Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Mini-Review Article

Radioactive Iodine in Differentiated Carcinoma of Thyroid: An Overview

Author(s): Namit Kant Singh*, Balaji Ramamourthy, Neemu Hage, Sushmitha Nagaraju and Krishna Medha Kappagantu

Volume 17, Issue 1, 2024

Published on: 24 October, 2023

Page: [2 - 6] Pages: 5

DOI: 10.2174/0118744710249684231013072013

Price: $65

Abstract

Thyroid cancer is the fifth most prevalent cancer in women and the fastest-growing malignancy. Although surgery is still the basis of treatment, internal radiation therapy (Brachytherapy) with radioactive iodine-131, which functions by releasing beta particles with low tissue penetration and causing DNA damage, is also a potential option. The three basic aims of RAI therapy in well-differentiated thyroid tumors are ablation of the remnant, adjuvant therapy, and disease management. Radioactive iodine dose is selected in one of two ways, empiric and dosimetric, which relies on numerous criteria. The dosage for ablation is 30-100 mCi, 30-150 mCi for adjuvant therapy, and 100-200 mCi for treatment. The RAI treatment effectively aids in the treatment to achieve complete removal of the disease and increase survival. The present review intends to emphasize the significance of radioactive iodine in the management of differentiated thyroid cancer and put forward the current breakthroughs in therapy.

Keywords: Radioactive iodine, 131-I, thyroid cancer, brachytherapy, ablation, adjuvant therapy.

Graphical Abstract
[2]
Pacilio, M.; Conte, M.; Frantellizzi, V.; De Feo, M.S.; Pisani, A.R.; Marongiu, A.; Nuvoli, S.; Rubini, G.; Spanu, A.; De Vincentis, G. Personalized dosimetry in the context of radio-iodine therapy for differentiated thyroid cancer. Diagnostics (Basel), 2022, 12(7), 1763.
[http://dx.doi.org/10.3390/diagnostics12071763] [PMID: 35885666]
[3]
McDonald, A.M.; Lindeman, B.; Bahl, D. Radioactive iodine: Recognizing the need for risk-benefit balance. J. Clin. Oncol., 2022, 40(13), 1396-1399.
[http://dx.doi.org/10.1200/JCO.22.00013] [PMID: 35298297]
[4]
Yansong, L. Internal radiation therapy: a neglected aspect of nuclear medicine in the molecular era. J. Biomed. Res., 2015, 29(5), 345-355.
[http://dx.doi.org/10.7555/JBR.29.20140069] [PMID: 26445567]
[5]
Leboulleux, S.; Borget, I.; Schlumberger, M. Post-operative radioactive iodine administration in patients with low-risk thyroid cancer. Nat. Rev. Endocrinol., 2022, 18(10), 585-586.
[http://dx.doi.org/10.1038/s41574-022-00709-z] [PMID: 35725924]
[6]
Zhao, H.; Gong, Y. Radioactive iodine in low- to intermediate-risk papillary thyroid cancer. Front. Endocrinol. (Lausanne), 2022, 13, 960682.
[http://dx.doi.org/10.3389/fendo.2022.960682] [PMID: 36034423]
[7]
Ylli, D.; Van Nostrand, D.; Wartofsky, L. Conventional radio-iodine therapy for differentiated thyroid cancer. Endocrinol. Metab. Clin. North Am., 2019, 48(1), 181-197.
[http://dx.doi.org/10.1016/j.ecl.2018.11.005] [PMID: 30717901]
[8]
Ravera, S.; Reyna-Neyra, A.; Ferrandino, G.; Amzel, L.M.; Carrasco, N. The sodium/iodide symporter (NIS): Molecular physiology and preclinical and clinical applications. Annu. Rev. Physiol., 2017, 79(1), 261-289.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034125] [PMID: 28192058]
[9]
Gorman, C.A. Radioiodine and pregnancy. Thyroid, 1999, 9(7), 721-726.
[http://dx.doi.org/10.1089/thy.1999.9.721] [PMID: 10447020]
[10]
Prete, A.; Borges de Souza, P.; Censi, S.; Muzza, M.; Nucci, N.; Sponziello, M. Update on fundamental mechanisms of thyroid cancer. Front. Endocrinol. (Lausanne), 2020, 11, 102.
[http://dx.doi.org/10.3389/fendo.2020.00102] [PMID: 32231639]
[11]
Cai, X.; Wang, R.; Tan, J.; Meng, Z.; Li, N. Mechanisms of regulating NIS transport to the cell membrane and redifferen-tiation therapy in thyroid cancer. Clin. Transl. Oncol., 2021, 23(12), 2403-2414.
[http://dx.doi.org/10.1007/s12094-021-02655-0] [PMID: 34100218]
[12]
Paulsson, J.; Backman, S.; Wang, N.; Stenman, A.; Crona, J.; Thutkawkorapin, J. Whole‐genome sequencing of synchronous thyroid carcinomas identifies aberrant dna repair in thyroid cancer dedifferentiation. J. Pathol., 2019.
[PMID: 31621921]
[13]
Tuttle, R.M.; Ahuja, S.; Avram, A.M.; Bernet, V.J.; Bourguet, P.; Daniels, G.H.; Dillehay, G.; Draganescu, C.; Flux, G.; Füh-rer, D.; Giovanella, L.; Greenspan, B.; Luster, M.; Muylle, K.; Smit, J.W.A.; Van Nostrand, D.; Verburg, F.A.; Hegedüs, L. Controversies, consensus, and collaboration in the use of 131 I therapy in differentiated thyroid cancer: A joint statement from the american thyroid association, the european association of nuclear medicine, the society of nuclear medicine and molecular imaging, and the european thyroid association. Thyroid, 2019, 29(4), 461-470.
[http://dx.doi.org/10.1089/thy.2018.0597] [PMID: 30900516]
[14]
Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; Schuff, K.G.; Sherman, S.I.; Sosa, J.A.; Steward, D.L.; Tuttle, R.M.; Wartofsky, L. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid, 2016, 26(1), 1-133.
[http://dx.doi.org/10.1089/thy.2015.0020] [PMID: 26462967]
[15]
Nuclear Data – Table – Laboratoire National Henri Becquere Available from: http://www.lnhb.fr/nuclear-data/nuclear-data-table/ (Accessed on: 2022 Dec 10).
[16]
Sondorp, L.H.J.; Ogundipe, V.M.L.; Groen, A.H.; Kelder, W.; Kemper, A.; Links, T.P.; Coppes, R.P.; Kruijff, S. Patient-derived papillary thyroid cancer organoids for radioactive iodine refractory screening. Cancers, 2020, 12(11), 3212.
[http://dx.doi.org/10.3390/cancers12113212] [PMID: 33142750]
[17]
Robbins, R.J.; Schlumberger, M.J. The evolving role of (131)I for the treatment of differentiated thyroid carcinoma. J. Nucl. Med., 2005, 46(Suppl. 1), 28S-37S.
[PMID: 15653649]
[18]
Fecca, C; Moon, J; Posocco, D; Zhao, H; Dadparvar, S. Accuracy of 123I Na thyroid imaging in calculating thyroid volume. J Nucl Med Technol., 2022. jnmt.121.263395
[19]
Ansari, M.; Rezaei Tavirani, M. Assessment of different radi-oiodine doses for post-ablation therapy of thyroid remnants: a systematic review. Iran. J. Pharm. Res., 2022, 21(1), e123825.
[http://dx.doi.org/10.5812/ijpr-123825] [PMID: 36060901]
[20]
Luo, H.; Tobey, A.; Auh, S.; Cochran, C.; Behairy, N.; Meri-no, M.; Zemskova, M.; Klubo-Gwiezdzinska, J. The utility of low-iodine diet in preparation for thyroid cancer therapy with radioactive iodine—A cohort study. Front. Pharmacol., 2022, 13, 791710.
[http://dx.doi.org/10.3389/fphar.2022.791710] [PMID: 36249761]
[21]
Castagna, M.G.; Cevenini, G.; Theodoropoulou, A.; Maino, F.; Memmo, S.; Claudia, C.; Belardini, V.; Brianzoni, E.; Paci-ni, F. Post-surgical thyroid ablation with low or high radioio-dine activities results in similar outcomes in intermediate risk differentiated thyroid cancer patients. Eur. J. Endocrinol., 2013, 169(1), 23-29.
[http://dx.doi.org/10.1530/EJE-12-0954] [PMID: 23594687]
[22]
Hosseinimehr, S.J.; Shafaghati, N.; Hedayati, M. Genotoxicity induced by iodine-131 in human cultured lymphocytes. Interdiscip. Toxicol., 2013, 6(2), 74-76. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798859/
[http://dx.doi.org/10.2478/intox-2013-0013] [PMID: 24179432]
[23]
Little, J.B. Radiation carcinogenesis. Carcinogenesis, 2000, 21(3), 397-404.
[http://dx.doi.org/10.1093/carcin/21.3.397] [PMID: 10688860]
[24]
Valerio, L.; Maino, F.; Castagna, M.G.; Pacini, F. Radioiodine therapy in the different stages of differentiated thyroid cancer. Best Pract. Res. Clin. Endocrinol. Metab., 2023, 37(1), 101703.
[http://dx.doi.org/10.1016/j.beem.2022.101703] [PMID: 36151009]
[25]
Das, R.; Satya Sai Reddy Gontu, G.; Das, K.; Das, A.; Rah-man, T.; Kumar Das, A.; Kakati, K. Validation of ATA guide-lines for Indian population: Do ATA guidelines have an im-pact on management of DTC patients in Indian population – A 5 year retrospective cohort analysis. Oral Oncol., 2022, 132, 106016.
[http://dx.doi.org/10.1016/j.oraloncology.2022.106016] [PMID: 35810564]
[26]
Haddad, R.I.; Bischoff, L.; Ball, D.; Bernet, V.; Blomain, E.; Busaidy, N.L.; Campbell, M.; Dickson, P.; Duh, Q.Y.; Ehya, H.; Goldner, W.S.; Guo, T.; Haymart, M.; Holt, S.; Hunt, J.P.; Iagaru, A.; Kandeel, F.; Lamonica, D.M.; Mandel, S.; Marko-vina, S.; McIver, B.; Raeburn, C.D.; Rezaee, R.; Ridge, J.A.; Roth, M.Y.; Scheri, R.P.; Shah, J.P.; Sipos, J.A.; Sippel, R.; Sturgeon, C.; Wang, T.N.; Wirth, L.J.; Wong, R.J.; Yeh, M.; Cassara, C.J.; Darlow, S. Thyroid carcinoma, version 2.2022, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2022, 20(8), 925-951.
[http://dx.doi.org/10.6004/jnccn.2022.0040] [PMID: 35948029]
[27]
Ioakim, S.; Syed, A.A.; Zavros, G.; Picolos, M.; Persani, L.; Kyriacou, A. Real-world application of ATA Guidelines in over 600 aspirated thyroid nodules: is it time to change the size cut-offs for FNA? Eur. Thyroid J., 2022, 11(6), e220163.
[http://dx.doi.org/10.1530/ETJ-22-0163] [PMID: 36215117]
[28]
Dunya, G.; Dance, L.; Grimmer, J.F. Comparing ATA guide-lines vs. TI-RADS for evaluation of pediatric thyroid lesions. Int. J. Pediatr. Otorhinolaryngol., 2023, 164, 111411.
[http://dx.doi.org/10.1016/j.ijporl.2022.111411] [PMID: 36565549]
[29]
Petrich, T.; Widjaja, A.; Musholt, T.J.; Hofmann, M.; Brunk-horst, T.; Ehrenheim, C.; Oetting, G.; Knapp, W.H. Outcome after radioiodine therapy in 107 patients with differentiated thyroid carcinoma and initial bone metastases: side-effects and influence of age. Eur. J. Nucl. Med., 2001, 28(2), 203-208.
[http://dx.doi.org/10.1007/s002590000420] [PMID: 11303891]
[30]
Hindié, E.; Mellière, D.; Lange, F.; Hallaj, I.; de Labriolle-Vaylet, C.; Jeanguillaume, C.; Lange, J.; Perlemuter, L.; Askienazy, S. Functioning pulmonary metastases of thyroid cancer: does radioiodine influence the prognosis? Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(7), 974-981.
[http://dx.doi.org/10.1007/s00259-003-1174-5] [PMID: 12734689]
[31]
Durante, C.; Haddy, N.; Baudin, E.; Leboulleux, S.; Hartl, D.; Travagli, J.P.; Caillou, B.; Ricard, M.; Lumbroso, J.D.; De Vathaire, F.; Schlumberger, M. Long-term outcome of 444 pa-tients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab., 2006, 91(8), 2892-2899.
[http://dx.doi.org/10.1210/jc.2005-2838] [PMID: 16684830]
[32]
Mallick, U.; Harmer, C.; Yap, B.; Wadsley, J.; Clarke, S.; Moss, L.; Nicol, A.; Clark, P.M.; Farnell, K.; McCready, R.; Smellie, J.; Franklyn, J.A.; John, R.; Nutting, C.M.; Newbold, K.; Lemon, C.; Gerrard, G.; Abdel-Hamid, A.; Hardman, J.; Macias, E.; Roques, T.; Whitaker, S.; Vijayan, R.; Alvarez, P.; Beare, S.; Forsyth, S.; Kadalayil, L.; Hackshaw, A. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N. Engl. J. Med., 2012, 366(18), 1674-1685.
[http://dx.doi.org/10.1056/NEJMoa1109589] [PMID: 22551128]
[33]
Verburg, F.A.; Mäder, U.; Reiners, C.; Hänscheid, H. Long-term survival in differentiated thyroid cancer is worse after low-activity initial post-surgical 131I therapy in both high- and low-risk patients. J. Clin. Endocrinol. Metab., 2014, 99(12), 4487-4496.
[http://dx.doi.org/10.1210/jc.2014-1631] [PMID: 25259907]
[34]
Schlumberger, M.; Leboulleux, S.; Catargi, B.; Deandreis, D.; Zerdoud, S.; Bardet, S.; Rusu, D.; Godbert, Y.; Buffet, C.; Schvartz, C.; Vera, P.; Morel, O.; Benisvy, D.; Bournaud, C.; Toubert, M.E.; Kelly, A.; Benhamou, E.; Borget, I. Outcome after ablation in patients with low-risk thyroid cancer (ESTI-MABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol., 2018, 6(8), 618-626.
[http://dx.doi.org/10.1016/S2213-8587(18)30113-X] [PMID: 29807824]
[35]
Hong, C.M.; Ahn, B.C. Factors associated with dose determi-nation of radioactive iodine therapy for differentiated thyroid cancer. Nucl. Med. Mol. Imaging, 2018, 52(4), 247-253.
[http://dx.doi.org/10.1007/s13139-018-0522-0] [PMID: 30100937]
[36]
Jabin, Z.; Kwon, S.Y.; Bom, H.S.; Lin, Y.; Yang, K.; Inaki, A.; Dewi, A.R.; Al-Ibraheem, A.N.; Balooshi, B.A.; San Luis, T.O.L., Jr Clinico-social factors to choose radioactive iodine dose in differentiated thyroid cancer patients. Nucl. Med. Commun., 2018, 39(4), 283-289.
[http://dx.doi.org/10.1097/MNM.0000000000000804] [PMID: 29381585]
[37]
Papaleontiou, M.; Banerjee, M.; Yang, D.; Sisson, J.C.; Koenig, R.J.; Haymart, M.R. Factors that influence radioactive iodine use for thyroid cancer. Thyroid, 2013, 23(2), 219-224. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569922/
[http://dx.doi.org/10.1089/thy.2012.0380] [PMID: 23134514]
[38]
Feldt-Rasmussen, U. Iodine and Cancer. Thyroid, 2001, 11(5), 483-486.
[http://dx.doi.org/10.1089/105072501300176435] [PMID: 11396706]
[39]
Luster, M.; Clarke, S.E.; Dietlein, M.; Lassmann, M.; Lind, P.; Oyen, W.J.G.; Tennvall, J.; Bombardieri, E. Guidelines for ra-dioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(10), 1941-1959.
[http://dx.doi.org/10.1007/s00259-008-0883-1] [PMID: 18670773]
[40]
Padda, I.S.; Nguyen, M. Radioactive iodine therapy. In: StatPearls; StatPearls Publishing: Treasure Island (FL), 2022.
[41]
Manzil, F.F.P.; Kaur, H. Radioactive iodine for thyroid malig-nancies. In: StatPearls; StatPearls Publishing: Treasure Island (FL), 2022.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy