Generic placeholder image

Current Psychiatry Research and Reviews

Editor-in-Chief

ISSN (Print): 2666-0822
ISSN (Online): 2666-0830

Review Article

Cross-talk between Peptide Neurotransmitters and their Role in Homeostasis of Brain, Behavior, and Immunity

Author(s): Soni Rani, Shubham Yadav and Soma Mondal Ghorai*

Volume 21, Issue 2, 2025

Published on: 06 November, 2023

Page: [123 - 144] Pages: 22

DOI: 10.2174/0126660822262191231024081805

Price: $65

Abstract

The bidirectional communication among the different peptide neurotransmitters and their receptors influences brain, immunity, and behavior. Among the peptide neurotransmitters, Glutamate is the primary excitatory while; gamma-aminobutyrate (γ-GABA), is the inhibitory neurotransmitter. Glutamatergic/GABAergic imbalances are seen in many neurological and autoimmune disorders. With an aim to understand more deeply the intricacies of glutamate/GABA homeostasis, we provide a critical review of glutamate, glycine and GABA peptide neurotransmitters and their role in the brain, behavior, and immunity. Another aspect of maintaining this homeostasis has its origin in the gut-brain-axis which influences mood and behavior via the bidirectional biochemical exchange network between central (CNS) and enteric nervous system (ENS). This present review also provides evidence of the cross-talk between glutamate, glycine, and GABA along the microbiotagut- brain axis, thus any variations in this axis bear the consequences of the pathological condition. Drugs like alcohol, Benzodiazepines (Barbiturates) and neurosteroids inhibit the excitatory action of glutamate leading to an overall increase of glutamate/GABA ratio that causes relaxation of nerves. However, these drugs are misused and abused among drug addicts and now their commercial production is either banned or downsized and heavily monitored. Because only a limited number of drug molecules are considered in pharmaceutics and clinics as antidepressants, it is essential to focus on alternate peptide modulator analogues which are safe, eco-friendly and can be used as drugs to relieve stress and anxiety. In this review, we present a synopsis of the studies on synthetic GABAergic agonists or GABA modulators that can be targeted for future therapeutics and clinics.

Keywords: Glutamate, glycine, γ-GABA, peptide neurotransmitters, enteric nervous system (ENS), immunity, gut microbiome, therapeutics.

Graphical Abstract
[1]
Lee, SH; Dan, Y Neuromodulation of brain states. neuron , 2012, 76(1), 209-222.
[2]
Xia, X.; Wang, Y.; Qin, Y.; Zhao, S.; Zheng, J.C. Exosome: A novel neurotransmission modulator or non-canonical neurotransmitter? Ageing Res. Rev., 2022, 74, 101558.
[http://dx.doi.org/10.1016/j.arr.2021.101558] [PMID: 34990846]
[3]
Mastrangelo, M. Epilepsy in inherited neurotransmitter disorders: Spotlights on pathophysiology and clinical management. Metab. Brain Dis., 2021, 36(1), 29-43.
[http://dx.doi.org/10.1007/s11011-020-00635-x] [PMID: 33095372]
[4]
Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease; Rosenberg, R.N.; Pascual, J.M., Eds.; Academic press, 2020, p. 1.
[5]
Brennenstuhl, H; Jung-Klawitter, S; Assmann, B; Opladen, T Inherited disorders of neurotransmitters: Classification and practical approaches for diagnosis and treatment Neuropediatrics , 2019, 50(1), 002-14.
[http://dx.doi.org/10.1055/s-0038-1673630]
[6]
Lepeta, K.; Lourenco, M.V.; Schweitzer, B.C. Synaptopathies: Synaptic dysfunction in neurological disorders: A review from students to students. J. Neurochem., 2016, 138(6), 785-805.
[http://dx.doi.org/10.1111/jnc.13713] [PMID: 27333343]
[7]
Teleanu, R.I.; Niculescu, A.G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters—Key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci., 2022, 23(11), 5954.
[http://dx.doi.org/10.3390/ijms23115954] [PMID: 35682631]
[8]
Chen, Y.; Xu, J.; Chen, Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients, 2021, 13(6), 2099.
[http://dx.doi.org/10.3390/nu13062099] [PMID: 34205336]
[9]
Hyman, S.E. Neurotransmitters. Curr. Biol., 2005, 15(5), R154-R158.
[http://dx.doi.org/10.1016/j.cub.2005.02.037] [PMID: 15753022]
[10]
Foster, J.A.; Baker, G.B.; Dursun, S.M. The relationship between the gut microbiome-immune system-brain axis and major depressive disorder. Front. Neurol., 2021, 12, 721126.
[http://dx.doi.org/10.3389/fneur.2021.721126] [PMID: 34650506]
[11]
Belelli, D.; Lambert, J.J. Neurosteroids: Endogenous regulators of the GABAA receptor. Nat. Rev. Neurosci., 2005, 6(7), 565-575.
[http://dx.doi.org/10.1038/nrn1703] [PMID: 15959466]
[12]
Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull., 2004, 130(4), 601-630.
[http://dx.doi.org/10.1037/0033-2909.130.4.601] [PMID: 15250815]
[13]
Watkins, JC; Jane, DE The glutamate story. Br J Pharmacol, 2006, 147(Suppl 1)(1), S100-8.
[PMID: 16402093]
[14]
D’Hulst, C.; Atack, J.R.; Kooy, R.F. The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov. Today, 2009, 14(17-18), 866-875.
[http://dx.doi.org/10.1016/j.drudis.2009.06.009] [PMID: 19576998]
[15]
Aprison, M.H.; Werman, R. The distribution of glycine in cat spinal cord and roots. Life Sci., 1965, 4(21), 2075-2083.
[http://dx.doi.org/10.1016/0024-3205(65)90325-5] [PMID: 5866625]
[16]
Amthor, F. Neuroscience for dummies; John Wiley & Sons, 2023.
[17]
Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids, 2013, 45(3), 463-477.
[http://dx.doi.org/10.1007/s00726-013-1493-1] [PMID: 23615880]
[18]
Saransaari, P.; Oja, S.S. Mechanisms of glycine release in mouse brain stem slices. Neurochem. Res., 2009, 34(2), 286-294.
[http://dx.doi.org/10.1007/s11064-008-9774-x] [PMID: 18600448]
[19]
Hübner, C.A.; Jentsch, T.J. Ion channel diseases. Hum. Mol. Genet., 2002, 11(20), 2435-2445.
[http://dx.doi.org/10.1093/hmg/11.20.2435] [PMID: 12351579]
[20]
Curtis, D.R.; Watkins, J.C. The excitation and depression of spinal neurones by structurally related amino acids. J. Neurochem., 1960, 6(2), 117-141.
[http://dx.doi.org/10.1111/j.1471-4159.1960.tb13458.x] [PMID: 13718948]
[21]
Hayashi, T. Effects of sodium glutamate on the nervous system. Keio J. Med., 1954, 3(4), 183-192.
[http://dx.doi.org/10.2302/kjm.3.183]
[22]
Meldrum, B.S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr., 2000, 130(4)(Suppl.), 1007S-1015S.
[http://dx.doi.org/10.1093/jn/130.4.1007S] [PMID: 10736372]
[23]
Hollmann, M.; Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci., 1994, 17(1), 31-108.
[http://dx.doi.org/10.1146/annurev.ne.17.030194.000335] [PMID: 8210177]
[24]
Keinänen, K.; Wisden, W.; Sommer, B. A family of AMPA-selective glutamate receptors. Science, 1990, 249(4968), 556-560.
[http://dx.doi.org/10.1126/science.2166337] [PMID: 2166337]
[25]
Monyer, H.; Sprengel, R.; Schoepfer, R. Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science, 1992, 256(5060), 1217-1221.
[http://dx.doi.org/10.1126/science.256.5060.1217] [PMID: 1350383]
[26]
Nusser, Z.; Lujan, R.; Laube, G.; Roberts, J.D.B.; Molnar, E.; Somogyi, P. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron, 1998, 21(3), 545-559.
[http://dx.doi.org/10.1016/S0896-6273(00)80565-6] [PMID: 9768841]
[27]
Obrenovitch, T.P.; Urenjak, J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J. Neurotrauma, 1997, 14(10), 677-698.
[http://dx.doi.org/10.1089/neu.1997.14.677] [PMID: 9383088]
[28]
Conn, P.J.; Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol., 1997, 37(1), 205-237.
[http://dx.doi.org/10.1146/annurev.pharmtox.37.1.205] [PMID: 9131252]
[29]
Pin, J.P.; Duvoisin, R. The metabotropic glutamate receptors: Structure and functions. Neuropharmacology, 1995, 34(1), 1-26.
[http://dx.doi.org/10.1016/0028-3908(94)00129-G] [PMID: 7623957]
[30]
Schoepp, D.D.; Conn, P.J. Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol. Sci., 1993, 14(1), 13-20.
[http://dx.doi.org/10.1016/0165-6147(93)90107-U] [PMID: 7680175]
[31]
Bormann, J. The ‘ABC’ of GABA receptors. Trends Pharmacol. Sci., 2000, 21(1), 16-19.
[http://dx.doi.org/10.1016/S0165-6147(99)01413-3] [PMID: 10637650]
[32]
Stein, V.; Nicoll, R.A. GABA generates excitement. Neuron, 2003, 37(3), 375-378.
[http://dx.doi.org/10.1016/S0896-6273(03)00056-4] [PMID: 12575946]
[33]
Bormann, J.; Feigenspan, A. GABAc receptors. Trends Neurosci., 1995, 18(12), 515-519.
[http://dx.doi.org/10.1016/0166-2236(95)98370-E] [PMID: 8638289]
[34]
Johnston, G.A.R. GABAC receptors: Relatively simple transmitter-gated ion channels? Trends Pharmacol. Sci., 1996, 17(9), 319-323.
[http://dx.doi.org/10.1016/0165-6147(96)10038-9] [PMID: 8885697]
[35]
Enz, R.; Cutting, G.R. Molecular composition of GABAC receptors. Vision Res., 1998, 38(10), 1431-1441.
[http://dx.doi.org/10.1016/S0042-6989(97)00277-0] [PMID: 9667009]
[36]
Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[37]
Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 2015, 28(2), 203-209.
[PMID: 25830558]
[38]
Baj, A.; Moro, E.; Bistoletti, M.; Orlandi, V.; Crema, F.; Giaroni, C. Glutamatergic signaling along the microbiota-gut-brain axis. Int. J. Mol. Sci., 2019, 20(6), 1482.
[http://dx.doi.org/10.3390/ijms20061482] [PMID: 30934533]
[39]
Fond, G.; Boukouaci, W.; Chevalier, G. The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathol. Biol., 2015, 63(1), 35-42.
[http://dx.doi.org/10.1016/j.patbio.2014.10.003] [PMID: 25468489]
[40]
Wang, Y.; Kasper, L.H. The role of microbiome in central nervous system disorders. Brain Behav. Immun., 2014, 38, 1-12.
[http://dx.doi.org/10.1016/j.bbi.2013.12.015] [PMID: 24370461]
[41]
Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[42]
Brandscheid, C.; Schuck, F.; Reinhardt, S. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J. Alzheimers Dis., 2017, 56(2), 775-788.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[43]
Kelly, J.R.; Minuto, C.; Cryan, J.F.; Clarke, G.; Dinan, T.G. The role of the gut microbiome in the development of schizophrenia. Schizophr. Res., 2021, 234, 4-23.
[http://dx.doi.org/10.1016/j.schres.2020.02.010] [PMID: 32336581]
[44]
Zheng, P.; Zeng, B.; Liu, M. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv., 2019, 5(2), eaau8317.
[http://dx.doi.org/10.1126/sciadv.aau8317] [PMID: 30775438]
[45]
Vuong, H.E.; Hsiao, E.Y. Emerging roles for the gut microbiome in autism spectrum disorder. Biol. Psychiatry, 2017, 81(5), 411-423.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.024] [PMID: 27773355]
[46]
Peirce, J.M.; Alviña, K. The role of inflammation and the gut microbiome in depression and anxiety. J. Neurosci. Res., 2019, 97(10), 1223-1241.
[http://dx.doi.org/10.1002/jnr.24476] [PMID: 31144383]
[47]
Mazzoli, R.; Pessione, E. The neuro-endocrinological role of microbial glutamate and GABA signaling. Front. Microbiol., 2016, 7, 1934.
[http://dx.doi.org/10.3389/fmicb.2016.01934] [PMID: 27965654]
[48]
Filpa, V.; Moro, E.; Protasoni, M.; Crema, F.; Frigo, G.; Giaroni, C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology, 2016, 111, 14-33.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.024] [PMID: 27561972]
[49]
Rooks, M.G.; Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol., 2016, 16(6), 341-352.
[http://dx.doi.org/10.1038/nri.2016.42] [PMID: 27231050]
[50]
Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 2018, 23(6), 716-724.
[http://dx.doi.org/10.1016/j.chom.2018.05.003] [PMID: 29902437]
[51]
Kaszaki, J.; Érces, D.; Varga, G.; Szabó, A.; Vécsei, L.; Boros, M. Kynurenines and intestinal neurotransmission: The role of N-methyl-d-aspartate receptors. J. Neural Transm., 2012, 119(2), 211-223.
[http://dx.doi.org/10.1007/s00702-011-0658-x] [PMID: 21617892]
[52]
Ramos-Chávez, LA; Lugo Huitrón, R; González Esquivel, D Relevance of alternative routes of kynurenic acid production in the brain. Oxid med cell long, 2018, 2018
[http://dx.doi.org/10.1155/2018/5272741]
[53]
Lugo-Huitrón, R.; Ugalde Muñiz, P.; Pineda, B.; Pedraza-Chaverrí, J.; Ríos, C.; Pérez-de la Cruz, V. Quinolinic acid: An endogenous neurotoxin with multiple targets. Oxid. Med. Cell. Long., 2013, 2013(1), 104024.
[http://dx.doi.org/10.1155/2013/104024]
[54]
Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 2014, 5(1), 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[55]
Gao, K.; Pi, Y.; Mu, C.L.; Peng, Y.; Huang, Z.; Zhu, W.Y. Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets. J. Neurochem., 2018, 146(3), 219-234.
[http://dx.doi.org/10.1111/jnc.14333] [PMID: 29524228]
[56]
Otaru, N.; Ye, K.; Mujezinovic, D. GABA production by human intestinal Bacteroides spp.: Prevalence, regulation, and role in acid stress tolerance. Front. Microbiol., 2021, 12, 656895.
[http://dx.doi.org/10.3389/fmicb.2021.656895] [PMID: 33936013]
[57]
Strandwitz, P.; Kim, K.H.; Terekhova, D. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol., 2018, 4(3), 396-403.
[http://dx.doi.org/10.1038/s41564-018-0307-3] [PMID: 30531975]
[58]
Bravo, J.A.; Forsythe, P.; Chew, M.V. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci., 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[59]
Newsholme, P.; Curi, R.; Pithon Curi, T.C.; Murphy, C.J.; Garcia, C.; Pires de Melo, M. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: Its importance in health and disease. J. Nutr. Biochem., 1999, 10(6), 316-324.
[http://dx.doi.org/10.1016/S0955-2863(99)00022-4] [PMID: 15539305]
[60]
Wang, L.; Liu, Y.; Zhao, T.L. Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer. Phytomedicine, 2019, 57, 117-128.
[http://dx.doi.org/10.1016/j.phymed.2018.12.011] [PMID: 30668314]
[61]
Haroon, E.; Miller, A.H.; Sanacora, G. Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology, 2017, 42(1), 193-215.
[http://dx.doi.org/10.1038/npp.2016.199] [PMID: 27629368]
[62]
McCullumsmith, R.E.; Sanacora, G. Regulation of extrasynaptic glutamate levels as a pathophysiological mechanism in disorders of motivation and addiction. Neuropsychopharmacology, 2015, 40(1), 254-255.
[http://dx.doi.org/10.1038/npp.2014.218] [PMID: 25482181]
[63]
Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci., 2010, 11(10), 682-696.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[64]
Malarkey, E.B.; Parpura, V. Mechanisms of glutamate release from astrocytes. Neurochem. Int., 2008, 52(1-2), 142-154.
[http://dx.doi.org/10.1016/j.neuint.2007.06.005] [PMID: 17669556]
[65]
Duman, R.S. Neurobiology of stress, depression, and rapid acting antidepressants: Remodeling synaptic connections. Depress. Anxiety, 2014, 31(4), 291-296.
[http://dx.doi.org/10.1002/da.22227] [PMID: 24616149]
[66]
McEwen, B.S.; Nasca, C.; Gray, J.D. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 2016, 41(1), 3-23.
[http://dx.doi.org/10.1038/npp.2015.171] [PMID: 26076834]
[67]
Zhong, Z.; Wheeler, M.D.; Li, X. L-Glycine: A novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr. Opin. Clin. Nutr. Metab. Care, 2003, 6(2), 229-240.
[http://dx.doi.org/10.1097/00075197-200303000-00013] [PMID: 12589194]
[68]
Wheeler, M.D.; Thurman, R.G. Production of superoxide and TNF-α from alveolar macrophages is blunted by glycine. Am. J. Physiol., 1999, 277(5), L952-L959.
[PMID: 10564180]
[69]
El-Hafidi, M.; Franco, M.; Ramírez, A.R. Glycine increases insulin sensitivity and glutathione biosynthesis and protects against oxidative stress in a model of sucrose-induced insulin resistance. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/2101562] [PMID: 29675131]
[70]
Jin, Z.; Mendu, S.K.; Birnir, B. GABA is an effective immunomodulatory molecule. Amino Acids, 2013, 45(1), 87-94.
[http://dx.doi.org/10.1007/s00726-011-1193-7] [PMID: 22160261]
[71]
(a) Lindquist, C.E.; Birnir, B. Graded response to GABA by native extrasynaptic GABAA receptors. J. Neurochem., 2006, 97(5), 1349-1356.;
(b) Bhat, R.; Axtell, R.; Mitra, A. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl. Acad. Sci., 2010, 107(6), 2580-2585.
[PMID: 20133656]
[72]
Olsen, R.W.; Sieghart, W. GABAA receptors: Subtypes provide diversity of function and pharmacology. Neuropharmacology, 2009, 56(1), 141-148.
[http://dx.doi.org/10.1016/j.neuropharm.2008.07.045] [PMID: 18760291]
[73]
Mendu, S.K.; Åkesson, L.; Jin, Z. Increased GABAA channel subunits expression in CD8+ but not in CD4+ T cells in BB rats developing diabetes compared to their congenic littermates. Mol. Immunol., 2011, 48(4), 399-407.
[http://dx.doi.org/10.1016/j.molimm.2010.08.005] [PMID: 21112637]
[74]
Soltani, N.; Qiu, H.; Aleksic, M. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc. Natl. Acad. Sci., 2011, 108(28), 11692-11697.
[http://dx.doi.org/10.1073/pnas.1102715108] [PMID: 21709230]
[75]
Tian, J.; Dang, H.N.; Yong, J. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice. PLoS One, 2011, 6(9), e25338.
[http://dx.doi.org/10.1371/journal.pone.0025338] [PMID: 21966503]
[76]
Wheeler, D.W.; Thompson, A.J.; Corletto, F. Anaesthetic impairment of immune function is mediated via GABA(A) receptors. PLoS One, 2011, 6(2), e17152.
[http://dx.doi.org/10.1371/journal.pone.0017152] [PMID: 21390329]
[77]
Popovich, P.G.; Longbrake, E.E. Can the immune system be harnessed to repair the CNS? Nat. Rev. Neurosci., 2008, 9(6), 481-493.
[http://dx.doi.org/10.1038/nrn2398] [PMID: 18490917]
[78]
Schwartz, M.; Shechter, R. Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol., 2010, 6(7), 405-410.
[http://dx.doi.org/10.1038/nrneurol.2010.71] [PMID: 20531383]
[79]
Crowley, T.; Cryan, J.F.; Downer, E.J.; O’Leary, O.F. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav. Immun., 2016, 54, 260-277.
[http://dx.doi.org/10.1016/j.bbi.2016.02.001] [PMID: 26851553]
[80]
Glaser, R.; Robles, T.F.; Sheridan, J.; Malarkey, W.B.; Kiecolt-Glaser, J.K. Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults. Arch. Gen. Psychiatry, 2003, 60(10), 1009-1014.
[http://dx.doi.org/10.1001/archpsyc.60.10.1009] [PMID: 14557146]
[81]
Winkelman, J.W.; Buxton, O.M.; Jensen, J.E. Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep, 2008, 31(11), 1499-1506.
[http://dx.doi.org/10.1093/sleep/31.11.1499] [PMID: 19014069]
[82]
Zhang, C.; He, J.; Wang, X. Dietary gamma-aminobutyric acid (GABA) improves non-specific immunity and alleviates lipopolysaccharide (LPS)-induced immune overresponse in juvenile Chinese mitten crab (Eriocheir sinensis). Fish Shellfish Immunol., 2022, 124, 480-489.
[http://dx.doi.org/10.1016/j.fsi.2022.04.028] [PMID: 35489590]
[83]
Wei, H.; Zou, H.; Sheikh, A.M. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation. J. Neuroinflammation, 2011, 8(1), 52.
[http://dx.doi.org/10.1186/1742-2094-8-52] [PMID: 21595886]
[84]
Han, S.; Tai, C.; Jones, C.J.; Scheuer, T.; Catterall, W.A. Enhancement of inhibitory neurotransmission by GABAA receptors having α2,3-subunits ameliorates behavioral deficits in a mouse model of autism. Neuron, 2014, 81(6), 1282-1289.
[http://dx.doi.org/10.1016/j.neuron.2014.01.016] [PMID: 24656250]
[85]
Li, X.; Chauhan, A.; Sheikh, A.M. Elevated immune response in the brain of autistic patients. J. Neuroimmunol., 2009, 207(1-2), 111-116.
[http://dx.doi.org/10.1016/j.jneuroim.2008.12.002] [PMID: 19157572]
[86]
Pribiag, H.; Stellwagen, D. TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J. Neurosci., 2013, 33(40), 15879-15893.
[http://dx.doi.org/10.1523/JNEUROSCI.0530-13.2013] [PMID: 24089494]
[87]
Mizuno, T.; Zhang, G.; Takeuchi, H. Interferon‐γ directly induces neurotoxicity through a neuron specific, calcium‐permeable complex of IFN‐γ receptor and AMPA GluRl receptor. FASEB J., 2008, 22(6), 1797-1806.
[http://dx.doi.org/10.1096/fj.07-099499] [PMID: 18198214]
[88]
El-Ansary, A.; Al-Ayadhi, L. GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. J. Neuroinflammation, 2014, 11(1), 189.
[http://dx.doi.org/10.1186/s12974-014-0189-0] [PMID: 25407263]
[89]
Tian, J.; Dillion, B.J.; Henley, J.; Comai, L.; Kaufman, D.L. A GABA-receptor agonist reduces pneumonitis severity, viral load, and death rate in SARS-CoV-2-infected mice. Front. Immunol., 2022, 13, 1007955.
[http://dx.doi.org/10.3389/fimmu.2022.1007955] [PMID: 36389819]
[90]
Hanada, T. Ionotropic glutamate receptors in epilepsy: A review focusing on AMPA and NMDA receptors. Biomolecules, 2020, 10(3), 464.
[http://dx.doi.org/10.3390/biom10030464] [PMID: 32197322]
[91]
Harrison, P.J.; Law, A.J.; Eastwood, S.L. Glutamate receptors and transporters in the hippocampus in schizophrenia. Ann. N. Y. Acad. Sci., 2003, 1003(1), 94-101.
[http://dx.doi.org/10.1196/annals.1300.006] [PMID: 14684437]
[92]
Chan, S.L.; Griffin, W.S.T.; Mattson, M.P. Evidence for caspase‐mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer’s disease. J. Neurosci. Res., 1999, 57(3), 315-323.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990801)57:3<315::AID-JNR3>3.0.CO;2-#] [PMID: 10412022]
[93]
Black, M.D. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology, 2005, 179(1), 154-163.
[http://dx.doi.org/10.1007/s00213-004-2065-6] [PMID: 15672275]
[94]
Chang, P.K.Y.; Verbich, D.; McKinney, R.A. AMPA receptors as drug targets in neurological disease: Advantages, caveats, and future outlook. Eur. J. Neurosci., 2012, 35(12), 1908-1916.
[http://dx.doi.org/10.1111/j.1460-9568.2012.08165.x] [PMID: 22708602]
[95]
Carroll, R.C.; Lissin, D.V.; Zastrow, M.; Nicoll, R.A.; Malenka, R.C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci., 1999, 2(5), 454-460.
[http://dx.doi.org/10.1038/8123] [PMID: 10321250]
[96]
Kristiansen, L.; Huerta, I.; Beneyto, M.; Meadorwoodruff, J. NMDA receptors and schizophrenia. Curr. Opin. Pharmacol., 2007, 7(1), 48-55.
[http://dx.doi.org/10.1016/j.coph.2006.08.013] [PMID: 17097347]
[97]
Clinton, S.M.; Meador-Woodruff, J.H. Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology, 2004, 29(7), 1353-1362.
[http://dx.doi.org/10.1038/sj.npp.1300451] [PMID: 15054476]
[98]
Heuss, C.; Scanziani, M.; Gähwiler, B.H.; Gerber, U. G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat. Neurosci., 1999, 2(12), 1070-1077.
[http://dx.doi.org/10.1038/15996] [PMID: 10570483]
[99]
Abe, T.; Sugihara, H.; Nawa, H.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem., 1992, 267(19), 13361-13368.
[http://dx.doi.org/10.1016/S0021-9258(18)42219-3] [PMID: 1320017]
[100]
Aramori, I.; Nakanishi, S. Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluRl, in transfected CHO cells. Neuron, 1992, 8(4), 757-765.
[http://dx.doi.org/10.1016/0896-6273(92)90096-V] [PMID: 1314623]
[101]
Chavis, P.; Shinozaki, H.; Bockaert, J.; Fagni, L. The metabotropic glutamate receptor types 2/3 inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells. J. Neurosci., 1994, 14(11), 7067-7076.
[http://dx.doi.org/10.1523/JNEUROSCI.14-11-07067.1994] [PMID: 7965099]
[102]
Tanabe, Y.; Nomura, A.; Masu, M.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci., 1993, 13(4), 1372-1378.
[http://dx.doi.org/10.1523/JNEUROSCI.13-04-01372.1993] [PMID: 8463825]
[103]
Bruno, V.; Battaglia, G.; Copani, A. Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration. Eur. J. Neurosci., 1995, 7(9), 1906-1913.
[http://dx.doi.org/10.1111/j.1460-9568.1995.tb00712.x] [PMID: 8528465]
[104]
Bruno, V.; Copani, A.; Knöpfel, T. Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neuropharmacology, 1995, 34(8), 1089-1098.
[http://dx.doi.org/10.1016/0028-3908(95)00077-J] [PMID: 8532158]
[105]
Swanson, C.J.; Bures, M.; Johnson, M.P.; Linden, A.M.; Monn, J.A.; Schoepp, D.D. Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat. Rev. Drug Discov., 2005, 4(2), 131-144.
[http://dx.doi.org/10.1038/nrd1630] [PMID: 15665858]
[106]
Kurczynski, T.W. Hyperekplexia. Arch. Neurol., 1983, 40(4), 246-248.
[http://dx.doi.org/10.1001/archneur.1983.04050040076015] [PMID: 6830476]
[107]
Shiang, R.; Ryan, S.G.; Zhu, Y.Z.; Hahn, A.F.; O’Connell, P.; Wasmuth, J.J. Mutations in the α1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nat. Genet., 1993, 5(4), 351-358.
[http://dx.doi.org/10.1038/ng1293-351] [PMID: 8298642]
[108]
Al-Owain, M.; Colak, D.; Al-Bakheet, A. Novel mutation in GLRB in a large family with hereditary hyperekplexia. Clin. Genet., 2012, 81(5), 479-484.
[http://dx.doi.org/10.1111/j.1399-0004.2011.01661.x] [PMID: 21391991]
[109]
Suhren, O.; Bruyn, G.W.; Tuynman, J.A. Hyperexplexia. J. Neurol. Sci., 1966, 3(6), 577-605.
[http://dx.doi.org/10.1016/0022-510X(66)90047-5]
[110]
Bakker, M.J.; van Dijk, J.G.; van den Maagdenberg, A.M.J.M.; Tijssen, M.A.J. Startle syndromes. Lancet Neurol., 2006, 5(6), 513-524.
[http://dx.doi.org/10.1016/S1474-4422(06)70470-7] [PMID: 16713923]
[111]
Hoon, M.; Soykan, T.; Falkenburger, B. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc. Natl. Acad. Sci., 2011, 108(7), 3053-3058.
[http://dx.doi.org/10.1073/pnas.1006946108] [PMID: 21282647]
[112]
Varoqueaux, F.; Aramuni, G.; Rawson, R.L. Neuroligins determine synapse maturation and function. Neuron, 2006, 51(6), 741-754.
[http://dx.doi.org/10.1016/j.neuron.2006.09.003] [PMID: 16982420]
[113]
Jamain, S.; Quach, H.; Betancur, C. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet., 2003, 34(1), 27-29.
[http://dx.doi.org/10.1038/ng1136] [PMID: 12669065]
[114]
Pilorge, M.; Fassier, C.; Le Corronc, H. Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism. Mol. Psychiatry, 2016, 21(7), 936-945.
[http://dx.doi.org/10.1038/mp.2015.139] [PMID: 26370147]
[115]
Lynch, JW; Callister, RJ Glycine receptors: A new therapeutic target in pain pathways. Curr opin investig drug, 2006, 7(1), 48-53.
[116]
Eichler, S.A.; Förstera, B.; Smolinsky, B. Splice-specific roles of glycine receptor α3 in the hippocampus. Eur. J. Neurosci., 2009, 30(6), 1077-1091.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06903.x] [PMID: 19723286]
[117]
Eichler, S.A.; Meier, J.C. E-I balance and human diseases: From molecules to networking. Front. Mol. Neurosci., 2008, 1, 2.
[http://dx.doi.org/10.3389/neuro.02.002.2008] [PMID: 18946535]
[118]
Jakobs, C.; Bojasch, M.; Mönch, E.; Rating, D.; Siemes, H.; Hanefeld, F. Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities. The probability of a new inborn error of metabolism. Clin. Chim. Acta, 1981, 111(2-3), 169-178.
[http://dx.doi.org/10.1016/0009-8981(81)90184-4] [PMID: 7226548]
[119]
Pearl, P.L.; Gibson, K.M.; Acosta, M.T. Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology, 2003, 60(9), 1413-1417.
[http://dx.doi.org/10.1212/01.WNL.0000059549.70717.80] [PMID: 12743223]
[120]
Jaeken, J.; Casaer, P.; de Cock, P. Gamma-aminobutyric acid-transaminase deficiency: A newly recognized inborn error of neurotransmitter metabolism. Neuropediatrics, 1984, 15(3), 165-169.
[http://dx.doi.org/10.1055/s-2008-1052362] [PMID: 6148708]
[121]
Parviz, M.; Vogel, K.; Gibson, K.; Pearl, P. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies. J. Pediatr. Epilepsy, 2015, 3(4), 217-227.
[http://dx.doi.org/10.3233/PEP-14097] [PMID: 25485164]
[122]
Treiman, D.M. GABAergic mechanisms in epilepsy. Epilepsia, 2001, 42(3), 8-12.
[http://dx.doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x] [PMID: 11520315]
[123]
Lydiard, R.B. The role of GABA in anxiety disorders. J. Clin. Psychiatry, 2003, 64(3), 21-27.
[PMID: 12662130]
[124]
Kalueff, A.V.; Nutt, D.J. Role of GABA in anxiety and depression. Depress. Anxiety, 2007, 24(7), 495-517.
[http://dx.doi.org/10.1002/da.20262] [PMID: 17117412]
[125]
Carlsson, A.; Waters, N.; Holm-Waters, S.; Tedroff, J.; Nilsson, M.; Carlsson, M.L. Interactions between monoamines, glutamate, and GABA in schizophrenia:New evidence. Annu. Rev. Pharmacol. Toxicol., 2001, 41(1), 237-260.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.237] [PMID: 11264457]
[126]
Blum, B.P.; Mann, J.J. The GABAergic system in schizophrenia. Int. J. Neuropsychopharmacol., 2002, 5(2), 159-179.
[http://dx.doi.org/10.1017/S1461145702002894] [PMID: 12135541]
[127]
Coghlan, S.; Horder, J.; Inkster, B.; Mendez, M.A.; Murphy, D.G.; Nutt, D.J. GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neurosci. Biobehav. Rev., 2012, 36(9), 2044-2055.
[http://dx.doi.org/10.1016/j.neubiorev.2012.07.005] [PMID: 22841562]
[128]
Jo, S.; Yarishkin, O.; Hwang, Y.J. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat. Med., 2014, 20(8), 886-896.
[http://dx.doi.org/10.1038/nm.3639] [PMID: 24973918]
[129]
van Nuland, A.J.M.; den Ouden, H.E.M.; Zach, H. GABAergic changes in the thalamocortical circuit in Parkinson’s disease. Hum. Brain Mapp., 2020, 41(4), 1017-1029.
[http://dx.doi.org/10.1002/hbm.24857] [PMID: 31721369]
[130]
Mao, X.; Mao, X.; Stanford, A.D. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 2012, 69(5), 449-459.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.1519] [PMID: 22213769]
[131]
Japha, K.; Koch, M. Picrotoxin in the medial prefrontal cortex impairs sensorimotor gating in rats: reversal by haloperidol. Psychopharmacology, 1999, 144(4), 347-354.
[http://dx.doi.org/10.1007/s002130051017] [PMID: 10435407]
[132]
Mizukami, K.; Sasaki, M.; Ishikawa, M. Immunohistochemical localization of γ-aminobutyric acidB receptor in the hippocampus of subjects with schizophrenia. Neurosci. Lett., 2000, 283(2), 101-104.
[http://dx.doi.org/10.1016/S0304-3940(00)00939-3] [PMID: 10739885]
[133]
Simpson, M.D.C.; Slater, P.; Deakin, J.F.W.; Royston, M.C.; Skan, W.J. Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci. Lett., 1989, 107(1-3), 211-215.
[http://dx.doi.org/10.1016/0304-3940(89)90819-7] [PMID: 2616032]
[134]
Petty, F.; Kramer, G.L.; Gullion, C.M.; John Rush, A. Low plasma γ-aminobutyric acid levels in male patients with depression. Biol. Psychiatry, 1992, 32(4), 354-363.
[http://dx.doi.org/10.1016/0006-3223(92)90039-3] [PMID: 1420649]
[135]
Petty, F. Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: A blood test for manic depressive disease? Clin. Chem., 1994, 40(2), 296-302.
[http://dx.doi.org/10.1093/clinchem/40.2.296] [PMID: 8313610]
[136]
Bhagwagar, Z.; Wylezinska, M.; Jezzard, P. Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int. J. Neuropsychopharmacol., 2008, 11(2), 255-260.
[http://dx.doi.org/10.1017/S1461145707007924] [PMID: 17625025]
[137]
Brady, R.O., Jr; McCarthy, J.M.; Prescot, A.P. Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord., 2013, 15(4), 434-439.
[http://dx.doi.org/10.1111/bdi.12074] [PMID: 23634979]
[138]
Goddard, A.W.; Mason, G.F.; Almai, A. Reductions in occipital cortex GABA levels in panic disorder detected with 1h-magnetic resonance spectroscopy. Arch. Gen. Psychiatry, 2001, 58(6), 556-561.
[http://dx.doi.org/10.1001/archpsyc.58.6.556] [PMID: 11386984]
[139]
Möhler, H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology, 2012, 62(1), 42-53.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.040] [PMID: 21889518]
[140]
Sackeim, H.A.; Decina, P.; Prohovnik, I.; Malitz, S.; Resor, S.R. Anticonvulsant and antidepressant properties of electroconvulsive therapy: A proposed mechanism of action. Biol. Psychiatry, 1983, 18(11), 1301-1310.
[PMID: 6317065]
[141]
Bhagwagar, Z.; Wylezinska, M.; Taylor, M.; Jezzard, P.; Matthews, P.M.; Cowen, P.J. Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am. J. Psychiatry, 2004, 161(2), 368-370.
[http://dx.doi.org/10.1176/appi.ajp.161.2.368] [PMID: 14754790]
[142]
Haefely, W.; Kulcsár, A.; Möhler, H.; Pieri, L.; Polc, P.; Schaffner, R. Possible involvement of GABA in the central actions of benzodiazepines. Adv. Biochem. Psychopharmacol., 1975, (14), 131-151.
[PMID: 242199]
[143]
Chen, H.Y.; Albertson, T.E.; Olson, K.R. Treatment of drug-induced seizures. Br. J. Clin. Pharmacol., 2016, 81(3), 412-419.
[http://dx.doi.org/10.1111/bcp.12720] [PMID: 26174744]
[144]
Bergmann, K.J. Progabide. Clin. Neuropharmacol., 1985, 8(1), 13-26.
[http://dx.doi.org/10.1097/00002826-198503000-00002] [PMID: 2983890]
[145]
Krogsgaard-Larsen, P.; Falch, E.; Larsson, O.M.; Schousboe, A. GABA uptake inhibitors: Relevance to antiepileptic drug research. Epilepsy Res., 1987, 1(2), 77-93.
[http://dx.doi.org/10.1016/0920-1211(87)90012-X] [PMID: 2973980]
[146]
Mitani, H.; Shirayama, Y.; Yamada, T.; Maeda, K.; Ashby, C.R., Jr; Kawahara, R. Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, 30(6), 1155-1158.
[http://dx.doi.org/10.1016/j.pnpbp.2006.03.036] [PMID: 16707201]
[147]
Sanacora, G.; Rothman, D.L.; Mason, G.; Krystal, J.H. Clinical studies implementing glutamate neurotransmission in mood disorders. Ann. N. Y. Acad. Sci., 2003, 1003(1), 292-308.
[http://dx.doi.org/10.1196/annals.1300.018] [PMID: 14684453]
[148]
Hashimoto, K.; Sawa, A.; Iyo, M. Increased levels of glutamate in brains from patients with mood disorders. Biol. Psychiatry, 2007, 62(11), 1310-1316.
[http://dx.doi.org/10.1016/j.biopsych.2007.03.017] [PMID: 17574216]
[149]
Lowy, M.T.; Gault, L.; Yamamoto, B.K. Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J. Neurochem., 1993, 61(5), 1957-1960.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb09839.x] [PMID: 7901339]
[150]
Reznikov, L.R.; Grillo, C.A.; Piroli, G.G.; Pasumarthi, R.K.; Reagan, L.P.; Fadel, J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: Differential effects of antidepressant treatment. Eur. J. Neurosci., 2007, 25(10), 3109-3114.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05560.x] [PMID: 17561824]
[151]
Bartanusz, V.; Aubry, J.M.; Pagliusi, S.; Jezova, D.; Baffi, J.; Kiss, J.Z. Stress-induced changes in messenger RNA levels of N-methyl-d-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience, 1995, 66(2), 247-252.
[http://dx.doi.org/10.1016/0306-4522(95)00084-V] [PMID: 7477869]
[152]
Trullas, R.; Skolnick, P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur. J. Pharmacol., 1990, 185(1), 1-10.
[http://dx.doi.org/10.1016/0014-2999(90)90204-J] [PMID: 2171955]
[153]
Newport, D.J.; Carpenter, L.L.; McDonald, W.M.; Potash, J.B.; Tohen, M.; Nemeroff, C.B. Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression. Am. J. Psychiatry, 2015, 172(10), 950-966.
[http://dx.doi.org/10.1176/appi.ajp.2015.15040465] [PMID: 26423481]
[154]
Schoepp, D.D. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J. Pharmacol. Exp. Ther., 2001, 299(1), 12-20.
[PMID: 11561058]
[155]
Fan, M.; Raymond, L. N-Methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog. Neurobiol., 2007, 81(5-6), 272-293.
[http://dx.doi.org/10.1016/j.pneurobio.2006.11.003] [PMID: 17188796]
[156]
Gielen, M.; Retchless, B.S.; Mony, L.; Johnson, J.W.; Paoletti, P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature, 2009, 459(7247), 703-707.
[http://dx.doi.org/10.1038/nature07993] [PMID: 19404260]
[157]
Furukawa, H.; Singh, S.K.; Mancusso, R.; Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature, 2005, 438(7065), 185-192.
[http://dx.doi.org/10.1038/nature04089] [PMID: 16281028]
[158]
Yao, Y.; Mayer, M.L. Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J. Neurosci., 2006, 26(17), 4559-4566.
[http://dx.doi.org/10.1523/JNEUROSCI.0560-06.2006] [PMID: 16641235]
[159]
Harrison, N.L.; Simmonds, M.A. Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br. J. Pharmacol., 1985, 84(2), 381-391.
[http://dx.doi.org/10.1111/j.1476-5381.1985.tb12922.x] [PMID: 2858237]
[160]
Chindo, B.A.; Adzu, B.; Yahaya, T.A.; Gamaniel, K.S. Ketamine-enhanced immobility in forced swim test: A possible animal model for the negative symptoms of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 38(2), 310-316.
[http://dx.doi.org/10.1016/j.pnpbp.2012.04.018] [PMID: 22561603]
[161]
Moghaddam, B.; Adams, B.; Verma, A.; Daly, D. Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci., 1997, 17(8), 2921-2927.
[http://dx.doi.org/10.1523/JNEUROSCI.17-08-02921.1997] [PMID: 9092613]
[162]
Jevtovic-Todorovic, V.; Wozniak, D.F.; Benshoff, N.D.; Olney, J.W. A comparative evaluation of the neurotoxic properties of ketamine and nitrous oxide. Brain Res., 2001, 895(1-2), 264-267.
[http://dx.doi.org/10.1016/S0006-8993(01)02079-0] [PMID: 11259788]
[163]
Price, R.B.; Nock, M.K.; Charney, D.S.; Mathew, S.J. Effects of intravenous ketamine on explicit and implicit measures of suicidality in treatment-resistant depression. Biol. Psychiatry, 2009, 66(5), 522-526.
[http://dx.doi.org/10.1016/j.biopsych.2009.04.029] [PMID: 19545857]
[164]
Green, S.M.; Rothrock, S.G.; Lynch, E.L. Intramuscular ketamine for pediatric sedation in the emergency department: Safety profile in 1,022 cases. Ann. Emerg. Med., 1998, 31(6), 688-697.
[http://dx.doi.org/10.1016/S0196-0644(98)70226-4] [PMID: 9624307]
[165]
Mathew, S.J.; Shah, A.; Lapidus, K. Ketamine for treatment-resistant unipolar depression: Current evidence. CNS Drugs, 2012, 26(3), 189-204.
[http://dx.doi.org/10.2165/11599770-000000000-00000] [PMID: 22303887]
[166]
Park, M.; Niciu, M.J.; Zarate, C.A., Jr Novel glutamatergic treatments for severe mood disorders. Curr. Behav. Neurosci. Rep., 2015, 2(4), 198-208.
[http://dx.doi.org/10.1007/s40473-015-0050-5] [PMID: 26824031]
[167]
Sanders, R.D.; Weimann, J.; Maze, M.; Warner, D.S.; Warner, M.A. Biologic effects of nitrous oxide: A mechanistic and toxicologic review. Anesthesiology, 2008, 109(4), 707-722.
[http://dx.doi.org/10.1097/ALN.0b013e3181870a17] [PMID: 18813051]
[168]
Wang, M.; Yang, Y.; Dong, Z.; Cao, J.; Xu, L. NR2B-containing N-methyl-D-aspartate subtype glutamate receptors regulate the acute stress effect on hippocampal long-term potentiation/long-term depression in vivo. Neuroreport, 2006, 17(12), 1343-1346.
[http://dx.doi.org/10.1097/01.wnr.0000227994.07799.6c] [PMID: 16951582]
[169]
Maeng, S.; Zarate, C.A., Jr; Du, J. Cellular mechanisms underlying the antidepressant effects of ketamine: Role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry, 2008, 63(4), 349-352.
[http://dx.doi.org/10.1016/j.biopsych.2007.05.028] [PMID: 17643398]
[170]
Preskorn, S.H.; Baker, B.; Kolluri, S.; Menniti, F.S.; Krams, M.; Landen, J.W. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J. Clin. Psychopharmacol., 2008, 28(6), 631-637.
[http://dx.doi.org/10.1097/JCP.0b013e31818a6cea] [PMID: 19011431]
[171]
Kemp, A.H.; Gordon, E.; Rush, A.J.; Williams, L.M. Improving the prediction of treatment response in depression: Integration of clinical, cognitive, psychophysiological, neuroimaging, and genetic measures. CNS Spectr., 2008, 13(12), 1066-1086.
[http://dx.doi.org/10.1017/S1092852900017120] [PMID: 19179943]
[172]
Lo, D.; Grossberg, G.T. Use of memantine for the treatment of dementia. Expert Rev. Neurother., 2011, 11(10), 1359-1370.
[http://dx.doi.org/10.1586/ern.11.132] [PMID: 21955192]
[173]
Lenze, E.J.; Skidmore, E.R.; Begley, A.E.; Newcomer, J.W.; Butters, M.A.; Whyte, E.M. Memantine for late-life depression and apathy after a disabling medical event: A 12-week, double-blind placebo-controlled pilot study. Int. J. Geriatr. Psychiatry, 2012, 27(9), 974-980.
[http://dx.doi.org/10.1002/gps.2813] [PMID: 22173933]
[174]
Huber, T.; Dietrich, D.; Emrich, H. Possible use of amantadine in depression. Pharmacopsychiatry, 1999, 32(2), 47-55.
[http://dx.doi.org/10.1055/s-2007-979191] [PMID: 10333162]
[175]
Ferszt, R.; Kühl, K.P.; Bode, L. Amantadine revisited: an open trial of amantadinesulfate treatment in chronically depressed patients with Borna disease virus infection. Pharmacopsychiatry, 1999, 32(4), 142-147.
[http://dx.doi.org/10.1055/s-2007-979220] [PMID: 10505484]
[176]
Rogóz, Z.; Skuza, G.; Daniel, W.A.; Wójcikowski, J.; Dudek, D.; Wróbel, A. Amantadine as an additive treatment in patients suffering from drug-resistant unipolar depression. Pharmacol. Rep., 2007, 59(6), 778-784.
[PMID: 18195470]
[177]
Sumiyoshi, T.; Anil, A.E.; Jin, D.; Jayathilake, K.; Lee, M.; Meltzer, H.Y. Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: Relation to negative symptoms. Int. J. Neuropsychopharmacol., 2004, 7(1), 1-8.
[http://dx.doi.org/10.1017/S1461145703003900] [PMID: 14720317]
[178]
Moskal, J.R.; Burch, R.; Burgdorf, J.S. GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert Opin. Investig. Drugs, 2014, 23(2), 243-254.
[http://dx.doi.org/10.1517/13543784.2014.852536] [PMID: 24251380]
[179]
Goodchild, C.S. GABA receptors and benzodiazepines. Br. J. Anaesth., 1993, 71(1), 127-133.
[http://dx.doi.org/10.1093/bja/71.1.127] [PMID: 8393687]
[180]
Haefely, W. Benzodiazepine interactions with GABA receptors. Neurosci. Lett., 1984, 47(3), 201-206.
[http://dx.doi.org/10.1016/0304-3940(84)90514-7] [PMID: 6147796]
[181]
Izquierdo, I.; Pereira, M.E.; Medina, J.H. Benzodiazepine receptor ligand influences on acquisition: Suggestion of an endogenous modulatory mechanism mediated by benzodiazepine receptors. Behav. Neural Biol., 1990, 54(1), 27-41.
[http://dx.doi.org/10.1016/0163-1047(90)91221-V] [PMID: 1974134]
[182]
Wesselman, J.P.M.; van Wilgenburg, H.; Long, S.K. The effects of pentobarbital and benzodiazepines on GABA-responses in the periphery and spinal cord in vitro. Neurosci. Lett., 1991, 128(2), 261-264.
[http://dx.doi.org/10.1016/0304-3940(91)90275-X] [PMID: 1658694]
[183]
Potier, M.C.; Prado de Carvalho, L.; Dodd, R.H.; Besselievre, R.; Rossier, J. In vivo binding of beta-carbolines in mice: Regional differences and correlation of occupancy to pharmacological effects. Mol. Pharmacol., 1988, 34(2), 124-128.
[PMID: 2842651]
[184]
Mellon, S.H.; Griffin, L.D. Neurosteroids: Biochemistry and clinical significance. Trends Endocrinol. Metab., 2002, 13(1), 35-43.
[http://dx.doi.org/10.1016/S1043-2760(01)00503-3] [PMID: 11750861]
[185]
Lambert, J.J.; Belelli, D.; Hill-Venning, C.; Callachan, H.; Peters, J.A. Neurosteroid modulation of native and recombinant GABAA receptors. Cell. Mol. Neurobiol., 1996, 16(2), 155-174.
[http://dx.doi.org/10.1007/BF02088174] [PMID: 8743967]
[186]
Spivak, C.E. Desensitization and noncompetitive blockade of GABAA receptors in ventral midbrain neurons by a neurosteroid dehydroepiandrosterone sulfate. Synapse, 1994, 16(2), 113-122.
[http://dx.doi.org/10.1002/syn.890160205] [PMID: 7515198]
[187]
Monnet, F.P.; Mahé, V.; Robel, P.; Baulieu, E.E. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc. Natl. Acad. Sci., 1995, 92(9), 3774-3778.
[http://dx.doi.org/10.1073/pnas.92.9.3774] [PMID: 7731982]
[188]
Zhu, W.J.; Wang, J.F.; Krueger, K.E.; Vicini, S. δ subunit inhibits neurosteroid modulation of GABAA receptors. J. Neurosci., 1996, 16(21), 6648-6656.
[http://dx.doi.org/10.1523/JNEUROSCI.16-21-06648.1996] [PMID: 8824305]
[189]
Kostandy, B.B. The role of glutamate in neuronal ischemic injury: The role of spark in fire. Neurol. Sci., 2012, 33(2), 223-237.
[http://dx.doi.org/10.1007/s10072-011-0828-5] [PMID: 22044990]
[190]
Mony, L.; Kew, J.N.C.; Gunthorpe, M.J.; Paoletti, P. Allosteric modulators of NR2B-containing NMDA receptors: Molecular mechanisms and therapeutic potential. Br. J. Pharmacol., 2009, 157(8), 1301-1317.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00304.x] [PMID: 19594762]
[191]
Yuan, H.; Low, C.M.; Moody, O.A.; Jenkins, A.; Traynelis, S.F. Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol. Pharmacol., 2015, 88(1), 203-217.
[http://dx.doi.org/10.1124/mol.115.097998] [PMID: 25904555]
[192]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[193]
Miladinovic, T.; Nashed, M.; Singh, G. Overview of glutamatergic dysregulation in central pathologies. Biomolecules, 2015, 5(4), 3112-3141.
[http://dx.doi.org/10.3390/biom5043112] [PMID: 26569330]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy