10.1038/s41467-020-20154-8] [PMID: 33311482]
[51]
Ghoochani, A.; Hsu, E.C.; Aslan, M.; Rice, M.A.; Nguyen, H.M.; Brooks, J.D.; Corey, E.; Paulmurugan, R.; Stoyanova, T. Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer. Cancer Res., 2021, 81(6), 1583-1594.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3477] [PMID: 33483372]
[52]
Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem., 2019, 88, 102925.
[http://dx.doi.org/10.1016/j.bioorg.2019.102925] [PMID: 31003078]
[53]
Hao, J.; Zhang, W.; Huang, Z. Bupivacaine modulates the apoptosis and ferroptosis in bladder cancer via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Bioengineered, 2022, 13(3), 6794-6806.
[http://dx.doi.org/10.1080/21655979.2022.2036909] [PMID: 35246010]
[54]
Sun, D.; Li, Y.C.; Zhang, X.Y. Lidocaine promoted ferroptosis by targeting mir-382-5p/slc7a11 axis in ovarian and breast cancer. Front. Pharmacol., 2021, 12, 681223.
[http://dx.doi.org/10.3389/fphar.2021.681223] [PMID: 34122108]
[55]
He, G.N.; Bao, N.R.; Wang, S.; Xi, M.; Zhang, T.H.; Chen, F.S. Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des. Devel. Ther., 2021, 15, 3965-3978.
[http://dx.doi.org/10.2147/DDDT.S332847] [PMID: 34566408]
[56]
Wang, J.; Liu, Z.; Wang, Z.; Wang, S.; Chen, Z.; Li, Z.; Zhang, M.; Zou, J.; Dong, B.; Gao, J.; Shen, L. Targeting c-Myc: JQ1 as a promising option for c-Myc-amplified esophageal squamous cell carcinoma. Cancer Lett., 2018, 419, 64-74.
[http://dx.doi.org/10.1016/j.canlet.2018.01.051] [PMID: 29366803]
[57]
Yang, L.; Chen, X.; Yang, Q.; Chen, J.; Huang, Q.; Yao, L.; Yan, D.; Wu, J.; Zhang, P.; Tang, D.; Zhong, N.; Liu, J. Broad spectrum deubiquitinase inhibition induces both apoptosis and ferroptosis in cancer cells. Front. Oncol., 2020, 10, 949.
[http://dx.doi.org/10.3389/fonc.2020.00949] [PMID: 32596160]
[58]
Li, J.; Lama, R.; Galster, S.L.; Inigo, J.R.; Wu, J.; Chandra, D.; Chemler, S.R.; Wang, X. Small-Molecule MMRi62 induces ferroptosis and inhibits metastasis in pancreatic cancer via degradation of ferritin heavy chain and mutant p53. Mol. Cancer Ther., 2022, 21(4), 535-545.
[http://dx.doi.org/10.1158/1535-7163.MCT-21-0728] [PMID: 35131878]
[59]
Chen, Z.; Wang, W.; Abdul Razak, S.R.; Han, T.; Ahmad, N.H.; Li, X. Ferroptosis as a potential target for cancer therapy. Cell Death Dis., 2023, 14(7), 460.
[http://dx.doi.org/10.1038/s41419-023-05930-w] [PMID: 37488128]
[60]
Zhang, W.; Jiang, B.; Liu, Y.; Xu, L.; Wan, M. Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radic. Biol. Med., 2022, 180, 75-84.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.01.009] [PMID: 35038550]
[61]
Tsai, Y.; Xia, C.; Sun, Z. The inhibitory effect of 6-gingerol on ubiquitin-specific peptidase 14 enhances autophagy-dependent ferroptosis and anti-tumor in vivo and in vitro. Front. Pharmacol., 2020, 11, 598555.
[http://dx.doi.org/10.3389/fphar.2020.598555] [PMID: 33281606]
[62]
Williams, M.V.; James, N.D.; Summers, E.T.; Barrett, A.; Ash, D.V. National survey of radiotherapy fractionation practice in 2003. Clin. Oncol. (R. Coll. Radiol.), 2006, 18(1), 3-14.
[http://dx.doi.org/10.1016/j.clon.2005.10.002] [PMID: 16477914]
[63]
Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197.
[http://dx.doi.org/10.1002/adma.201904197] [PMID: 31595562]
[64]
Lang, X.; Green, M.D.; Wang, W.; Yu, J.; Choi, J.E.; Jiang, L.; Liao, P.; Zhou, J.; Zhang, Q.; Dow, A.; Saripalli, A.L.; Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Stone, E.M.; Georgiou, G.; Cieslik, M.; Wahl, D.R.; Morgan, M.A.; Chinnaiyan, A.M.; Lawrence, T.S.; Zou, W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov., 2019, 9(12), 1673-1685.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0338] [PMID: 31554642]
[65]
Leach, J.K.; Van Tuyle, G.; Lin, P.S.; Schmidt-Ullrich, R.; Mikkelsen, R.B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res., 2001, 61(10), 3894-3901.
[PMID: 11358802]
[66]
Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162.
[http://dx.doi.org/10.1038/s41422-019-0263-3] [PMID: 31949285]
[67]
Ou, Y.; Wang, S.J.; Li, D.; Chu, B.; Gu, W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci. USA, 2016, 113(44), E6806-E6812.
[http://dx.doi.org/10.1073/pnas.1607152113] [PMID: 27698118]
[68]
Xie, Y.; Zhu, S.; Song, X.; Sun, X.; Fan, Y.; Liu, J.; Zhong, M.; Yuan, H.; Zhang, L.; Billiar, T.R.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Kroemer, G.; Tang, D. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep., 2017, 20(7), 1692-1704.
[http://dx.doi.org/10.1016/j.celrep.2017.07.055] [PMID: 28813679]
[69]
Li, C.; Dong, X.; Du, W.; Shi, X.; Chen, K.; Zhang, W.; Gao, M. LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transduct. Target. Ther., 2020, 5(1), 187.
[http://dx.doi.org/10.1038/s41392-020-00297-2] [PMID: 32883948]
[70]
Song, X.; Zhu, S.; Chen, P.; Hou, W.; Wen, Q.; Liu, J.; Xie, Y.; Liu, J.; Klionsky, D.J.; Kroemer, G.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. AMPK-Mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc– activity. Curr. Biol., 2018, 28(15), 2388-2399.e5.
[http://dx.doi.org/10.1016/j.cub.2018.05.094] [PMID: 30057310]
[71]
Zhang, J.; Liu, Y.; Li, Q.; Xu, A.; Hu, Y.; Sun, C. Ferroptosis in hematological malignancies and its potential network with abnormal tumor metabolism. Biomed. Pharmacother., 2022, 148, 112747.
[http://dx.doi.org/10.1016/j.biopha.2022.112747] [PMID: 35240523]
[72]
Lei, G.; Mao, C.; Yan, Y.; Zhuang, L.; Gan, B. Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell, 2021, 12(11), 836-857.
[http://dx.doi.org/10.1007/s13238-021-00841-y] [PMID: 33891303]
[73]
Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; McCormick, F.; McManus, M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679), 247-250.
[http://dx.doi.org/10.1038/nature24297] [PMID: 29088702]
[74]
Ye, L.F.; Chaudhary, K.R.; Zandkarimi, F.; Harken, A.D.; Kinslow, C.J.; Upadhyayula, P.S.; Dovas, A.; Higgins, D.M.; Tan, H.; Zhang, Y.; Buonanno, M.; Wang, T.J.C.; Hei, T.K.; Bruce, J.N.; Canoll, P.D.; Cheng, S.K.; Stockwell, B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol., 2020, 15(2), 469-484.
[http://dx.doi.org/10.1021/acschembio.9b00939] [PMID: 31899616]
[75]
Yi, J.; Zhu, J.; Wu, J.; Thompson, C.B.; Jiang, X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc. Natl. Acad. Sci. USA, 2020, 117(49), 31189-31197.
[http://dx.doi.org/10.1073/pnas.2017152117] [PMID: 33229547]
[76]
Liu, T.; Liu, W.; Zhang, M.; Yu, W.; Gao, F.; Li, C.; Wang, S.B.; Feng, J.; Zhang, X.Z. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano, 2018, 12(12), 12181-12192.
[http://dx.doi.org/10.1021/acsnano.8b05860] [PMID: 30458111]
[77]
Kim, S.E.; Zhang, L.; Ma, K.; Riegman, M.; Chen, F.; Ingold, I.; Conrad, M.; Turker, M.Z.; Gao, M.; Jiang, X.; Monette, S.; Pauliah, M.; Gonen, M.; Zanzonico, P.; Quinn, T.; Wiesner, U.; Bradbury, M.S.; Overholtzer, M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol., 2016, 11(11), 977-985.
[http://dx.doi.org/10.1038/nnano.2016.164] [PMID: 27668796]
[78]
Sun, H.; Cai, H.; Xu, C.; Zhai, H.; Lux, F.; Xie, Y.; Feng, L.; Du, L.; Liu, Y.; Sun, X.; Wang, Q.; Song, H.; He, N.; Zhang, M.; Ji, K.; Wang, J.; Gu, Y.; Leduc, G.; Doussineau, T.; Wang, Y.; Liu, Q.; Tillement, O. AGuIX nanoparticles enhance ionizing radiation-induced ferroptosis on tumor cells by targeting the NRF2-GPX4 signaling pathway. J. Nanobiotechnology, 2022, 20(1), 449.
[http://dx.doi.org/10.1186/s12951-022-01654-9] [PMID: 36242003]
[79]
Zheng, S.; Hu, H.; Hou, M.; Zhu, K.; Wu, Z.; Qi, L.; Xia, H.; Liu, G.; Ren, Y.; Xu, Y.; Yan, C.; Zhao, B. Proton pump inhibitor-enhanced nanocatalytic ferroptosis induction for stimuli-responsive dual-modal molecular imaging guided cancer radiosensitization. Acta Biomater., 2023, 162, 72-84.
[http://dx.doi.org/10.1016/j.actbio.2023.03.011] [PMID: 36931419]
[80]
Salehiabar, M.; Ghaffarlou, M.; Mohammadi, A.; Mousazadeh, N.; Rahimi, H.; Abhari, F.; Rashidzadeh, H.; Nasehi, L.; Rezaeejam, H.; Barsbay, M.; Ertas, Y.N.; Nosrati, H.; Kavetskyy, T.; Danafar, H. Targeted CuFe2O4 hybrid nanoradiosensitizers for synchronous chemoradiotherapy. J. Control. Release, 2023, 353, 850-863.
[http://dx.doi.org/10.1016/j.jconrel.2022.12.004] [PMID: 36493951]
[81]
Huo, M.; Wang, L.; Wang, Y.; Chen, Y.; Shi, J. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano, 2019, 13(2), 2643-2653.
[PMID: 30753056]
[82]
Bao, W.; Liu, X.; Lv, Y.; Lu, G.H.; Li, F.; Zhang, F.; Liu, B.; Li, D.; Wei, W.; Li, Y. Nanolongan with multiple on-demand conversions for ferroptosis–apoptosis combined anticancer therapy. ACS Nano, 2019, 13(1), 260-273.
[http://dx.doi.org/10.1021/acsnano.8b05602] [PMID: 30616348]
[83]
Fang, Y.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Discovery and optimization of 2-(trifluoromethyl)benzimidazole derivatives as novel ferroptosis inducers in vitro and in vivo. Eur. J. Med. Chem., 2023, 245(Pt 1), 114905.
[http://dx.doi.org/10.1016/j.ejmech.2022.114905] [PMID: 36410168]
[84]
Wang, Y.; Feng, J.; Zhao, L.; Zhao, M.; Wei, X.; Geng, Y.; Yuan, H.; Hou, C.; Zhang, H.; Wang, G.; Yang, G.; Zhang, X. Aspirin triggers ferroptosis in hepatocellular carcinoma cells through restricting NF-κB p65-activated SLC7A11 transcription. Acta Pharmacol. Sin., 2023, 44(8), 1712-1724.
[http://dx.doi.org/10.1038/s41401-023-01062-1]
[85]
Liang, Y.; Peng, C.; Su, N.; Li, Q.; Chen, S.; Wu, D.; Wu, B.; Gao, Y.; Xu, Z.; Dan, Q.; Zheng, S.; Zhao, B.; Li, Y. Tumor microenvironments self-activated cascade catalytic nanoscale metal organic frameworks as ferroptosis inducer for radiosensitization. Chem. Eng. J., 2022, 437, 135309.
[http://dx.doi.org/10.1016/j.cej.2022.135309]
[86]
Wu, Q.; Hou, M.; Zhang, P.; Jiang, Y.; Liu, M.; Xiong, L.; Hai, W.; Zhang, M.; Li, X.; Li, B.; Zhang, C. Self-cascade nanohybrids boost cell ferroptosis stress for tumor radiosensitization therapy. Appl. Mater. Today, 2022, 29, 101558.
[http://dx.doi.org/10.1016/j.apmt.2022.101558]
[87]
Li, X.; Wang, Q.; Yu, S.; Zhang, M.; Liu, X.; Deng, G.; Liu, Y.; Wu, S. Multifunctional MnO2-based nanoplatform-induced ferroptosis and apoptosis for synergetic chemoradiotherapy. Nanomedicine (Lond.), 2021, 16(26), 2343-2361.
[http://dx.doi.org/10.2217/nnm-2021-0286] [PMID: 34523352]
[88]
Yang, M.; Wu, X.; Hu, J.; Wang, Y.; Wang, Y.; Zhang, L.; Huang, W.; Wang, X.; Li, N.; Liao, L.; Chen, M.; Xiao, N.; Dai, Y.; Liang, H.; Huang, W.; Yuan, L.; Pan, H.; Li, L.; Chen, L.; Liu, L.; Liang, L.; Guan, J. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J. Hepatol., 2022, 76(5), 1138-1150.
[http://dx.doi.org/10.1016/j.jhep.2022.01.009] [PMID: 35101526]
[89]
Zhao, J.; Chen, Y.; Xiong, T. Clustered cobalt nanodots initiate ferroptosis by upregulating heme oxygenase 1 for radiotherapy sensitization. Small, 2023, 19(10), e2206415.
[http://dx.doi.org/10.1002/smll.202206415]
[90]
Shin, D.; Kim, E.H.; Lee, J.; Roh, J.L. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic. Biol. Med., 2018, 129, 454-462.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.426] [PMID: 30339884]
[91]
Battaglia, A.M.; Chirillo, R.; Aversa, I.; Sacco, A.; Costanzo, F.; Biamonte, F. Ferroptosis and cancer: Mitochondria meet the “iron maiden” cell death. Cells, 2020, 9(6), 1505.
[http://dx.doi.org/10.3390/cells9061505] [PMID: 32575749]
[92]
Beatty, A.; Singh, T.; Tyurina, Y.Y.; Tyurin, V.A.; Samovich, S.; Nicolas, E.; Maslar, K.; Zhou, Y.; Cai, K.Q.; Tan, Y.; Doll, S.; Conrad, M.; Subramanian, A. Bayır, H.; Kagan, V.E.; Rennefahrt, U.; Peterson, J.R. Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat. Commun., 2021, 12(1), 2244.
[http://dx.doi.org/10.1038/s41467-021-22471-y] [PMID: 33854057]
[93]
Zhang, Y.; Tan, Y.; Liu, S. Implications of Withaferin A for the metastatic potential and drug resistance in hepatocellular carcinoma cells via Nrf2-mediated EMT and ferroptosis. Toxicol. Mech. Methods, 2023, 33(1), 47-55.
[PMID: 35592903]
[94]
Yang, Z.; Huang, S.; Liu, Y.; Chang, X.; Liang, Y.; Li, X.; Xu, Z.; Wang, S.; Lu, Y.; Liu, Y.; Liu, W. Biotin-targeted Au(I) radiosensitizer for cancer synergistic therapy by intervening with redox homeostasis and inducing ferroptosis. J. Med. Chem., 2022, 65(12), 8401-8415.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00300] [PMID: 35687871]
[95]
Chen, Y.; Li, L.; Lan, J.; Cui, Y.; Rao, X.; Zhao, J.; Xing, T.; Ju, G.; Song, G.; Lou, J.; Liang, J. CRISPR screens uncover protective effect of PSTK as a regulator of chemotherapy-induced ferroptosis in hepatocellular carcinoma. Mol. Cancer, 2022, 21(1), 11.
[http://dx.doi.org/10.1186/s12943-021-01466-9] [PMID: 34983546]
[96]
Zhai, F.; Liang, Q.; Wu, Y.; Liu, J.; Liu, J. Red ginseng polysaccharide exhibits anticancer activity through GPX4 downregulation-induced ferroptosis. Pharm. Biol., 2022, 60(1), 909-914.
[http://dx.doi.org/10.1080/13880209.2022.2066139] [PMID: 35575436]
[97]
Zhang, J.; Gao, M.; Niu, Y.; Sun, J. From DNMT1 degrader to ferroptosis promoter: Drug repositioning of 6-Thioguanine as a ferroptosis inducer in gastric cancer. Biochem. Biophys. Res. Commun., 2022, 603, 75-81.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.026] [PMID: 35278883]
[98]
Zhang, W.; Gong, M.; Zhang, W.; Mo, J.; Zhang, S.; Zhu, Z.; Wang, X.; Zhang, B.; Qian, W.; Wu, Z.; Ma, Q.; Wang, Z. Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death Dis., 2022, 13(7), 630.
[http://dx.doi.org/10.1038/s41419-022-05082-3] [PMID: 35859150]
[99]
Yoshioka, H.; Kawamura, T.; Muroi, M.; Kondoh, Y.; Honda, K.; Kawatani, M.; Aono, H.; Waldmann, H.; Watanabe, N.; Osada, H. Identification of a small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1 (FSP1). ACS Chem. Biol., 2022, 17(2), 483-491.
[http://dx.doi.org/10.1021/acschembio.2c00028] [PMID: 35128925]
[100]
Zhou, J.; Pang, Y.; Zhang, W.; OuYang, F.; Lin, H.; Li, X.; Yan, J. Discovery of a novel stilbene derivative as a microtubule targeting agent capable of inducing cell ferroptosis. J. Med. Chem., 2022, 65(6), 4687-4708.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01775] [PMID: 35282680]
[101]
Zhang, X.; Guo, Y.; Li, H.; Han, L. FIN56, a novel ferroptosis inducer, triggers lysosomal membrane permeabilization in a TFEB-dependent manner in glioblastoma. J. Cancer, 2021, 12(22), 6610-6619.
[http://dx.doi.org/10.7150/jca.58500] [PMID: 34659551]
[102]
Yao, X.; Xie, R.; Cao, Y.; Tang, J.; Men, Y.; Peng, H.; Yang, W. Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J. Nanobiotechnology, 2021, 19(1), 311.
[http://dx.doi.org/10.1186/s12951-021-01058-1] [PMID: 34627266]
[103]
Liu, S.; Zhang, H.L.; Li, J.; Ye, Z.P.; Du, T.; Li, L.C.; Guo, Y.Q.; Yang, D.; Li, Z.L.; Cao, J.H.; Hu, B.X.; Chen, Y.H.; Feng, G.K.; Li, Z.M.; Deng, R.; Huang, J.J.; Zhu, X.F. Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis. Redox Biol., 2023, 62, 102677.
[http://dx.doi.org/10.1016/j.redox.2023.102677] [PMID: 36989572]
[104]
Gaschler, M.M.; Andia, A.A.; Liu, H.; Csuka, J.M.; Hurlocker, B.; Vaiana, C.A.; Heindel, D.W.; Zuckerman, D.S.; Bos, P.H.; Reznik, E.; Ye, L.F.; Tyurina, Y.Y.; Lin, A.J.; Shchepinov, M.S.; Chan, A.Y.; Peguero-Pereira, E.; Fomich, M.A.; Daniels, J.D.; Bekish, A.V.; Shmanai, V.V.; Kagan, V.E.; Mahal, L.K.; Woerpel, K.A.; Stockwell, B.R. FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat. Chem. Biol., 2018, 14(5), 507-515.
[http://dx.doi.org/10.1038/s41589-018-0031-6] [PMID: 29610484]
[105]
Wu, W.; Geng, Z.; Bai, H.; Liu, T.; Zhang, B. Ammonium ferric citrate induced ferroptosis in non-small-cell lung carcinoma through the inhibition of GPX4-GSS/GSR-GGT axis activity. Int. J. Med. Sci., 2021, 18(8), 1899-1909.
[http://dx.doi.org/10.7150/ijms.54860] [PMID: 33746607]
[106]
Liu, M.; Kong, X.Y.; Yao, Y.; Wang, X.A.; Yang, W.; Wu, H.; Li, S.; Ding, J.W.; Yang, J. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review. Ann. Transl. Med., 2022, 10(6), 368.
[http://dx.doi.org/10.21037/atm-21-6942] [PMID: 35434035]
[107]
Hu, Y.; Guo, N.; Yang, T.; Yan, J.; Wang, W.; Li, X. The potential mechanisms by which artemisinin and its derivatives induce ferroptosis in the treatment of cancer. Oxid. Med. Cell. Longev., 2022, 2022, 1-12.
[http://dx.doi.org/10.1155/2022/1458143] [PMID: 35028002]
[108]
Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; Ryo, A.; Ginestier, C.; Birnbaum, D.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem., 2017, 9(10), 1025-1033.
[http://dx.doi.org/10.1038/nchem.2778] [PMID: 28937680]
[109]
Furuta, T.; Shi, L.; Toyokuni, S. Non‐thermal plasma as a simple ferroptosis inducer in cancer cells: A possible role of ferritin. Pathol. Int., 2018, 68(7), 442-443.
[http://dx.doi.org/10.1111/pin.12665] [PMID: 29624784]
[110]
Okazaki, Y.; Ito, N.; Tanaka, H.; Hori, M.; Toyokuni, S. Non-thermal plasma elicits ferrous chloride-catalyzed DMPO-OH. Free Radic. Res., 2022, 56(9-10), 595-606.
[http://dx.doi.org/10.1080/10715762.2022.2157272] [PMID: 36519277]
[111]
Almahi, W.A.; Yu, K.N.; Mohammed, F.; Kong, P.; Han, W. Hemin enhances radiosensitivity of lung cancer cells through ferroptosis. Exp. Cell Res., 2022, 410(1), 112946.
[http://dx.doi.org/10.1016/j.yexcr.2021.112946] [PMID: 34826424]
[112]
Xu, T.; Ma, Y.; Yuan, Q.; Hu, H.; Hu, X.; Qian, Z.; Rolle, J.K.; Gu, Y.; Li, S. Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano, 2020, 14(3), 3414-3425.
[http://dx.doi.org/10.1021/acsnano.9b09426] [PMID: 32155051]
[113]
Qiu, C.; Zhang, X.; Huang, B.; Wang, S.; Zhou, W.; Li, C.; Li, X.; Wang, J.; Yang, N. Disulfiram, a ferroptosis inducer, triggers lysosomal membrane permeabilization by up-regulating ROS in glioblastoma. OncoTargets Ther., 2020, 13, 10631-10640.
[http://dx.doi.org/10.2147/OTT.S272312] [PMID: 33116640]
[114]
Zhu, J.F.; Liu, Y.; Li, W.T.; Li, M.H.; Zhen, C.H.; Sun, P.W.; Chen, J.X.; Wu, W.H.; Zeng, W. Ibrutinib facilitates the sensitivity of colorectal cancer cells to ferroptosis through BTK/NRF2 pathway. Cell Death Dis., 2023, 14(2), 151.
[http://dx.doi.org/10.1038/s41419-023-05664-9] [PMID: 36823108]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy