Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Treatment Considerations to Overcome the Barriers Associated with Skin Cancer Targeting

Author(s): Pratibha Kumari, Md. Aftab Alam*, Shivang Dhoundiyal, Awaneet Kaur and Shikha Yadav

Volume 20, Issue 6, 2024

Published on: 10 November, 2023

Page: [529 - 545] Pages: 17

DOI: 10.2174/0115733947253349231027043858

Price: $65

Abstract

Skin cancer is a prevalent and diverse group of malignancies affecting the skin, with three primary types: basal cell carcinoma, squamous cell carcinoma, and melanoma. Each subtype varies in terms of its histological origin, behavior, and potential for metastasis. Despite advances in treatment, skin cancer poses challenges due to biological barriers that hinder drug delivery, multidrug resistance mechanisms that limit treatment effectiveness, and the complex interplay of genetic alterations driving tumorigenesis. Current treatment strategies encompass a spectrum of approaches, including chemotherapies, immunotherapies, gene therapies, and innovative techniques such as photothermal therapy, iontophoretic therapy, electroporation therapy, microneedle array therapy, and nanotechnology- based treatments. The latter involves liposomes, niosomes, carbon nanotubes, dendrimers, hydrogels, and gold nanoparticles, all tailored to enhance drug delivery and therapeutic efficacy. Additionally, herbal drug-based therapy harnesses the potential of natural compounds to target various aspects of skin cancer progression. This review provides an overview of skin cancer types, challenges in treatment, and an extensive exploration of current therapeutic strategies, highlighting the everevolving landscape of innovative approaches that promise to transform how skin cancer is managed.

Keywords: Basal cell carcinoma, squamous cell carcinoma, melanoma, herbal drugs, nanotechnology, skin cancer.

Graphical Abstract
[1]
Balk SJ. Ultraviolet radiation: A hazard to children and adolescents. Pediatrics 2011; 127(3): e791-817.
[http://dx.doi.org/10.1542/peds.2010-3502] [PMID: 21357345]
[2]
Crowson AN. Basal cell carcinoma: Biology, morphology and clinical implications. Mod Pathol 2006; 19 (Suppl. 2): S127-47.
[http://dx.doi.org/10.1038/modpathol.3800512] [PMID: 16446711]
[3]
Feuerstein I, Geller AC. Skin cancer education in transplant recipients. Prog Transplant 2008; 18(4): 232-42.
[http://dx.doi.org/10.1177/152692480801800405] [PMID: 19186575]
[4]
Markovic SN, Erickson LA, Rao RD, et al. Malignant melanoma in the 21st century, part 1: Epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc 2007; 82(3): 364-80.
[5]
Hamidi R, Peng D, Cockburn M. Efficacy of skin self-examination for the early detection of melanoma. Int J Dermatol 2010; 49(2): 126-34.
[http://dx.doi.org/10.1111/j.1365-4632.2009.04268.x] [PMID: 20465635]
[6]
Roewert-Huber J, Lange-Asschenfeldt B, Stockfleth E, Kerl H. Epidemiology and aetiology of basal cell carcinoma. Br J Dermatol 2007; 157(s2): 47-51.
[http://dx.doi.org/10.1111/j.1365-2133.2007.08273.x] [PMID: 18067632]
[7]
Apalla Z, Lallas A, Sotiriou E, Lazaridou E, Ioannides D. Epidemiological trends in skin cancer. Dermatol Pract Concept 2017; 7(2): 1-6.
[http://dx.doi.org/10.5826/dpc.0702a01] [PMID: 28515985]
[8]
Lazareth V. Management of non-melanoma skin cancer. In: Seminars in oncology nursing. WB Saunders 2013; 29: pp. 182-94.
[http://dx.doi.org/10.1016/j.soncn.2013.06.004]
[9]
Peris K, Fargnoli MC, Garbe C, et al. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. Eur J Cancer 2019; 118: 10-34.
[http://dx.doi.org/10.1016/j.ejca.2019.06.003] [PMID: 31288208]
[10]
Shields CL, Shields JA. Clinical features of small choroidal melanoma. Curr Opin Ophthalmol 2002; 13(3): 135-41.
[http://dx.doi.org/10.1097/00055735-200206000-00001] [PMID: 12011680]
[11]
Silling S, Kreuter A, Gambichler T, Meyer T, Stockfleth E, Wieland U. Epidemiology of merkel cell polyomavirus infection and merkel cell carcinoma. Cancers 2022; 14(24): 6176.
[http://dx.doi.org/10.3390/cancers14246176] [PMID: 36551657]
[12]
Arora A, Attwood J. Common skin cancers and their precursors. Surg Clin North Am 2009; 89(3): 703-12.
[http://dx.doi.org/10.1016/j.suc.2009.03.007] [PMID: 19465206]
[13]
Veness MJ. The important role of radiotherapy in patients with non-melanoma skin cancer and other cutaneous entities. J Med Imaging Radiat Oncol 2008; 52(3): 278-86.
[http://dx.doi.org/10.1111/j.1440-1673.2008.01956.x] [PMID: 18477123]
[14]
Nery JAC, Bernardes Filho F, Quintanilha J, Machado AM, Oliveira SSC, Sales AM. Understanding the type 1 reactional state for early diagnosis and treatment: A way to avoid disability in leprosy. An Bras Dermatol 2013; 88(5): 787-92.
[http://dx.doi.org/10.1590/abd1806-4841.20132004] [PMID: 24173185]
[15]
Garcovich S, Colloca G, Sollena P, et al. Skin cancer epidemics in the elderly as an emerging issue in geriatric oncology. Aging Dis 2017; 8(5): 643-61.
[http://dx.doi.org/10.14336/AD.2017.0503] [PMID: 28966807]
[16]
Narayanan DL, Saladi RN, Fox JL. Review: Ultraviolet radiation and skin cancer. Int J Dermatol 2010; 49(9): 978-86.
[http://dx.doi.org/10.1111/j.1365-4632.2010.04474.x] [PMID: 20883261]
[17]
Gadeliya Goodson A, Grossman D. Strategies for early melanoma detection: Approaches to the patient with nevi. J Am Acad Dermatol 2009; 60(5): 719-35.
[http://dx.doi.org/10.1016/j.jaad.2008.10.065] [PMID: 19389517]
[18]
Olascoaga A, Vilar-Compte D, Poitevin-Chacón A, Contreras-Ruiz J. Wound healing in radiated skin: Pathophysiology and treatment options. Int Wound J 2008; 5(2): 246-57.
[http://dx.doi.org/10.1111/j.1742-481X.2008.00436.x] [PMID: 18494630]
[19]
Lai V, Cranwell W, Sinclair R. Epidemiology of skin cancer in the mature patient. Clin Dermatol 2018; 36(2): 167-76.
[http://dx.doi.org/10.1016/j.clindermatol.2017.10.008] [PMID: 29566921]
[20]
Llombart B, Kindem S, Chust M. Merkel cell carcinoma: An update of key imaging techniques, prognostic factors, treatment, and follow-up. Actas Dermo-Sifiliográficas 2017; 108(2): 98-107.
[http://dx.doi.org/10.1016/j.adengl.2016.12.003] [PMID: 27919405]
[21]
Anwar J, Wrone DA, Kimyai-Asadi A, Alam M. The development of actinic keratosis into invasive squamous cell carcinoma: Evidence and evolving classification schemes. Clin Dermatol 2004; 22(3): 189-96.
[http://dx.doi.org/10.1016/j.clindermatol.2003.12.006] [PMID: 15262304]
[22]
Geller AC, Swetter SM, Brooks K, Demierre MF, Yaroch AL. Screening, early detection, and trends for melanoma: Current status (2000-2006) and future directions. J Am Acad Dermatol 2007; 57(4): 555-72.
[http://dx.doi.org/10.1016/j.jaad.2007.06.032] [PMID: 17870429]
[23]
Korotkov K, Garcia R. Computerized analysis of pigmented skin lesions: A review. Artif Intell Med 2012; 56(2): 69-90.
[http://dx.doi.org/10.1016/j.artmed.2012.08.002] [PMID: 23063256]
[24]
Chummun S, McLean NR. The management of malignant skin cancers. Surgery 2017; 35(9): 519-24.
[http://dx.doi.org/10.1016/j.mpsur.2017.06.013]
[25]
Naik PP. Cutaneous malignant melanoma: A review of early diagnosis and management. World J Oncol 2021; 12(1): 7-19.
[http://dx.doi.org/10.14740/wjon1349] [PMID: 33738001]
[26]
Read J, Wadt KAW, Hayward NK. Melanoma genetics. J Med Genet 2016; 53(1): 1-14.
[http://dx.doi.org/10.1136/jmedgenet-2015-103150] [PMID: 26337759]
[27]
Działo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci 2016; 17(2): 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[28]
Quintanilla-Dieck MJ, Bichakjian CK. Management of early-stage melanoma. Facial Plast Surg Clin North Am 2019; 27(1): 35-42.
[http://dx.doi.org/10.1016/j.fsc.2018.08.003] [PMID: 30420071]
[29]
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, et al. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153: 109-36.
[http://dx.doi.org/10.1016/j.addr.2020.02.005] [PMID: 32113956]
[30]
Bertram JS. The molecular biology of cancer. Mol Aspects Med 2000; 21(6): 167-223.
[http://dx.doi.org/10.1016/S0098-2997(00)00007-8] [PMID: 11173079]
[31]
Ahronian LG, Corcoran RB. Strategies for monitoring and combating resistance to combination kinase inhibitors for cancer therapy. Genome Med 2017; 9(1): 37.
[http://dx.doi.org/10.1186/s13073-017-0431-3] [PMID: 28431544]
[32]
Kubli SP, Berger T, Araujo DV, Siu LL, Mak TW. Beyond immune checkpoint blockade: Emerging immunological strategies. Nat Rev Drug Discov 2021; 20(12): 899-919.
[http://dx.doi.org/10.1038/s41573-021-00155-y] [PMID: 33686237]
[33]
Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: A looking glass for cancer? Nat Rev Cancer 2012; 12(5): 323-34.
[http://dx.doi.org/10.1038/nrc3261] [PMID: 22513401]
[34]
Chandra J, Hasan N, Nasir N, et al. Nanotechnology empowered strategies in treatment of skin cancer. Environ Res 2023; 235: 116649.
[http://dx.doi.org/10.1016/j.envres.2023.116649] [PMID: 37451568]
[35]
Choi Y, Yu AM. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 2014; 20(5): 793-807.
[http://dx.doi.org/10.2174/138161282005140214165212] [PMID: 23688078]
[36]
Lehne G. P-glycoprotein as a drug target in the treatment of multidrug resistant cancer. Curr Drug Targets 2000; 1(1): 85-99.
[http://dx.doi.org/10.2174/1389450003349443] [PMID: 11475537]
[37]
Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release 2012; 162(1): 45-55.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.051] [PMID: 22698943]
[38]
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. J Biomater Sci Polym Ed 2022; 33(11): 1435-68.
[http://dx.doi.org/10.1080/09205063.2022.2054399] [PMID: 35294334]
[39]
Lalan M, Shah P, Barve K, Parekh K, Mehta T, Patel P. Skin cancer therapeutics: Nano-drug delivery vectors-present and beyond. Future J Pharmaceut Sci 2021; 7(1): 179.
[http://dx.doi.org/10.1186/s43094-021-00326-z]
[40]
Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form follows function: Nanoparticle shape and its implications for nanomedicine. Chem Rev 2017; 117(17): 11476-521.
[http://dx.doi.org/10.1021/acs.chemrev.7b00194] [PMID: 28862437]
[41]
Juhaščik M, Kováčik A, Huerta-Ángeles G. Recent advances of hyaluronan for skin delivery: From structure to fabrication strategies and applications. Polymers 2022; 14(22): 4833.
[http://dx.doi.org/10.3390/polym14224833] [PMID: 36432961]
[42]
Singh Malik D, Mital N, Kaur G. Topical drug delivery systems: A patent review. Expert Opin Ther Pat 2016; 26(2): 213-28.
[http://dx.doi.org/10.1517/13543776.2016.1131267] [PMID: 26651499]
[43]
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2018; 270: 203-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[44]
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater 2021; 6(4): 351-70.
[http://dx.doi.org/10.1038/s41578-020-00269-6] [PMID: 34950512]
[45]
Chen K, Huang Y, Chen J. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol Sin 2013; 34(6): 732-40.
[http://dx.doi.org/10.1038/aps.2013.27] [PMID: 23685952]
[46]
Lopez R, Lange N, Guy R, Bentley MV. Photodynamic therapy of skin cancer: Controlled drug delivery of 5-ALA and its esters. Adv Drug Deliv Rev 2004; 56(1): 77-94.
[http://dx.doi.org/10.1016/j.addr.2003.09.002] [PMID: 14706446]
[47]
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20(2): 101-24.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[48]
Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146: 209-39.
[http://dx.doi.org/10.1016/j.addr.2018.12.014] [PMID: 30605737]
[49]
Didona D, Paolino G, Bottoni U, Cantisani C. Non melanoma skin cancer pathogenesis overview. Biomedicines 2018; 6(1): 6.
[http://dx.doi.org/10.3390/biomedicines6010006] [PMID: 29301290]
[50]
Kolakovic R, Viitala T, Ihalainen P, Genina N, Peltonen J, Sandler N. Printing technologies in fabrication of drug delivery systems. Expert Opin Drug Deliv 2013; 10(12): 1711-23.
[http://dx.doi.org/10.1517/17425247.2013.859134] [PMID: 24256326]
[51]
Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: Opportunities and challenges. AAPS J 2015; 17(6): 1327-40.
[http://dx.doi.org/10.1208/s12248-015-9814-9] [PMID: 26276218]
[52]
Wokovich A, Prodduturi S, Doub W, Hussain A, Buhse L. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. Eur J Pharm Biopharm 2006; 64(1): 1-8.
[http://dx.doi.org/10.1016/j.ejpb.2006.03.009] [PMID: 16797171]
[53]
Amini S, Viera MH, Valins W, Berman B. Nonsurgical innovations in the treatment of nonmelanoma skin cancer. J Clin Aesthet Dermatol 2010; 3(6): 20-34.
[PMID: 20725548]
[54]
Vishnubhakthula S, Elupula R, Durán-Lara EF. Recent advances in hydrogel-based drug delivery for melanoma cancer therapy: A mini review. J Drug Deliv 2017; 2017: 7275985.
[http://dx.doi.org/10.1155/2017/7275985]
[55]
Zhao B, He YY. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev Anticancer Ther 2010; 10(11): 1797-809.
[http://dx.doi.org/10.1586/era.10.154] [PMID: 21080805]
[56]
Tran TH, Tran TTP, Truong DH, et al. Toll-like receptor targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Acta Biomater 2019; 94: 82-96.
[http://dx.doi.org/10.1016/j.actbio.2019.05.043] [PMID: 31129358]
[57]
Ferrucci PF, Pala L, Conforti F, Cocorocchio E. Talimogene laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma. Cancers 2021; 13(6): 1383.
[http://dx.doi.org/10.3390/cancers13061383] [PMID: 33803762]
[58]
Niculescu AG, Grumezescu AM. Photodynamic therapy-an up-to-date review. Appl Sci 2021; 11(8): 3626.
[http://dx.doi.org/10.3390/app11083626]
[59]
Tokatlian T, Asuelime GE, Mock JY, et al. Mesothelin specific CAR-T cell therapy that incorporates an HLA-gated safety mechanism selectively kills tumor cells. J Immunother Cancer 2022; 10(1): e003826.
[http://dx.doi.org/10.1136/jitc-2021-003826] [PMID: 35091455]
[60]
Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 2021; 20(1): 126.
[http://dx.doi.org/10.1186/s12943-021-01431-6] [PMID: 34598686]
[61]
Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ. Early detection and treatment of skin cancer. Am Fam Physician 2000; 62(2): 357-368, 375-376, 381-382.
[PMID: 10929700]
[62]
Shuff JH, Siker ML, Daly MD, Schultz CJ. Role of radiation therapy in cutaneous melanoma. Clin Plast Surg 2010; 37(1): 147-60.
[http://dx.doi.org/10.1016/j.cps.2009.07.007] [PMID: 19914465]
[63]
Olszanski AJ. Current and future roles of targeted therapy and immunotherapy in advanced melanoma. J Manag Care Spec Pharm 2014; 20(4): 346-56.
[PMID: 24684639]
[64]
Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 2019; 19(3): 133-50.
[http://dx.doi.org/10.1038/s41568-019-0116-x] [PMID: 30755690]
[65]
Souto EB, da Ana R, Vieira V, et al. Non-melanoma skin cancers: Physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia 2022; 30: 100810.
[http://dx.doi.org/10.1016/j.neo.2022.100810] [PMID: 35649306]
[66]
Ribas A, Flaherty KT. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol 2011; 8(7): 426-33.
[http://dx.doi.org/10.1038/nrclinonc.2011.69] [PMID: 21606968]
[67]
Abbott M, Ustoyev Y. Cancer and the immune system: The history and background of immunotherapy. In: Seminars in oncology nursing. WB Saunders 2019; 35: p. 150923.
[http://dx.doi.org/10.1016/j.soncn.2019.08.002]
[68]
D’Adamo GL, Widdop JT, Giles EM. The future is now? Clinical and translational aspects of “Omics” technologies. Immunol Cell Biol 2021; 99(2): 168-76.
[http://dx.doi.org/10.1111/imcb.12404] [PMID: 32924178]
[69]
Rydzewska L, Tierney J, Vale CL, Symonds PR. Neoadjuvant chemotherapy plus surgery versus surgery for cervical cancer. Cochrane Database Syst Rev 2012; 12(12): CD007406.
[http://dx.doi.org/10.1002/14651858.CD007406.pub3]
[70]
Maghfour J, Kuraitis D, Murina A. Intralesional 5-fluorouracil for treatment of non-melanoma skin cancer: A systematic review. J Drugs Dermatol 2021; 20(2): 192-8.
[http://dx.doi.org/10.36849/JDD.5518] [PMID: 33538569]
[71]
Trodello C, Pepper JP, Wong M, Wysong A. Cisplatin and cetuximab treatment for metastatic cutaneous squamous cell carcinoma: A systematic review. Dermatol Surg 2017; 43(1): 40-9.
[http://dx.doi.org/10.1097/DSS.0000000000000799] [PMID: 27618393]
[72]
Kreher MA, Konda S, Noland MM, Longo MI, Valdes-Rodriguez R. Risk of melanoma and nonmelanoma skin cancer with immunosuppressants Part II: Methotrexate, alkylating agents, biologics, and small molecule inhibitors. J Am Acad Dermatol 2022.
[PMID: 36460256]
[73]
Jiang G, Li RH, Sun C, Liu YQ, Zheng JN. Dacarbazine combined targeted therapy versus dacarbazine alone in patients with malignant melanoma: A meta-analysis. PLoS One 2014; 9(12): e111920.
[http://dx.doi.org/10.1371/journal.pone.0111920] [PMID: 25502446]
[74]
Li RH, Hou XY, Yang CS, et al. Temozolomide for treating malignant melanoma. J Coll Physicians Surg Pak 2015; 25(9): 680-8.
[PMID: 26374366]
[75]
Abdin N, Pratap Sahu B, Sofiur Rahman S. A review on formulation and evaluation of nanoniosomal topical gel of paclitaxel for skin cancer. Res J Pharma Technol 2022; 15(6): 2849-54.
[http://dx.doi.org/10.52711/0974-360X.2022.00476]
[76]
Phuengkham H, Ren L, Shin IW, Lim YT. Nanoengineered immune niches for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv Mater 2019; 31(34): 1803322.
[http://dx.doi.org/10.1002/adma.201803322] [PMID: 30773696]
[77]
Byrne EH, Fisher DE. Immune and molecular correlates in melanoma treated with immune checkpoint blockade. Cancer 2017; 123(S11): 2143-53.
[http://dx.doi.org/10.1002/cncr.30444] [PMID: 28543699]
[78]
Kobold S, Duewell P, Schnurr M, Subklewe M, Rothenfusser S, Endres S. Immunotherapy in Tumors. Dtsch Arztebl Int 2015; 112(48): 809-15.
[PMID: 26667979]
[79]
Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: Safety considerations and future directions. Expert Opin Drug Saf 2017; 16(12): 1347-57.
[http://dx.doi.org/10.1080/14740338.2017.1382472] [PMID: 28929820]
[80]
Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res 2016; 22(8): 1875-84.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1433] [PMID: 27084741]
[81]
Liu ZL, Liu JH, Staiculescu D, Chen J. Combination of molecularly targeted therapies and immune checkpoint inhibitors in the new era of unresectable hepatocellular carcinoma treatment. Ther Adv Med Oncol 2021; 13.
[http://dx.doi.org/10.1177/17588359211018026] [PMID: 34104226]
[82]
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023; 20(8): 543-57.
[http://dx.doi.org/10.1038/s41571-023-00782-x] [PMID: 37280366]
[83]
Townsend KN, Hughson LRK, Schlie K, Poon VI, Westerback A, Lum JJ. Autophagy inhibition in cancer therapy: Metabolic considerations for antitumor immunity. Immunol Rev 2012; 249(1): 176-94.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01141.x] [PMID: 22889222]
[84]
Roth JA, Cristiano RJ. Gene therapy for cancer: What have we done and where are we going? J Natl Cancer Inst 1997; 89(1): 21-39.
[http://dx.doi.org/10.1093/jnci/89.1.21] [PMID: 8978404]
[85]
Kiesgen S, Chicaybam L, Chintala NK, Adusumilli PS. Chimeric antigen receptor (CAR) T-cell therapy for thoracic malignancies. J Thorac Oncol 2018; 13(1): 16-26.
[http://dx.doi.org/10.1016/j.jtho.2017.10.001] [PMID: 29107016]
[86]
Pahle J, Walther W. Vectors and strategies for nonviral cancer gene therapy. Expert Opin Biol Ther 2016; 16(4): 443-61.
[http://dx.doi.org/10.1517/14712598.2016.1134480] [PMID: 26761200]
[87]
Wu J, Chen J, Feng Y, Tian H, Chen X. Tumor microenvironment as the “regulator” and “target” for gene therapy. J Gene Med 2019; 21(7): e3088.
[http://dx.doi.org/10.1002/jgm.3088] [PMID: 30938916]
[88]
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022; 457: 214423.
[http://dx.doi.org/10.1016/j.ccr.2022.214423]
[89]
Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT). Alex J Med 2011; 47(1): 1-9.
[http://dx.doi.org/10.1016/j.ajme.2011.01.001]
[90]
Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 2020; 17(11): 657-74.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]
[91]
Hannon G, Tansi FL, Hilger I, Prina-Mello A. The effects of localized heat on the hallmarks of cancer. Adv Ther 2021; 4(7): 2000267.
[http://dx.doi.org/10.1002/adtp.202000267]
[92]
Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical stimulation for immune modulation in cancer treatments. Front Bioeng Biotechnol 2022; 9: 795300.
[http://dx.doi.org/10.3389/fbioe.2021.795300] [PMID: 35087799]
[93]
Khan S, Hasan A, Attar F, et al. Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J Control Release 2021; 338: 341-57.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.036] [PMID: 34428480]
[94]
Kanikkannan N. Iontophoresis-based transdermal delivery systems. BioDrugs 2002; 16(5): 339-47.
[http://dx.doi.org/10.2165/00063030-200216050-00003] [PMID: 12408738]
[95]
Kar A, Ahamad N, Dewani M, Awasthi L, Patil R, Banerjee R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022; 283: 121435.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121435] [PMID: 35227964]
[96]
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43: 139-88.
[http://dx.doi.org/10.1016/j.plrev.2022.09.003] [PMID: 36265200]
[97]
Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 2019; 18(3): 175-96.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[98]
Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: A novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res 2023; 13(3): 716-37.
[http://dx.doi.org/10.1007/s13346-022-01252-0] [PMID: 36417162]
[99]
Ding Y, Wang Y, Hu Q. Recent advances in overcoming barriers to cell‐based delivery systems for cancer immunotherapy. Exploration 2022; 2(3): 20210106.
[http://dx.doi.org/10.1002/EXP.20210106]
[100]
Breton M, Mir LM. Microsecond and nanosecond electric pulses in cancer treatments. Bioelectromagnetics 2012; 33(2): 106-23.
[http://dx.doi.org/10.1002/bem.20692] [PMID: 21812011]
[101]
Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv 2006; 13(3): 175-87.
[http://dx.doi.org/10.1080/10717540500455975] [PMID: 16556569]
[102]
Alimardani V, Abolmaali SS, Tamaddon AM, Ashfaq M. Recent advances on microneedle arrays-mediated technology in cancer diagnosis and therapy. Drug Deliv Transl Res 2021; 11(3): 788-816.
[http://dx.doi.org/10.1007/s13346-020-00819-z] [PMID: 32740799]
[103]
Alimardani V, Abolmaali SS, Yousefi G, et al. Microneedle arrays combined with nanomedicine approaches for transdermal delivery of therapeutics. J Clin Med 2021; 10(2): 181.
[http://dx.doi.org/10.3390/jcm10020181] [PMID: 33419118]
[104]
Lim DJ, Kim HJ. Microneedles in action: Microneedling and microneedles-assisted transdermal delivery. Polymers 2022; 14(8): 1608.
[http://dx.doi.org/10.3390/polym14081608] [PMID: 35458358]
[105]
Dugam S, Tade R, Dhole R, Nangare S. Emerging era of microneedle array for pharmaceutical and biomedical applications: Recent advances and toxicological perspectives. Future J Pharmaceut Sci 2021; 7(1): 19.
[http://dx.doi.org/10.1186/s43094-020-00176-1]
[106]
Dhoundiyal S, Alam MA, Kaur A, Sharma S. Nanomedicines: Impactful approaches for targeting pulmonary diseases. Pharm Nanotechnol 2023.
[PMID: 37231722]
[107]
Dhoundiyal S, Alam MA. Overcoming the limitations of therapeutic strategies to combat pancreatic cancer using nanotechnology. Curr Cancer Drug Targets 2023; 23(9): 697-17.
[http://dx.doi.org/10.2174/1568009623666230329085618]
[108]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[109]
Yi C, Yu Z, Ren Q, et al. Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagn Photodyn Ther 2020; 30: 101694.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101694] [PMID: 32109615]
[110]
Zhang P, Meng J, Li Y, et al. Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation 2021; 2(4): 100174.
[http://dx.doi.org/10.1016/j.xinn.2021.100174] [PMID: 34766099]
[111]
Jain R, Sarode I, Singhvi G, Dubey SK. Nanocarrier based topical drug delivery-A promising strategy for treatment of skin cancer. Curr Pharm Des 2020; 26(36): 4615-23.
[http://dx.doi.org/10.2174/1381612826666200826140448] [PMID: 32851954]
[112]
Souto EB, Nayak AP, Murthy RS. Lipid nanoemulsions for anti-cancer drug therapy. Pharmazie 2011; 66(7): 473-8.
[PMID: 21812320]
[113]
Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 2013; 65(5): 703-18.
[http://dx.doi.org/10.1016/j.addr.2012.09.036] [PMID: 23000745]
[114]
Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem 2019; 7: 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[115]
Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 2016; 83: 184-202.
[http://dx.doi.org/10.1016/j.ejps.2015.12.031] [PMID: 26747018]
[116]
Li JY, Kampp JT. Review of common alternative herbal “remedies” for skin cancer. Dermatol Surg 2019; 45(1): 58-67.
[http://dx.doi.org/10.1097/DSS.0000000000001622] [PMID: 30096105]
[117]
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, et al. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13: 902551.
[http://dx.doi.org/10.3389/fphar.2022.902551] [PMID: 36133811]
[118]
Chen CY, Kao CL, Liu CM. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int J Mol Sci 2018; 19(9): 2729.
[http://dx.doi.org/10.3390/ijms19092729] [PMID: 30213077]
[119]
Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011; 82(12): 1807-21.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[120]
Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr 2018; 58(9): 1428-47.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[121]
Panahi Y, Fazlolahzadeh O, Atkin SL, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J Cell Physiol 2019; 234(2): 1165-78.
[http://dx.doi.org/10.1002/jcp.27096] [PMID: 30073647]
[122]
Katiyar SK. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch Biochem Biophys 2011; 508(2): 152-8.
[http://dx.doi.org/10.1016/j.abb.2010.11.015] [PMID: 21094124]
[123]
Chinembiri T, du Plessis L, Gerber M, Hamman J, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19(8): 11679-721.
[http://dx.doi.org/10.3390/molecules190811679] [PMID: 25102117]
[124]
Ndiaye M, Philippe C, Mukhtar H, Ahmad N. The grape antioxidant resveratrol for skin disorders: Promise, prospects, and challenges. Arch Biochem Biophys 2011; 508(2): 164-70.
[http://dx.doi.org/10.1016/j.abb.2010.12.030] [PMID: 21215251]
[125]
Maleki M, Mardani A, Manoochehri M, Ashghali Farahani M, Vaismoradi M, Glarcher M. Effect of chamomile on the complications of cancer: A systematic review. Integr Cancer Ther 2023; 22.
[http://dx.doi.org/10.1177/15347354231164600] [PMID: 37052390]
[126]
Kodiyan J, Amber K. A review of the use of topical calendula in the prevention and treatment of radiotherapy-induced skin reactions. Antioxidants 2015; 4(2): 293-303.
[http://dx.doi.org/10.3390/antiox4020293] [PMID: 26783706]
[127]
Vaid M, Katiyar SK. Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn.). Int J Oncol 2010; 36(5): 1053-60.
[PMID: 20372777]
[128]
Wang LS, Stoner GD. Anthocyanins and their role in cancer prevention. Cancer Lett 2008; 269(2): 281-90.
[http://dx.doi.org/10.1016/j.canlet.2008.05.020] [PMID: 18571839]
[129]
O’Connor C, Rafferty S, Murphy M. A qualitative review of misinformation and conspiracy theories in skin cancer. Clin Exp Dermatol 2022; 47(10): 1848-52.
[http://dx.doi.org/10.1111/ced.15249] [PMID: 35514125]
[130]
Jackson KM, Frazier MC, Mancia MD, Shaw RN. Recent advances in the licorice root constituent dibenzoylmethane as a potential therapeutic option for cancer. Stud Nat Prod Chem 2019; 63: 1-19.
[http://dx.doi.org/10.1016/B978-0-12-817901-7.00001-0]
[131]
Joo WD, Visintin I, Mor G. Targeted cancer therapy - Are the days of systemic chemotherapy numbered? Maturitas 2013; 76(4): 308-14.
[http://dx.doi.org/10.1016/j.maturitas.2013.09.008] [PMID: 24128673]
[132]
Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: Multimodal approaches to improve efficacy and patient response rates. J Oncol 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/4508794] [PMID: 30941175]
[133]
Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur J Cancer 2016; 54: 139-48.
[http://dx.doi.org/10.1016/j.ejca.2015.11.016] [PMID: 26765102]
[134]
Khan NH, Mir M, Qian L, et al. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36: 223-47.
[http://dx.doi.org/10.1016/j.jare.2021.06.014] [PMID: 35127174]
[135]
Naldini L. Gene therapy returns to centre stage. Nature 2015; 526(7573): 351-60.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[136]
Chen MC, Lin ZW, Ling MH. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy. ACS Nano 2016; 10(1): 93-101.
[http://dx.doi.org/10.1021/acsnano.5b05043] [PMID: 26592739]
[137]
Manuchehrabadi N, Zhu L. Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy. Int J Hyperthermia 2014; 30(6): 349-61.
[http://dx.doi.org/10.3109/02656736.2014.948497] [PMID: 25244058]
[138]
Helmy AM. Overview of recent advancements in the iontophoretic drug delivery to various tissues and organs. J Drug Deliv Sci Technol 2021; 61: 102332.
[http://dx.doi.org/10.1016/j.jddst.2021.102332]
[139]
Petrilli R, Eloy JO, Saggioro FP, et al. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. J Control Release 2018; 283: 151-62.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.038] [PMID: 29864476]
[140]
Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018; 106: 1098-107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[141]
Gao Q, Dong X, Xu Q, et al. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T‐cell therapy. Cancer Med 2019; 8(9): 4254-64.
[http://dx.doi.org/10.1002/cam4.2257] [PMID: 31199589]
[142]
Singh V, Kesharwani P. Recent advances in microneedles based drug delivery device in the diagnosis and treatment of cancer. J Control Release 2021; 338: 394-409.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.054] [PMID: 34481019]
[143]
Yang D, Chen M, Sun Y, et al. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater 2021; 121: 119-33.
[http://dx.doi.org/10.1016/j.actbio.2020.12.004] [PMID: 33285323]
[144]
Calixto G, Bernegossi J, de Freitas L, Fontana C, Chorilli M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules 2016; 21(3): 342.
[http://dx.doi.org/10.3390/molecules21030342] [PMID: 26978341]
[145]
Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov Today 2012; 17(17-18): 1044-52.
[http://dx.doi.org/10.1016/j.drudis.2012.05.010] [PMID: 22652342]
[146]
Subramoniam A. Present scenario, challenges and future perspectives in plant based medicine development. Ann Phytomed 2014; 3(1): 31-6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy