Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Network Pharmacology and Experimental Validation of Qingwen Baidu Decoction Therapeutic Potential in COVID-19-related Lung Injury

Author(s): Ju Yang, Zhao Zhang, Honghong Liu, Jiawei Wang, Shuying Xie, Pengyan Li, Jianxia Wen, Shizhang Wei, Ruisheng Li, Xiao Ma* and Yanling Zhao*

Volume 27, Issue 9, 2024

Published on: 10 November, 2023

Page: [1286 - 1302] Pages: 17

DOI: 10.2174/0113862073236899230919062725

Abstract

Background and Purpose: Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury.

Methods: Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated.

Results: A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19.

Conclusion: QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.

Keywords: Qingwen Baidu. network pharmacology, molecular docking, decoction, COVID-19, acute lung injury, WHO.

Graphical Abstract
[1]
Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological associations of COVID-19. Lancet Neurol., 2020, 19(9), 767-783.
[http://dx.doi.org/10.1016/S1474-4422(20)30221-0] [PMID: 32622375]
[2]
Sayampanathan, A.A.; Heng, C.S.; Pin, P.H.; Pang, J.; Leong, T.Y.; Lee, V.J. Infectivity of asymptomatic versus symptomatic COVID-19. Lancet., 2021, 397(10269), 93-94.
[http://dx.doi.org/10.1016/S0140-6736(20)32651-9] [PMID: 33347812]
[3]
COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health, 2019.
[5]
Shuren, L.; Wenjing, Z.; Jianchao, L.; Yang, M.; Xiao, H.; Qianhui, Z. A comparative analysis of the treatment guidelines for novel coronavirus pneumonia issued by the NIH in the United States in 2021 and the treatment protocols for novel coronavirus pneumonia issued in China. Chinese. Fam. Med., 2021, 24(14), 1735-1744.
[6]
Shijing, Q.; Rainbow, W.; Ping, Z.; Zhongtian, Q. Progress of SARS-CoV-2 vaccine research. PLA Med. J., 2021, 46(07), 710-717.
[7]
Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; Dold, C.; Faust, S.N.; Finn, A.; Flaxman, A.L.; Hallis, B.; Heath, P.; Jenkin, D.; Lazarus, R.; Makinson, R.; Minassian, A.M.; Pollock, K.M.; Ramasamy, M.; Robinson, H.; Snape, M.; Tarrant, R.; Voysey, M.; Green, C.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J.; Aboagye, J.; Adams, K.; Ali, A.; Allen, E.; Allison, J.L.; Anslow, R.; Arbe-Barnes, E.H.; Babbage, G.; Baillie, K.; Baker, M.; Baker, N.; Baker, P.; Baleanu, I.; Ballaminut, J.; Barnes, E.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beckley, R.; Berrie, E.; Berry, L.; Beveridge, A.; Bewley, K.R.; Bijker, E.M.; Bingham, T.; Blackwell, L.; Blundell, C.L.; Bolam, E.; Boland, E.; Borthwick, N.; Bower, T.; Boyd, A.; Brenner, T.; Bright, P.D.; Brown-O’Sullivan, C.; Brunt, E.; Burbage, J.; Burge, S.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Carr, M.; Carroll, M.W.; Carter, V.; Cathie, K.; Challis, R.J.; Charlton, S.; Chelysheva, I.; Cho, J-S.; Cicconi, P.; Cifuentes, L.; Clark, H.; Clark, E.; Cole, T.; Colin-Jones, R.; Conlon, C.P.; Cook, A.; Coombes, N.S.; Cooper, R.; Cosgrove, C.A.; Coy, K.; Crocker, W.E.M.; Cunningham, C.J.; Damratoski, B.E.; Dando, L.; Datoo, M.S.; Davies, H.; De Graaf, H.; Demissie, T.; Di Maso, C.; Dietrich, I.; Dong, T.; Donnellan, F.R.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Drury, R.E.; Dunachie, S.J.; Edwards, N.J.; Edwards, F.D.L.; Edwards, C.J.; Elias, S.C.; Elmore, M.J.; Emary, K.R.W.; English, M.R.; Fagerbrink, S.; Felle, S.; Feng, S.; Field, S.; Fixmer, C.; Fletcher, C.; Ford, K.J.; Fowler, J.; Fox, P.; Francis, E.; Frater, J.; Furze, J.; Fuskova, M.; Galiza, E.; Gbesemete, D.; Gilbride, C.; Godwin, K.; Gorini, G.; Goulston, L.; Grabau, C.; Gracie, L.; Gray, Z.; Guthrie, L.B.; Hackett, M.; Halwe, S.; Hamilton, E.; Hamlyn, J.; Hanumunthadu, B.; Harding, I.; Harris, S.A.; Harris, A.; Harrison, D.; Harrison, C.; Hart, T.C.; Haskell, L.; Hawkins, S.; Head, I.; Henry, J.A.; Hill, J.; Hodgson, S.H.C.; Hou, M.M.; Howe, E.; Howell, N.; Hutlin, C.; Ikram, S.; Isitt, C.; Iveson, P.; Jackson, S.; Jackson, F.; James, S.W.; Jenkins, M.; Jones, E.; Jones, K.; Jones, C.E.; Jones, B.; Kailath, R.; Karampatsas, K.; Keen, J.; Kelly, S.; Kelly, D.; Kerr, D.; Kerridge, S.; Khan, L.; Khan, U.; Killen, A.; Kinch, J.; King, T.B.; King, L.; King, J.; Kingham-Page, L.; Klenerman, P.; Knapper, F.; Knight, J.C.; Knott, D.; Koleva, S.; Kupke, A.; Larkworthy, C.W.; Larwood, J.P.J.; Laskey, A.; Lawrie, A.M.; Lee, A.; Ngan Lee, K.Y.; Lees, E.A.; Legge, H.; Lelliott, A.; Lemm, N-M.; Lias, A.M.; Linder, A.; Lipworth, S.; Liu, X.; Liu, S.; Lopez Ramon, R.; Lwin, M.; Mabesa, F.; Madhavan, M.; Mallett, G.; Mansatta, K.; Marcal, I.; Marinou, S.; Marlow, E.; Marshall, J.L.; Martin, J.; McEwan, J.; McInroy, L.; Meddaugh, G.; Mentzer, A.J.; Mirtorabi, N.; Moore, M.; Moran, E.; Morey, E.; Morgan, V.; Morris, S.J.; Morrison, H.; Morshead, G.; Morter, R.; Mujadidi, Y.F.; Muller, J.; Munera-Huertas, T.; Munro, C.; Munro, A.; Murphy, S.; Munster, V.J.; Mweu, P.; Noé, A.; Nugent, F.L.; Nuthall, E.; O’Brien, K.; O’Connor, D.; Oguti, B.; Oliver, J.L.; Oliveira, C.; O’Reilly, P.J.; Osborn, M.; Osborne, P.; Owen, C.; Owens, D.; Owino, N.; Pacurar, M.; Parker, K.; Parracho, H.; Patrick-Smith, M.; Payne, V.; Pearce, J.; Peng, Y.; Peralta Alvarez, M.P.; Perring, J.; Pfafferott, K.; Pipini, D.; Plested, E.; Pluess-Hall, H.; Pollock, K.; Poulton, I.; Presland, L.; Provstgaard-Morys, S.; Pulido, D.; Radia, K.; Ramos Lopez, F.; Rand, J.; Ratcliffe, H.; Rawlinson, T.; Rhead, S.; Riddell, A.; Ritchie, A.J.; Roberts, H.; Robson, J.; Roche, S.; Rohde, C.; Rollier, C.S.; Romani, R.; Rudiansyah, I.; Saich, S.; Sajjad, S.; Salvador, S.; Sanchez Riera, L.; Sanders, H.; Sanders, K.; Sapaun, S.; Sayce, C.; Schofield, E.; Screaton, G.; Selby, B.; Semple, C.; Sharpe, H.R.; Shaik, I.; Shea, A.; Shelton, H.; Silk, S.; Silva-Reyes, L.; Skelly, D.T.; Smee, H.; Smith, C.C.; Smith, D.J.; Song, R.; Spencer, A.J.; Stafford, E.; Steele, A.; Stefanova, E.; Stockdale, L.; Szigeti, A.; Tahiri-Alaoui, A.; Tait, M.; Talbot, H.; Tanner, R.; Taylor, I.J.; Taylor, V.; Te Water Naude, R.; Thakur, N.; Themistocleous, Y.; Themistocleous, A.; Thomas, M.; Thomas, T.M.; Thompson, A.; Thomson-Hill, S.; Tomlins, J.; Tonks, S.; Towner, J.; Tran, N.; Tree, J.A.; Truby, A.; Turkentine, K.; Turner, C.; Turner, N.; Turner, S.; Tuthill, T.; Ulaszewska, M.; Varughese, R.; Van Doremalen, N.; Veighey, K.; Verheul, M.K.; Vichos, I.; Vitale, E.; Walker, L.; Watson, M.E.E.; Welham, B.; Wheat, J.; White, C.; White, R.; Worth, A.T.; Wright, D.; Wright, S.; Yao, X.L.; Yau, Y. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 2020, 396(10249), 467-478.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[8]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet., 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[9]
Rodríguez-Morales, A.J.; MacGregor, K.; Kanagarajah, S.; Patel, D.; Schlagenhauf, P. Going global – Travel and the 2019 novel coronavirus. Travel Med. Infect. Dis., 2020, 33, 101578.
[http://dx.doi.org/10.1016/j.tmaid.2020.101578] [PMID: 32044389]
[10]
Petrosillo, N.; Viceconte, G.; Ergonul, O.; Ippolito, G.; Petersen, E. COVID-19, SARS and MERS: Are they closely related? Clin. Microbiol. Infect., 2020, 26(6), 729-734.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[11]
Mohamadian, M.; Chiti, H.; Shoghli, A.; Biglari, S.; Parsamanesh, N.; Esmaeilzadeh, A. COVID‐19: Virology, biology and novel laboratory diagnosis. J. Gene Med., 2021, 23(2), e3303.
[http://dx.doi.org/10.1002/jgm.3303] [PMID: 33305456]
[12]
Chen, J.; Wenqing, W.; Chunyang, S.; Jianguo, F. Reflections on the prevention and treatment of novel coronavirus pneumonia (COVID-19) by Chinese medicine. Chin. Herb. Med., 2020, 51(05), 1106-1112.
[13]
Wenling, C.; Jin, Z. Give full play to the unique advantages of Chinese medicine in China under the new situation should accelerate the construction of Chinese and Western medicine and health system. People's For. Acad. Front., 2021, 2021(12), 64-83.
[14]
Ministry of Science and Technology: Chinese medicine involved in saving and treating more than 60,000 cases accounted for more than 85% of the cases;,
[15]
Yuntong, L.; Zhe, W.; Jing, L.; Guilin, Z.; Youhua, X. Research progress on the role of Chinese medicine in COVID-19 inflammatory injury. Sci. Bull., 2021, 66(26), 3377-3384.
[16]
Zhaoxiang, B. Improvement in the quality of clinical evidence of Chinese medicine against COVID-19. Sci. Bull., 2021, 66(26), 3372-3376.
[17]
Wu, L-T.; Ying, C.; Yiwen, L.; Yueqin, Y.; Qixin, L. Multi-dimensional analysis of qi-yin and qi-yang syndrome in COVID-19. Chin. J. Integr. Med., 2020, 29(27), 2965-2969.
[18]
Chen, M.L.; Shah, V.; Patnaik, R.; Adams, W.; Hussain, A.; Conner, D.; Mehta, M.; Malinowski, H.; Lazor, J.; Huang, S.M.; Hare, D.; Lesko, L.; Sporn, D.; Williams, R. Bioavailability and bioequivalence: An FDA regulatory overview. Pharm. Res., 2001, 18(12), 1645-1650.
[http://dx.doi.org/10.1023/A:1013319408893] [PMID: 11785681]
[19]
Tao, W.; Xu, X.; Wang, X.; Li, B.; Wang, Y.; Li, Y.; Yang, L. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J. Ethnopharmacol., 2013, 145(1), 1-10.
[http://dx.doi.org/10.1016/j.jep.2012.09.051] [PMID: 23142198]
[20]
Fengrong, Z.; Na, Z.; Zhiyong, L.; Shihuan, T. Discussion on intervention mechanism of qingwen baidu decoction on cytokine storm based on network pharmacology. J. Tradit. Chin. Med., 2020, 45(07), 1499-1508.
[21]
Shi, S.; Cai, Y.; Cai, X.; Zheng, X.; Cao, D.; Ye, F.; Xiang, Z. A network pharmacology approach to understanding the mechanisms of action of traditional medicine: Bushenhuoxue formula for treatment of chronic kidney disease. PLoS One, 2014, 9(3), e89123.
[http://dx.doi.org/10.1371/journal.pone.0089123] [PMID: 24598793]
[22]
Jingjing, D.; Huajuan, J.; Xing, L.; Li, M.; Shengju, W.; Yao, H. Exploring the mechanism of synergistic effect of the classical formula Tao Hong Si Wu Tang based on network pharmacology and molecular docking. Chin. Herb. Med., 2021, 52(10), 3018-3029.
[23]
Yang, J.; Xiao, L.; Fang, L.; Lujie, L.; Yuan, G.; Qi, Z. Mechanism of magnolia in the treatment of peptic ulcer based on network pharmacology and molecular docking. J. Tradit. Chin. Med., 2021, 46(17), 4522-4530.
[PMID: 34581058]
[24]
Xia, Q.D.; Xun, Y.; Lu, J.L.; Lu, Y.C.; Yang, Y.Y.; Zhou, P.; Hu, J.; Li, C.; Wang, S.G. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID‐19. Cell Prolif., 2020, 53(12), e12949.
[http://dx.doi.org/10.1111/cpr.12949] [PMID: 33140889]
[25]
Tao, Q.; Du, J.; Li, X.; Zeng, J.; Tan, B.; Xu, J.; Lin, W.; Chen, X. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Dev. Ind. Pharm., 2020, 46(8), 1345-1353.
[http://dx.doi.org/10.1080/03639045.2020.1788070] [PMID: 32643448]
[27]
Wen, J.; Wang, R.; Liu, H.; Tong, Y.; Wei, S.; Zhou, X.; Li, H.; Jing, M.; Wang, M.; Zhao, Y. Potential therapeutic effect of Qingwen Baidu Decoction against Corona Virus Disease 2019: A mini review. Chin. Med., 2020, 15(1), 48.
[http://dx.doi.org/10.1186/s13020-020-00332-y] [PMID: 32454888]
[28]
Lee, B.H.; Chathuranga, K.; Uddin, M.B.; Weeratunga, P.; Kim, M.S.; Cho, W.K.; Kim, H.I.; Ma, J.Y.; Lee, J.S. Coptidis Rhizoma extract inhibits replication of respiratory syncytial virus in vitro and in vivo by inducing antiviral state. J. Microbiol., 2017, 55(6), 488-498.
[http://dx.doi.org/10.1007/s12275-017-7088-x] [PMID: 28551874]
[29]
Ratanakomol, T.; Roytrakul, S.; Wikan, N.; Smith, D.R. Berberine inhibits dengue virus through dual mechanisms. Molecules., 2021, 26(18), 5501.
[http://dx.doi.org/10.3390/molecules26185501] [PMID: 34576974]
[30]
Robinson, C.L.; Chong, A.C.N.; Ashbrook, A.W.; Jeng, G.; Jin, J.; Chen, H.; Tang, E.I.; Martin, L.A.; Kim, R.S.; Kenyon, R.M.; Do, E.; Luna, J.M.; Saeed, M.; Zeltser, L.; Ralph, H.; Dudley, V.L.; Goldstein, M.; Rice, C.M.; Cheng, C.Y.; Seandel, M.; Chen, S. Male germ cells support long-term propagation of Zika virus. Nat. Commun., 2018, 9(1), 2090.
[http://dx.doi.org/10.1038/s41467-018-04444-w] [PMID: 29844387]
[31]
Zhang, F.; Yin, X.; Yan, Y.; Wu, Q. Pharmacokinetics and pharmacodynamics of huanglian-houpo decoction based on berberine hydrochloride and magnolol against H1N1 influenza virus. Eur. J. Drug Metab. Pharmacokinet., 2022, 47(1), 57-67.
[http://dx.doi.org/10.1007/s13318-021-00724-x] [PMID: 34635990]
[32]
Zhang, X.; Sun, X.; Wu, J.; Wu, Y.; Wang, Y.; Hu, X.; Wang, X. Berberine damages the cell surface of methicillin-resistant Staphylococcus aureus. Front. Microbiol., 2020, 11, 621.
[http://dx.doi.org/10.3389/fmicb.2020.00621] [PMID: 32411101]
[33]
Rodriguez-Rodriguez, B.A.; Noval, M.G.; Kaczmarek, M.E.; Jang, K.K.; Thannickal, S.A.; Cifuentes Kottkamp, A.; Brown, R.S.; Kielian, M.; Cadwell, K.; Stapleford, K.A. Atovaquone and berberine chloride reduce SARS-CoV-2 replication in vitro. Viruses, 2021, 13(12), 2437.
[http://dx.doi.org/10.3390/v13122437] [PMID: 34960706]
[34]
Bousquet, J.; Cristol, J.P.; Czarlewski, W.; Anto, J.M.; Martineau, A.; Haahtela, T.; Fonseca, S.C.; Iaccarino, G.; Blain, H.; Fiocchi, A.; Canonica, G.W.; Fonseca, J.A.; Vidal, A.; Choi, H.J.; Kim, H.J.; Le Moing, V.; Reynes, J.; Sheikh, A.; Akdis, C.A.; Zuberbier, T. Nrf2-interacting nutrients and COVID-19: Time for research to develop adaptation strategies. Clin. Transl. Allergy, 2020, 10(1), 58.
[http://dx.doi.org/10.1186/s13601-020-00362-7] [PMID: 33292691]
[35]
Tarabasz, D.; Kukula-Koch, W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother. Res., 2020, 34(1), 33-50.
[http://dx.doi.org/10.1002/ptr.6504] [PMID: 31496018]
[36]
Cheng, D.; Liu, P.; Wang, Z. Palmatine attenuates the doxorubicin-induced inflammatory response, oxidative damage and cardiomyocyte apoptosis. Int. Immunopharmacol., 2022, 106, 108583.
[http://dx.doi.org/10.1016/j.intimp.2022.108583] [PMID: 35151220]
[37]
Commission, N.P. Pharmacopoeia of the People’s Republic of China. Part I; China Medical Science and Technology Press: Beijing, 2020, p. 314.
[38]
Wang, Z.L.; Wang, S.; Kuang, Y.; Hu, Z.M.; Qiao, X.; Ye, M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol., 2018, 56(1), 465-484.
[http://dx.doi.org/10.1080/13880209.2018.1492620] [PMID: 31070530]
[39]
Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem., 2017, 131, 68-80.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.004] [PMID: 28288320]
[40]
Lucas, C.D.; Dorward, D.A.; Sharma, S.; Rennie, J.; Felton, J.M.; Alessandri, A.L.; Duffin, R.; Schwarze, J.; Haslett, C.; Rossi, A.G. Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation. Am. J. Respir. Crit. Care Med., 2015, 191(6), 626-636.
[http://dx.doi.org/10.1164/rccm.201408-1565OC] [PMID: 25629436]
[41]
Fanunza, E.; Iampietro, M.; Distinto, S.; Corona, A.; Quartu, M.; Maccioni, E.; Horvat, B.; Tramontano, E. Quercetin blocks ebola virus infection by counteracting the vp24 interferon-inhibitory function. Antimicrob. Agents Chemother., 2020, 64(7), e00530-20.
[http://dx.doi.org/10.1128/AAC.00530-20] [PMID: 32366711]
[42]
Mehrbod, P.; Abdalla, M.A.; Fotouhi, F.; Heidarzadeh, M.; Aro, A.O.; Eloff, J.N.; McGaw, L.J.; Fasina, F.O. Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. BMC Complement. Altern. Med., 2018, 18(1), 184.
[http://dx.doi.org/10.1186/s12906-018-2246-1] [PMID: 29903008]
[43]
Liu, Z.; Zhao, J.; Li, W.; Shen, L.; Huang, S.; Tang, J.; Duan, J.; Fang, F.; Huang, Y.; Chang, H.; Chen, Z.; Zhang, R. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Sci. Rep., 2016, 6(1), 19095.
[http://dx.doi.org/10.1038/srep19095] [PMID: 26754609]
[44]
Komaravelli, N.; Kelley, J.P.; Garofalo, M.P.; Wu, H.; Casola, A.; Kolli, D. Role of dietary antioxidants in human metapneumovirus infection. Virus Res., 2015, 200, 19-23.
[http://dx.doi.org/10.1016/j.virusres.2015.01.018] [PMID: 25645280]
[45]
Galochkina, A.V.; Anikin, V.B.; Babkin, V.A.; Ostrouhova, L.A.; Zarubaev, V.V. Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Arch. Virol., 2016, 161(4), 929-938.
[http://dx.doi.org/10.1007/s00705-016-2749-3] [PMID: 26780775]
[46]
Di Pierro, F.; Derosa, G.; Maffioli, P.; Bertuccioli, A.; Togni, S.; Riva, A.; Allegrini, P.; Khan, A.; Khan, S.; Khan, B.A.; Altaf, N.; Zahid, M.; Ujjan, I.D.; Nigar, R.; Khushk, M.I.; Phulpoto, M.; Lail, A.; Devrajani, B.R.; Ahmed, S. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: A prospective, randomized, controlled, and open-label study. Int. J. Gen. Med., 2021, 14, 2359-2366.
[http://dx.doi.org/10.2147/IJGM.S318720] [PMID: 34135619]
[47]
Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol., 2020, 164, 1693-1703.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.235] [PMID: 32745548]
[48]
Derosa, G.; Maffioli, P.; D’Angelo, A.; Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother. Res., 2021, 35(3), 1230-1236.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[49]
Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[50]
Zhang, R.; Ai, X.; Duan, Y.; Xue, M.; He, W.; Wang, C.; Xu, T.; Xu, M.; Liu, B.; Li, C.; Wang, Z.; Zhang, R.; Wang, G.; Tian, S.; Liu, H. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomed. Pharmacother., 2017, 89, 660-672.
[http://dx.doi.org/10.1016/j.biopha.2017.02.081] [PMID: 28262619]
[51]
Sekine-Osajima, Y.; Sakamoto, N.; Nakagawa, M.; Itsui, Y.; Tasaka, M.; Nishimura-Sakurai, Y.; Chen, C.H.; Suda, G.; Mishima, K.; Onuki, Y.; Yamamoto, M.; Maekawa, S.; Enomoto, N.; Kanai, T.; Tsuchiya, K.; Watanabe, M. Two flavonoids extracts from Glycyrrhizae radix inhibit in vitro hepatitis C virus replication. Hepatol. Res., 2009, 39(1), 60-69.
[http://dx.doi.org/10.1111/j.1872-034X.2008.00398.x] [PMID: 18647187]
[52]
Li, J.J.; Liu, M.L.; Lv, J.N.; Chen, R.L.; Ding, K.; He, J.Q. Polysaccharides from platycodonis radix ameliorated respiratory syncytial virus-induced epithelial cell apoptosis and inflammation through activation of mir-181a-mediated hippo and SIRT1 pathways. Int. Immunopharmacol., 2022, 104, 108510.
[http://dx.doi.org/10.1016/j.intimp.2021.108510] [PMID: 34999393]
[53]
Lee, H.; Spandidos, D.; Tsatsakis, A.; Margina, D.; Izotov, B.; Yang, S. Neuroprotective effects of Scrophularia buergeriana extract against glutamate-induced toxicity in SH-SY5Y cells. Int. J. Mol. Med., 2019, 43(5), 2144-2152.
[http://dx.doi.org/10.3892/ijmm.2019.4139] [PMID: 30896788]
[54]
Wu, Q.; Coumoul, X.; Grandjean, P.; Barouki, R.; Audouze, K. Endocrine disrupting chemicals and COVID-19 relationships: A computational systems biology approach. Environ. Int., 2021, 157, 106232.
[http://dx.doi.org/10.1016/j.envint.2020.106232] [PMID: 33223326]
[55]
Pacha, O.; Sallman, M.A.; Evans, S.E. COVID-19: A case for inhibiting IL-17? Nat. Rev. Immunol., 2020, 20(6), 345-346.
[http://dx.doi.org/10.1038/s41577-020-0328-z] [PMID: 32358580]
[56]
Barron, E.; Bakhai, C.; Kar, P.; Weaver, A.; Bradley, D.; Ismail, H.; Knighton, P.; Holman, N.; Khunti, K.; Sattar, N.; Wareham, N.J.; Young, B.; Valabhji, J. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol., 2020, 8(10), 813-822.
[http://dx.doi.org/10.1016/S2213-8587(20)30272-2] [PMID: 32798472]
[57]
Lian, Y.; Zhu, M.; Chen, J.; Yang, B.; Lv, Q.; Wang, L.; Guo, S.; Tan, X.; Li, C.; Bu, W.; Ding, W.; Jia, X.; Feng, L. Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int. J. Biol. Macromol., 2021, 176, 589-600.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.062] [PMID: 33581205]
[58]
Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; O’Shea, J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov., 2017, 16(12), 843-862.
[http://dx.doi.org/10.1038/nrd.2017.201] [PMID: 29104284]
[59]
Cao, Y.; Wei, J.; Zou, L.; Jiang, T.; Wang, G.; Chen, L.; Huang, L.; Meng, F.; Huang, L.; Wang, N.; Zhou, X.; Luo, H.; Mao, Z.; Chen, X.; Xie, J.; Liu, J.; Cheng, H.; Zhao, J.; Huang, G.; Wang, W.; Zhou, J. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J. Allergy Clin. Immunol., 2020, 146(1), 137-146.e3.
[http://dx.doi.org/10.1016/j.jaci.2020.05.019] [PMID: 32470486]
[60]
Spinelli, F.R.; Conti, F.; Gadina, M. HiJAKing SARS-CoV-2? The potential role of JAK inhibitors in the management of COVID-19. Sci. Immunol., 2020, 5(47), eabc5367.
[http://dx.doi.org/10.1126/sciimmunol.abc5367] [PMID: 32385052]
[61]
Jacobs, J.; Clark-Snustad, K.; Lee, S. Case report of a SARS-CoV-2 infection in a patient with ulcerative colitis on tofacitinib. Inflamm. Bowel Dis., 2020, 26(7), e64.
[http://dx.doi.org/10.1093/ibd/izaa093] [PMID: 32342098]
[62]
Luo, W.; Li, Y.X.; Jiang, L.J.; Chen, Q.; Wang, T.; Ye, D.W. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends Pharmacol. Sci., 2020, 41(8), 531-543.
[http://dx.doi.org/10.1016/j.tips.2020.06.007] [PMID: 32580895]
[63]
Guoquan, W.; Sha, L.; Xu, C.; Jie, L.; Peng, Z.; Linzhong, Y.; Enhu, Z.; Jiayi, D. Intervention of qingwen baidu decoction on p38MAPK and JAK2/STAT3 signaling pathway in rats with sepsis-induced acute lung injury. Chin. Med. J., 2018, 33(11), 2076-2082.
[64]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[65]
Iwai, K. Diverse ubiquitin signaling in NF-κB activation. Trends Cell Biol., 2012, 22(7), 355-364.
[http://dx.doi.org/10.1016/j.tcb.2012.04.001] [PMID: 22543051]
[66]
Lee, J.S.; Park, S.; Jeong, H.W.; Ahn, J.Y.; Choi, S.J.; Lee, H.; Choi, B.; Nam, S.K.; Sa, M.; Kwon, J.S.; Jeong, S.J.; Lee, H.K.; Park, S.H.; Park, S.H.; Choi, J.Y.; Kim, S.H.; Jung, I.; Shin, E.C. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol., 2020, 5(49), eabd1554.
[http://dx.doi.org/10.1126/sciimmunol.abd1554] [PMID: 32651212]
[67]
Wu, Y.; Ma, L.; Cai, S.; Zhuang, Z.; Zhao, Z.; Jin, S.; Xie, W.; Zhou, L.; Zhang, L.; Zhao, J.; Cui, J. RNA-induced liquid phase separation of SARS-CoV-2 nucleocapsid protein facilitates NF-κB hyper-activation and inflammation. Signal Transduct. Target. Ther., 2021, 6(1), 167.
[http://dx.doi.org/10.1038/s41392-021-00575-7] [PMID: 33895773]
[68]
Fei, W.; Xianfang, L.; Zhao, W.; Xiaojuan, L.; Changzhi, Z. Experimental study of qingwen baidu decoction on the expression of NF-κBp65 in lung tissue of rats with acute lung injury. J. Tradit. Chin. Med., 2011, 29(06), 1290-1295.
[69]
Ma-Lauer, Y.; Carbajo-Lozoya, J.; Hein, M.Y.; Müller, M.A.; Deng, W.; Lei, J.; Meyer, B.; Kusov, Y.; von Brunn, B.; Bairad, D.R.; Hünten, S.; Drosten, C.; Hermeking, H.; Leonhardt, H.; Mann, M.; Hilgenfeld, R.; von Brunn, A. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PL provia E3 ubiquitin ligase RCHY1. Proc. Natl. Acad. Sci., 2016, 113(35), E5192-E5201.
[http://dx.doi.org/10.1073/pnas.1603435113] [PMID: 27519799]
[70]
Liu, G.; Park, Y.J.; Tsuruta, Y.; Lorne, E.; Abraham, E. p53 Attenuates lipopolysaccharide-induced NF-kappaB activation and acute lung injury. J. Immunol., 2009, 182(8), 5063-5071.
[http://dx.doi.org/10.4049/jimmunol.0803526] [PMID: 19342686]
[71]
Uddin, M.A.; Akhter, M.S.; Kubra, K.T.; Barabutis, N. P53 deficiency potentiates LPS-Induced acute lung injury in vivo. Curr. Res. Physiol., 2020, 3, 30-33.
[http://dx.doi.org/10.1016/j.crphys.2020.07.001] [PMID: 32724900]
[72]
Singh, N.; Bharara Singh, A. S2 subunit of SARS-nCoV-2 interacts with tumor suppressor protein p53 and BRCA: An in silico study. Transl. Oncol., 2020, 13(10), 100814.
[http://dx.doi.org/10.1016/j.tranon.2020.100814] [PMID: 32619819]
[73]
Allen, S.P.; Seehra, R.S.; Heath, P.R.; Hall, B.P.C.; Bates, J.; Garwood, C.J.; Matuszyk, M.M.; Wharton, S.B.; Simpson, J.E. Transcriptomic analysis of human astrocytes in vitro reveals hypoxia-induced mitochondrial dysfunction, modulation of metabolism, and dysregulation of the immune response. Int. J. Mol. Sci., 2020, 21(21), 8028.
[http://dx.doi.org/10.3390/ijms21218028] [PMID: 33126586]
[74]
Codo, A.C.; Davanzo, G.G.; Monteiro, L.B.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.A.O.; Crunfli, F.; Jimenez Restrepo, J.L.; Vendramini, P.H.; Reis-de-Oliveira, G.; Bispo dos Santos, K.; Toledo-Teixeira, D.A.; Parise, P.L.; Martini, M.C.; Marques, R.E.; Carmo, H.R.; Borin, A.; Coimbra, L.D.; Boldrini, V.O.; Brunetti, N.S.; Vieira, A.S.; Mansour, E.; Ulaf, R.G.; Bernardes, A.F.; Nunes, T.A.; Ribeiro, L.C.; Palma, A.C.; Agrela, M.V.; Moretti, M.L.; Sposito, A.C.; Pereira, F.B.; Velloso, L.A.; Vinolo, M.A.R.; Damasio, A.; Proença-Módena, J.L.; Carvalho, R.F.; Mori, M.A.; Martins-de-Souza, D.; Nakaya, H.I.; Farias, A.S.; Moraes-Vieira, P.M. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIf-1α/glycolysis-dependent axis. Cell Metab., 2020, 32(3), 437-446.e5.
[http://dx.doi.org/10.1016/j.cmet.2020.07.007]
[75]
Sahu, K.; Kumar, R. Role of 2-Deoxy-D-Glucose (2-DG) in COVID-19 disease: A potential game-changer. J. Family Med. Prim. Care, 2021, 10(10), 3548-3552.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1338_21] [PMID: 34934645]
[76]
Singh, R.; Gupta, V.; Kumar, A.; Singh, K. 2-Deoxy-D-Glucose: A novel pharmacological agent for killing hypoxic tumor cells, oxygen dependence-lowering in COVID-19, and other pharmacological activities. Adv. Pharmacol. Pharm. Sci., 2023, 2023, 1-15.
[http://dx.doi.org/10.1155/2023/9993386] [PMID: 36911357]
[77]
Jahani, M.; Dokaneheifard, S.; Mansouri, K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J. Inflamm., 2020, 17(1), 33.
[http://dx.doi.org/10.1186/s12950-020-00263-3] [PMID: 33139969]
[78]
Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O’Neill, L.A.J. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242.
[http://dx.doi.org/10.1038/nature11986] [PMID: 23535595]
[79]
Villarino, A.V.; Kanno, Y.; Ferdinand, J.R.; O’Shea, J.J. Mechanisms of Jak/STAT signaling in immunity and disease. J. Immunol., 2015, 194(1), 21-27.
[http://dx.doi.org/10.4049/jimmunol.1401867] [PMID: 25527793]
[80]
Zhao, J.; Yu, H.; Liu, Y.; Gibson, S.A.; Yan, Z.; Xu, X.; Gaggar, A.; Li, P.K.; Li, C.; Wei, S.; Benveniste, E.N.; Qin, H. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 311(5), L868-L880.
[http://dx.doi.org/10.1152/ajplung.00281.2016] [PMID: 27638904]
[81]
Matsuyama, T.; Kubli, S.P.; Yoshinaga, S.K.; Pfeffer, K.; Mak, T.W. An aberrant STAT pathway is central to COVID-19. Cell Death Differ., 2020, 27(12), 3209-3225.
[http://dx.doi.org/10.1038/s41418-020-00633-7] [PMID: 33037393]
[82]
Zhang, Y.; Xu, M.; Zhang, X.; Chu, F.; Zhou, T. MAPK/c-Jun signaling pathway contributes to the upregulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by Epstein-Barr virus-encoded BARF1 in gastric carcinoma cells. Oncol. Lett., 2018, 15(5), 7537-7544.
[http://dx.doi.org/10.3892/ol.2018.8293] [PMID: 29725459]
[83]
Deng, Y.; Wang, J.; Huang, M.; Xu, G.; Wei, W.; Qin, H. Inhibition of miR-148a-3p resists hepatocellular carcinoma progress of hepatitis C virus infection through suppressing c-Jun and MAPK pathway. J. Cell. Mol. Med., 2019, 23(2), 1415-1426.
[http://dx.doi.org/10.1111/jcmm.14045] [PMID: 30565389]
[84]
Liu, F.; Shang, Y.X. Sirtuin 6 attenuates epithelial–mesenchymal transition by suppressing the TGF-β1/Smad3 pathway and c-Jun in asthma models. Int. Immunopharmacol., 2020, 82, 106333.
[http://dx.doi.org/10.1016/j.intimp.2020.106333] [PMID: 32143002]
[85]
Rizk, J.G.; Kalantar-Zadeh, K.; Mehra, M.R.; Lavie, C.J.; Rizk, Y.; Forthal, D.N. Pharmaco-immunomodulatory therapy in COVID-19. Drugs, 2020, 80(13), 1267-1292.
[http://dx.doi.org/10.1007/s40265-020-01367-z] [PMID: 32696108]
[86]
Haga, S.; Yamamoto, N.; Nakai-Murakami, C.; Osawa, Y.; Tokunaga, K.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc. Natl. Acad. Sci., 2008, 105(22), 7809-7814.
[http://dx.doi.org/10.1073/pnas.0711241105] [PMID: 18490652]
[87]
Wang, L.; He, W.; Yu, X.; Hu, D.; Bao, M.; Liu, H.; Zhou, J.; Jiang, H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect., 2020, 80(6), 639-645.
[http://dx.doi.org/10.1016/j.jinf.2020.03.019] [PMID: 32240670]
[88]
Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; Schreiner, P.; Neale, G.; Vogel, P.; Webby, R.; Jonsson, C.B.; Kanneganti, T.D. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 2021, 184(1), 149-168.e17.
[http://dx.doi.org/10.1016/j.cell.2020.11.025] [PMID: 33278357]
[89]
Hashimoto, N.; Kawabe, T.; Imaizumi, K.; Hara, T.; Okamoto, M.; Kojima, K.; Shimokata, K.; Hasegawa, Y. CD40 plays a crucial role in lipopolysaccharide-induced acute lung injury. Am. J. Respir. Cell Mol. Biol., 2004, 30(6), 808-815.
[http://dx.doi.org/10.1165/rcmb.2003-0197OC] [PMID: 14693668]
[90]
Li, J.; Lu, K.; Sun, F.; Tan, S.; Zhang, X.; Sheng, W.; Hao, W.; Liu, M.; Lv, W.; Han, W. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J. Transl. Med., 2021, 19(1), 96.
[http://dx.doi.org/10.1186/s12967-021-02745-1] [PMID: 33653364]
[91]
Eijk, L.E.; Binkhorst, M.; Bourgonje, A.R.; Offringa, A.K.; Mulder, D.J.; Bos, E.M.; Kolundzic, N.; Abdulle, A.E.; Voort, P.H.J.; Olde Rikkert, M.G.M.; Hoeven, J.G.; Dunnen, W.F.A.; Hillebrands, J.L.; Goor, H. COVID‐19: Immunopathology, pathophysiological mechanisms, and treatment options. J. Pathol., 2021, 254(4), 307-331.
[http://dx.doi.org/10.1002/path.5642] [PMID: 33586189]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy