Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Phytochemistry and Pharmacological Activity of Malva sylvestris L: A Detailed Insight

Author(s): Zahid Ahmad Paul, Aamir Tariq Malla, Mohammad Akbar Dar and Mubashir Hussain Masoodi*

Volume 27, Issue 16, 2024

Published on: 17 October, 2023

Page: [2309 - 2322] Pages: 14

DOI: 10.2174/0113862073269336231009110313

Price: $65

conference banner
Abstract

Malva sylvestris L., is commonly referred to as Mallow and is found in Europe, Asia and Africa. This has been traditionally used for inflammation, gastrointestinal disturbances, skin disorders, menstrual pains, and urological disorders. This review covers phytoconstituents and Pharmacological activities of M. sylvestris. The plant contains a large number of phytochemical constituents having diverse pharmacological activities. The plant contains many phenolic compounds responsible for its strong antioxidant activity. Coumarins from Mallow have a potential anticancer activity. Malva sylvestris also contains essential as well as non-essential elements and minerals. Many researchers have provided evidence that Malva sylvestris is a good candidate for use as a medicinal herb and has good nutritional value. The leaves, in particular, offer properties like anticancer, skin whitening, and anti-aging. Furthermore, the aqueous extract was recently shown to have an anti-ulcerogenic effect. Malva sylvestris has a high potential for use in cosmetics such as skin whitening and anti-aging treatments. Methanolic extracts of Malva sylvestris leaves, and flowers showed strong antibacterial activity against a common plant pathogen bacterium. The plant also contains Malvone A, which is responsible for antibacterial action. The plant also possesses anti-inflammatory, analgesic, wound healing properties and various other activities.

Keywords: Herbal medicine, antioxidant, phytochemistry, pharmacology, drug discovery, analgesic.

Next »
Graphical Abstract
[1]
Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.; Jachak, S.M.; Masoodi, M.H.J.C.m.c. Natural anti-inflammatory compounds as drug candidates in alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825.
[http://dx.doi.org/10.2174/0929867327666200730213215]
[2]
Süntar, I.J.P.R. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev., 2020, 19(5), 1199-1209.
[http://dx.doi.org/10.1007/s11101-019-09629-9]
[3]
Shah, A.J.; Mir, R.H.; Pottoo, F.H.; Masoodi, M.H.; Bhat, Z.A.J.C.N. Depression: An insight into heterocyclic and cyclic hydrocarbon compounds inspired from natural sources. Curr. Neuropharmacol., 2020, 19(11), 2020.
[4]
Silva, R.F.; Pogačnik, L.J.A. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants, 2020, 9(1), 61.
[5]
Mohi-Ud-Din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y.; Masoodi, M.H.; Singh, I.P.; Bhat, Z.A.J.C.C.; Screening, H.T. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus berberis linn: A comprehensive review. Comb. Chem. High Throughput Screen., 2021, 24(5), 624-644.
[http://dx.doi.org/10.2174/1386207323999201102141206]
[6]
Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H.J.C.N. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179.
[7]
Mir, P.A.; Mohi-Ud-Din, R.; Banday, N.; Maqbool, M.; Raza, S.N.; Farooq, S.; Afzal, S.; Mir, R.H.J.A.C.A.i.M.C. Anticancer potential of thymoquinone: A novel bioactive natural compound from nigella sativa L. Anticancer. Agents Med. Chem., 2022, 222(20), 3401-3415.
[http://dx.doi.org/10.2174/1871520622666220511233314]
[8]
Mir, R.H.; Wani, T.U.; Jan, R.; Shah, A.J.; Sabreen, S.; Mir, P.A.; Rasool, S.; Masoodi, M.H.; Bhat, Z.A. Nigella sativa as a therapeutic candidate for arthritis and related disorders. In: Black Seeds (Nigella Sativa); Elsevier, 2022; pp. 295-312.
[9]
Rahman, M.M.; Bibi, S.; Rahaman, M.S.; Rahman, F.; Islam, F.; Khan, M.S.; Hasan, M.M.; Parvez, A.; Hossain, M.A.; Maeesa, S.K.J.B. Natural therapeutics and nutraceuticals for lung diseases: traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother., 2022, 150, 113041.
[10]
Khan, S.U.; Hamza, B.; Mir, R.H.; Fatima, K.; Malik, F.J.C.M.M. Lavender plant: Farming and Health benefits. Curr. Mol. Med., 2023.
[11]
Lone, N.A.; Malik, T.A.; Sharma, R.R.; Mir, R.H.; Abdullah, T.S.; Singh, I.P.; Bhat, Z.A.J.P.R.M.C.M. Bioactivity guided isolation and characterization of anti-hepatotoxic markers from Berberis pachyacantha Koehne. Pharmacol. Res. Mod. Chin., 2022, 4, 100144.
[12]
Mir, R.H.; Mir, P.A.; Uppal, J.; Chawla, A.; Patel, M.; Bardakci, F.; Adnan, M.; Mohi-Ud-Din, R.J.M. Evolution of natural product scaffolds as potential proteasome inhibitors in developing cancer therapeutics. Metabolites, 2023, 13(4), 509.
[13]
Hassan, R.; Mohi-ud-din, R.; Dar, M.O.; Shah, A.J.; Mir, P.A.; Shaikh, M.; Pottoo, F.H. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas. Anticancer. Agents Med. Chem., 2022, 22(3), 551-565.
[http://dx.doi.org/10.2174/1871520621666210901112954] [PMID: 34488596]
[14]
Hassan, R.; Masoodi, M.H.J.C.T.M. Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr. Tradit. Med., 2020, 6(1), 13-23.
[http://dx.doi.org/10.2174/2215083805666190626144909]
[15]
Mohi-Ud-Din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Banday, N.; Pottoo, F.H.J.C.C.; Screening, H.T. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery. Comb. Chem. High Throughput Screen., 2022, 25(4), 616-633.
[http://dx.doi.org/10.2174/1386207324666210804122539]
[16]
Kumar, V.; Kaur, J.; Chawla, R. Ethno-botanical and economic significance of edible plants used as food by tribal community of the western himalaya. In: Edible Plants in Health and Diseases; Cultural, Practical and Economic Value; Springer,, 2022; 1, pp. 259-283.
[17]
Zohary, M. Flora Palaestina (The Israel Academy of Sciences and Humanities, Jerusalem). Part two 1987; , 1987, pp. 211-221.
[18]
Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol., 2006, 108(1), 31-37.
[http://dx.doi.org/10.1016/j.jep.2006.04.010] [PMID: 16737790]
[19]
Kültür, Ş. Medicinal plants used in Kırklareli Province (Turkey). J. Ethnopharmacol., 2007, 111(2), 341-364.
[http://dx.doi.org/10.1016/j.jep.2006.11.035] [PMID: 17257791]
[20]
Guarrera, P.M. Food medicine and minor nourishment in the folk traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia, 2003, 74(6), 515-544.
[http://dx.doi.org/10.1016/S0367-326X(03)00122-9] [PMID: 12946715]
[21]
Ishtiaq, M.; Hanif, W.; Khan, M.A.; Ashraf, M.; Butt, A.M. An ethnomedicinal survey and documentation of important medicinal folklore food phytonims of flora of Samahni valley, (Azad Kashmir) Pakistan. Pak. J. Biol. Sci., 2007, 10(13), 2241-2256.
[http://dx.doi.org/10.3923/pjbs.2007.2241.2256] [PMID: 19070189]
[22]
Idolo, M.; Motti, R.; Mazzoleni, S. Ethnobotanical and phytomedicinal knowledge in a long-history protected area, the Abruzzo, Lazio and Molise National Park (Italian Apennines). J. Ethnopharmacol., 2010, 127(2), 379-395.
[http://dx.doi.org/10.1016/j.jep.2009.10.027] [PMID: 19874882]
[23]
Leporatti, M.L.; Corradi, L. Ethnopharmacobotanical remarks on the province of Chieti town (Abruzzo, central Italy). J. Ethnopharmacol., 2001, 74(1), 17-40.
[http://dx.doi.org/10.1016/S0378-8741(00)00325-1] [PMID: 11137345]
[24]
Hanlidou, E.; Karousou, R.; Kleftoyanni, V.; Kokkini, S. The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. J. Ethnopharmacol., 2004, 91(2-3), 281-299.
[http://dx.doi.org/10.1016/j.jep.2004.01.007] [PMID: 15120452]
[25]
Pieroni, A.; Quave, C.L.; Villanelli, M.L.; Mangino, P.; Sabbatini, G.; Santini, L.; Boccetti, T.; Profili, M.; Ciccioli, T.; Rampa, L.G.; Antonini, G.; Girolamini, C.; Cecchi, M.; Tomasi, M. Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. J. Ethnopharmacol., 2004, 91(2-3), 331-344.
[http://dx.doi.org/10.1016/j.jep.2004.01.015] [PMID: 15120458]
[26]
Passalacqua, N.G.; Guarrera, P.M.; De Fine, G. Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy). Fitoterapia, 2007, 78(1), 52-68.
[http://dx.doi.org/10.1016/j.fitote.2006.07.005] [PMID: 17084993]
[27]
Cornara, L.; La Rocca, A.; Marsili, S.; Mariotti, M.G. Traditional uses of plants in the Eastern Riviera (Liguria, Italy). J. Ethnopharmacol., 2009, 125(1), 16-30.
[http://dx.doi.org/10.1016/j.jep.2009.06.021] [PMID: 19563876]
[28]
Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Loggia, R.D. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol., 2008, 116(1), 144-151.
[http://dx.doi.org/10.1016/j.jep.2007.11.015] [PMID: 18164564]
[29]
Scherrer, A.M.; Motti, R.; Weckerle, C.S. Traditional plant use in the areas of monte vesole and ascea, cilento national park (Campania, Southern Italy). J. Ethnopharmacol., 2005, 97(1), 129-143.
[http://dx.doi.org/10.1016/j.jep.2004.11.002] [PMID: 15652287]
[30]
Marc, E.B.; Nelly, A.; Annick, D-D.; Frederic, D. Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. J. Ethnopharmacol., 2008, 120(3), 315-334.
[http://dx.doi.org/10.1016/j.jep.2008.08.024] [PMID: 18809483]
[31]
Pollio, A.; De Natale, A.; Appetiti, E.; Aliotta, G.; Touwaide, A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol., 2008, 116(3), 469-482.
[http://dx.doi.org/10.1016/j.jep.2007.12.013] [PMID: 18276094]
[32]
Lardos, A. The botanical materia medica of the Iatrosophikon—A collection of prescriptions from a monastery in Cyprus. J. Ethnopharmacol., 2006, 104(3), 387-406.
[http://dx.doi.org/10.1016/j.jep.2005.12.035] [PMID: 16459038]
[33]
Leonti, M.; Casu, L.; Sanna, F.; Bonsignore, L. A comparison of medicinal plant use in Sardinia and Sicily—De Materia Medica revisited? J. Ethnopharmacol., 2009, 121(2), 255-267.
[http://dx.doi.org/10.1016/j.jep.2008.10.027] [PMID: 19038321]
[34]
Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chem. Toxicol., 2010, 48(6), 1466-1472.
[http://dx.doi.org/10.1016/j.fct.2010.03.012] [PMID: 20233600]
[35]
Quave, C.L.; Pieroni, A.; Bennett, B.C. Dermatological remedies in the traditional pharmacopoeia of Vulture-Alto Bradano, inland southern Italy. J. Ethnobiol. Ethnomed., 2008, 4(1), 5.
[http://dx.doi.org/10.1186/1746-4269-4-5] [PMID: 18254949]
[36]
Garden, M.B. Tropicos. 2010. Available from: http://www.tropicos.org
[37]
Toledo, M.G.T.; Alquini, Y.; Nakashima, T. Anatomical characterization of Cunila microcephala Benth leaves. (Lamiaceae). RBCF Rev. Bras. Cienc. Farm., 2004, 40(4), 487-493.
[http://dx.doi.org/10.1590/S1516-93322004000400006]
[38]
European pharmacopoeia; 5th edition: supplement 5.2; Council of Europe: Strasbourg, 2005.
[39]
Gasparetto, J.C.; Martins, C.A.F.; Hayashi, S.S.; Otuky, M.F.; Pontarolo, R. Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine. J. Pharm. Pharmacol., 2012, 64(2), 172-189.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01383.x] [PMID: 22221093]
[40]
Godefroid, S.; Monbaliu, D.; Koedam, N. The role of soil and microclimatic variables in the distribution patterns of urban wasteland flora in Brussels, Belgium. Landsc. Urban Plan., 2007, 80(1-2), 45-55.
[http://dx.doi.org/10.1016/j.landurbplan.2006.06.001]
[41]
Bretzel, F.; Pezzarossa, B.; Benvenuti, S.; Bravi, A.; Malorgio, F. Soil influence on the performance of 26 native herbaceous plants suitable for sustainable Mediterranean landscaping. Acta Oecol., 2009, 35(5), 657-663.
[http://dx.doi.org/10.1016/j.actao.2009.06.008]
[42]
Qasem, J.R. Nutrient accumulation by weeds and their associated vegetable crops. J. Hortic. Sci., 1992, 67(2), 189-195.
[http://dx.doi.org/10.1080/00221589.1992.11516236]
[43]
Comba, L.; Corbet, S.A.; Hunt, L.; Warren, B. Flowers, nectar and insect visits: Evaluating British plant species for pollinator-friendly gardens. Ann. Bot., 1999, 83(4), 369-383.
[http://dx.doi.org/10.1006/anbo.1998.0835]
[44]
Carreck, N.L.; Williams, I.H. Food for insect pollinators on farmland: Insect visits to flowers of annual seed mixtures. J. Insect Conserv., 2002, 6(1), 13-23.
[http://dx.doi.org/10.1023/A:1015764925536]
[45]
Murase, M. Rearing records of three pyralines. Jpn. Heter. J., 2008, 247, 388-389.
[46]
Satar, S.; Kersting, U.; Uygun, N. Development and fecundity of Aphis gossypii Glover (Homoptera: Aphididae) on three Malvaceae hosts. Turk. J. Agric. For., 1999, 23(6), 637-644.
[47]
Classen, B.; Amelunxen, F.; Blaschek, W. Concentric bodies in a parasitic fungus of Malva sylvestris (Malvaceae) pollen. J. Phytopathol., 2000, 148(5), 313-317.
[http://dx.doi.org/10.1046/j.1439-0434.2000.00490.x]
[48]
Ercan, H. ELEKCİOĞLU, İ. H., Determination of root-knot nematodes species (Meloidogyne spp.) on weeds in Adana and Mersin province. Turk. Entomol. Derg., 2009, 33(3), 179-192.
[49]
Wilson, C.R. Incidence of weed reservoirs and vectors of tomato spotted wilt tospovirus on southern Tasmanian lettuce farms. Plant Pathol., 1998, 47(2), 171-176.
[http://dx.doi.org/10.1046/j.1365-3059.1998.00227.x]
[50]
Pappu, H.R.; Jones, R.A.C.; Jain, R.K. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res., 2009, 141(2), 219-236.
[http://dx.doi.org/10.1016/j.virusres.2009.01.009] [PMID: 19189852]
[51]
Lavina, A.; Aramburu, J.; Moriones, E. Occurrence of tomato spotted wilt and cucumber mosaic viruses in field-grown tomato crops and associated weeds in northeastern Spain. Plant Pathol., 1996, 45(5), 837-842.
[http://dx.doi.org/10.1111/j.1365-3059.1996.tb02893.x]
[52]
Qasem, J.R. Chemical weed control in seedbed sown onion (Allium cepa L.). Crop Prot., 2006, 25(6), 618-622.
[http://dx.doi.org/10.1016/j.cropro.2005.09.008]
[53]
Mas, M.T.; Poggio, S.L.; Verdú, A.M.C. Weed community structure of mandarin orchards under conventional and integrated management in northern Spain. Agric. Ecosyst. Environ., 2007, 119(3-4), 305-310.
[http://dx.doi.org/10.1016/j.agee.2006.07.016]
[54]
Qasem, J.R. Weed competition in cauliflower (Brassica oleracea L. var. botrytis) in the Jordan Valley. Sci. Hortic., 2009, 121(3), 255-259.
[http://dx.doi.org/10.1016/j.scienta.2009.02.010]
[55]
Zand, E.; Baghestani, M.A.; AghaAlikhani, M.; Soufizadeh, S.; Khayami, M.M.; PourAzar, R.; Sabeti, P.; Jamali, M.; Bagherani, N.; Forouzesh, S. Chemical control of weeds in wheat (Triticum aestivum L.) in Iran. Crop Prot., 2010, 29(11), 1223-1231.
[http://dx.doi.org/10.1016/j.cropro.2010.07.004]
[56]
Qasem, J.R. Chemical weed control in garlic (Allium sativum L.) in Jordan. Crop Prot., 1996, 15(1), 21-26.
[http://dx.doi.org/10.1016/0261-2194(95)00085-2]
[57]
Jansen, C.; Schuphan, I.; Schmidt, B. Glufosinate metabolism in excised shoots and leaves of twenty plant species. Weed Sci., 2000, 48(3), 319-326.
[http://dx.doi.org/10.1614/0043-1745(2000)048[0319:GMIESA]2.0.CO;2]
[58]
Andrade Pinto, J.M.; Souza, E.A.; Oliveira, D.F. Use of plant extracts in the control of common bean anthracnose. Crop Prot., 2010, 29(8), 838-842.
[http://dx.doi.org/10.1016/j.cropro.2010.03.006]
[59]
Madejón, E.; de Mora, A.P.; Felipe, E.; Burgos, P.; Cabrera, F. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ. Pollut., 2006, 139(1), 40-52.
[http://dx.doi.org/10.1016/j.envpol.2005.04.034] [PMID: 16005126]
[60]
Boojar, M.M.A.; Goodarzi, F. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere, 2007, 67(11), 2138-2147.
[http://dx.doi.org/10.1016/j.chemosphere.2006.12.071] [PMID: 17316756]
[61]
Anastasakis, K.; Kalderis, D.; Diamadopoulos, E. Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination, 2009, 249(2), 786-791.
[http://dx.doi.org/10.1016/j.desal.2008.09.013]
[62]
Bergmann, E.; Bender, J.; Weigel, H.J. Growth responses and foliar sensitivities of native herbaceous species to ozone exposures. Water Air Soil Pollut., 1995, 85(3), 1437-1442.
[http://dx.doi.org/10.1007/BF00477183]
[63]
Wohlgemuth, H.; Mittelstrass, K.; Kschieschan, S.; Bender, J.; Weigel, H.J.; Overmyer, K.; Kangasjärvi, J.; Sandermann, H.; Langebartels, C. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ., 2002, 25(6), 717-726.
[http://dx.doi.org/10.1046/j.1365-3040.2002.00859.x]
[64]
Langebartels, C.; Wohlgemuth, H.; Kschieschan, S.; Grün, S.; Sandermann, H. Oxidative burst and cell death in ozone-exposed plants. Plant Physiol. Biochem., 2002, 40(6-8), 567-575.
[http://dx.doi.org/10.1016/S0981-9428(02)01416-X]
[65]
Dohrmann, A.B.; Tebbe, C.C. Genetic profiling of bacterial communities from the rhizospheres of ozone damaged Malva sylvestris (Malvaceae). Eur. J. Soil Biol., 2006, 42(4), 191-199.
[http://dx.doi.org/10.1016/j.ejsobi.2006.02.001]
[66]
Bender, J.; Bergmann, E.; Weigel, H.J. Responses of biomass production and reproductive development to ozone exposure differ between European wild plant species. Water Air Soil Pollut., 2006, 176(1-4), 253-267.
[http://dx.doi.org/10.1007/s11270-006-9167-1]
[67]
Classen, B.; Blaschek, W. An arabinogalactan-protein from cell culture of Malva sylvestris. Planta Med., 2002, 68(3), 232-236.
[http://dx.doi.org/10.1055/s-2002-23127] [PMID: 11914960]
[68]
Ganai, B.A.; Masood, A.; Baig, M.A. Isolation, purification and partial characterization of sulphite oxidase from Malva sylvestris. Phytochemistry, 1997, 45(5), 879-880.
[http://dx.doi.org/10.1016/S0031-9422(97)82709-4]
[69]
Ganai, B.; Masood, A.; Zargar, M.; Syed, M. Kinetics of sulfite oxidase purified from Malva sylvestris. I Control Pollution, 2006, 22(1), 77-82.
[70]
Ahmad, G.; Hassan, R.; Dhiman, N.; Ali, A. J. C. C.; Screening, H. T. Assessment of anti-inflammatory activity of 3-acetylmyricadiol in LPSStimulated Raw 264. 7 Macrophages, 2022, 25(1), 204-210.
[71]
Mir, R.H.; Sabreen, S. Isoflavones of Soy: Chemistry and Health Benefits. In: Edible Plants in Health and Diseases: Volume 1: Cultural, Practical and Economic Value; Springer, 2022; pp. 303-324.
[72]
Mohi-ud-din, R.; Mir, R.H.; Sabreen, S.; Jan, R.; Pottoo, F.H.; Singh, I.P. Recent insights into therapeutic potential of plant-derived flavonoids against cancer. Anticancer. Agents Med. Chem., 2022, 22(20), 3343-3369.
[http://dx.doi.org/10.2174/1871520622666220421094055] [PMID: 35593353]
[73]
Mir, R.H.; Banday, N.; Sabreen, S.; Shah, A.J.; Jan, R.; Wani, T.U.; Farooq, S.; Bhat, Z.A. Resveratrol: A potential drug candidate with multispectrum therapeutic application. Stud. Nat. Prod. Chem., 2022, 73, 99-137.
[74]
Mir, R.H.; Mir, P.A.; Shah, A.J.; Banday, N.; Sabreen, S.; Maqbool, M.; Jan, R.; Shafi, N.; Masoodi, M.H.J.S.i.N.P.C. Curcumin as a privileged scaffold molecule for various biological targets in drug development. Stud. Nat. Prod. Chem., 2022, 73, 405-434.
[http://dx.doi.org/10.1016/B978-0-323-91097-2.00010-8]
[75]
Sikorska, M.; Matławska, I.; Fra ski, R. 8-Hydroxyflavonoid glucuronides of Malope trifida. Acta Physiol. Plant., 2004, 26(3), 291-297.
[http://dx.doi.org/10.1007/s11738-004-0019-6]
[76]
Mir, R.H.; Masoodi, M.H.J.C.B.C. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16(6), 809-817.
[http://dx.doi.org/10.2174/1573407215666190419205317]
[77]
Mir, R.H.; Mir, P.A.; Maqbool, M.; Banday, N.; Farooq, S.; Raza, S.N.; Chawla, P.A. Therapeutic potential of plant-derived flavonoids against inflammation. In: Recent Developments in Anti-Inflammatory Therapy; Elsevier, 2023; pp. 279-293.
[http://dx.doi.org/10.1016/B978-0-323-99988-5.00019-X]
[78]
Billeter, M.; Meier, B.; Sticher, O. 8-hydroxyflavonoid glucuronides from Malva sylvestris. Phytochemistry, 1991, 30(3), 987-990.
[http://dx.doi.org/10.1016/0031-9422(91)85292-8]
[79]
Nawwar, M.A.M.; El Dein, A.; El Sherbeiny, A.; El Ansari, M.A.; El Sissi, H.I. Two new sulphated flavonol glucosides from leaves of Malva sylvestris. Phytochemistry, 1977, 16(1), 145-146.
[http://dx.doi.org/10.1016/0031-9422(77)83042-2]
[80]
Nawwar, M.A.M.; Buddrus, J. A gossypetin glucuronide sulphate from the leaves of Malva sylvestris. Phytochemistry, 1981, 20(10), 2446-2448.
[http://dx.doi.org/10.1016/S0031-9422(00)82694-1]
[81]
Pourrat, H.; Texier, O.; Barthomeuf, C. Identification and assay of anthocyanin pigments in malva-sylvestris L. Pharm. Acta Helv., 1990, 65(3), 93-96.
[82]
Brouillard, R. The in vivo expression of anthocyanin colour in plants. Phytochemistry, 1983, 22(6), 1311-1323.
[http://dx.doi.org/10.1016/S0031-9422(00)84008-X]
[83]
Merlin, J.C.; Statoua, A.; Brouillard, R. Investigation of the in vivo organization of anthocyanins using resonance raman microspectrometry. Phytochemistry, 1985, 24(7), 1575-1581.
[http://dx.doi.org/10.1016/S0031-9422(00)81069-9]
[84]
Farina, A.; Doldo, A.; Cotichini, V.; Rajevic, M.; Quaglia, M.G.; Mulinacci, N.; Vincieri, F.F. HPTLC and reflectance mode densitometry of anthocyanins in Malva Silvestris L.: a comparison with gradient-elution reversed-phase HPLC. J. Pharm. Biomed. Anal., 1995, 14(1-2), 203-211.
[http://dx.doi.org/10.1016/0731-7085(95)01632-5] [PMID: 8833983]
[85]
Lewis, C.; Walker, J.R.; Lancaster, J.E. Effect of polysaccharides on the colour of anthocyanins. Food Chem., 1995, 54(3), 315-319.
[http://dx.doi.org/10.1016/0308-8146(95)00026-F]
[86]
Mas, T.; Susperregui, J.; Berké, B.; Chèze, C.; Moreau, S.; Nuhrich, A.; Vercauteren, J. DNA triplex stabilization property of natural anthocyanins. Phytochemistry, 2000, 53(6), 679-687.
[http://dx.doi.org/10.1016/S0031-9422(99)00619-6] [PMID: 10746881]
[87]
Torskangerpoll, K.; Børve, K.J.; Andersen, Ø.M.; Sæthre, L.J. Color and substitution pattern in anthocyanidins. A combined quantum chemical–chemometrical study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1999, 55(4), 761-771.
[http://dx.doi.org/10.1016/S1386-1425(98)00202-9]
[88]
Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc., 2007, 43(1), 13-25.
[http://dx.doi.org/10.1016/j.vibspec.2006.06.001]
[89]
Takeda, K.; Enoki, S.; Harborne, J.B.; Eagles, J. Malonated anthocyanins in malvaceae: Malonylmalvin from Malva sylvestris. Phytochemistry, 1989, 28(2), 499-500.
[http://dx.doi.org/10.1016/0031-9422(89)80040-8]
[90]
Daniela, A.; Pichichero, E.; Canuti, L.; Cicconi, R.; Karou, D.; D’Arcangelo, G.; Canini, A. Identification of phenolic compounds from medicinal and melliferous plants and their cytotoxic activity in cancer cells. Caryologia, 2007, 60(1-2), 90-95.
[http://dx.doi.org/10.1080/00087114.2007.10589552]
[91]
Franz, G. Die Schleimpolysaccharide von Althaea officinalis und Malva silvestris. Planta Med., 1966, 14(1), 90-110.
[http://dx.doi.org/10.1055/s-0028-1100032]
[92]
Tomoda, M.; Gonda, R.; Shimizu, N.; Yamada, H. Plant mucilages. XLII. An anti-complementary mucilage from the Leaves of Malva sylvestris var. mauritiana. Chem. Pharm. Bull., 1989, 37(11), 3029-3032.
[http://dx.doi.org/10.1248/cpb.37.3029] [PMID: 2632049]
[93]
Nosalova, G.; Mokry, J.; Franova, S. Pharmacological modulation of cough reflex. Adv. Phytomed., 2006, 2, 87-110.
[http://dx.doi.org/10.1016/S1572-557X(05)02006-4]
[94]
Classen, B.; Amelunxen, F.; Blaschek, W. Ultrastructural investigations on the development of mucilage idioblasts and cavities of Malva sylvestris ssp. mauritiana. Sci. Pharm., 1998, 66(4), 363-380.
[95]
Karawya, M.; Balbaa, S.; Afifi, M. Investigation of the carbohydrate contents of certain mucilaginous plants. Planta Med., 1971, 20(3), 14-23.
[http://dx.doi.org/10.1055/s-0028-1099659] [PMID: 5154598]
[96]
Classen, B.; Blaschek, W. High molecular weight acidic polysaccharides from Malva sylvestris and Alcea rosea. Planta Med., 1998, 64(7), 640-644.
[http://dx.doi.org/10.1055/s-2006-957538] [PMID: 9810269]
[97]
Hiçsönmez, Ü.; Ereeş, F.S.; Özdemir, C.; Özdemir, A.; Çam, S. Determination of major and minor elements in the Malva sylvestris L. from Turkey using ICP-OES techniques. Biol. Trace Elem. Res., 2009, 128(3), 248-257.
[http://dx.doi.org/10.1007/s12011-008-8270-0] [PMID: 19083156]
[98]
Katapodis, P.; Kavarnou, A.; Kintzios, S.; Pistola, E.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Production of acidic xylo-oligosaccharides by a family 10 endoxylanase from Thermoascus aurantiacus and use as plant growth regulators. Biotechnol. Lett., 2002, 24(17), 1413-1416.
[http://dx.doi.org/10.1023/A:1019898414801]
[99]
Flack, H.D. On enantiomorph-polarity estimation. Acta Crystallogr. A, 1983, 39(6), 876-881.
[http://dx.doi.org/10.1107/S0108767383001762]
[100]
Cutillo, F.; Dabrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry, 2006, 67(5), 481-485.
[http://dx.doi.org/10.1016/j.phytochem.2005.11.023] [PMID: 16403542]
[101]
Emets, T.I.; Steblyuk, M.V.; Klyuev, N.A.; Petrenko, V.V. Some components of the seed oil ofMalva sylvestris. Chem. Nat. Compd., 1994, 30(3), 292-294.
[http://dx.doi.org/10.1007/BF00629959]
[102]
Veshkurova, O.; Golubenko, Z.; Pshenichnov, E.; Arzanova, I.; Uzbekov, V.; Sultanova, E.; Salikhov, S.; Williams, H.J.; Reibenspies, J.H.; Puckhaber, L.S.; Stipanovic, R.D. Malvone A, a phytoalexin found in Malva sylvestris (family Malvaceae). Phytochemistry, 2006, 67(21), 2376-2379.
[http://dx.doi.org/10.1016/j.phytochem.2006.08.010] [PMID: 16996095]
[103]
Tosi, B.; Tirillini, B.; Donini, A.; Bruni, A. Presence of scopoletin in Malva sylvestris. Int. J. Pharmacogn., 1995, 33(4), 353-355.
[104]
Conforti, F.; Ioele, G.; Statti, G.A.; Marrelli, M.; Ragno, G.; Menichini, F. Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food Chem. Toxicol., 2008, 46(10), 3325-3332.
[http://dx.doi.org/10.1016/j.fct.2008.08.004] [PMID: 18768152]
[105]
Mukarram, M.; Ahmad, I.; Ahmad, M. HBr-Reactive acids of Malva sylvestris seed oil. J. Am. Oil Chem. Soc., 1984, 61(6), 1060-1060.
[http://dx.doi.org/10.1007/BF02636219]
[106]
Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A, 1996, 719(1), 229-235.
[http://dx.doi.org/10.1016/0021-9673(95)00414-9] [PMID: 8589832]
[107]
Redžić, S.; Hodžić, N.; Tuka, M. Plant pigments (antioxidants) of medicinal plants Malva Sylvestris l. and Malva Moschata l. (Malvaceae). Bosn. J. Basic Med. Sci., 2005, 5(2), 53-58.
[http://dx.doi.org/10.17305/bjbms.2005.3284] [PMID: 16053456]
[108]
Desideri, D.; Meli, M.A.; Roselli, C. Determination of essential and non-essential elements in some medicinal plants by polarised X ray fluorescence spectrometer (EDPXRF). Microchem. J., 2010, 95(2), 174-180.
[http://dx.doi.org/10.1016/j.microc.2009.11.010]
[109]
Khan, S.; Rehman, S.; Zeb Khan, A.; Amjad Khan, M.; Tahir Shah, M. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol. Environ. Saf., 2010, 73(7), 1820-1827.
[http://dx.doi.org/10.1016/j.ecoenv.2010.08.016] [PMID: 20810165]
[110]
Willey, N.J.; Fawcett, K. Inter-taxa differences in root uptake of 103/106Ru by plants. J. Environ. Radioact., 2006, 86(2), 227-240.
[http://dx.doi.org/10.1016/j.jenvrad.2005.09.002] [PMID: 16256252]
[111]
Willey, N.; Fawcett, K. A phylogenetic effect on strontium concentrations in angiosperms. Environ. Exp. Bot., 2006, 57(3), 258-269.
[http://dx.doi.org/10.1016/j.envexpbot.2005.06.005]
[112]
Willey, N.J.; Tang, S.; McEwen, A.; Hicks, S. The effects of plant traits and phylogeny on soil-to-plant transfer of 99Tc. J. Environ. Radioact., 2010, 101(9), 757-766.
[http://dx.doi.org/10.1016/j.jenvrad.2010.04.019] [PMID: 20554099]
[113]
Watanabe, E.; Tanomaru, J.M.G.; Nascimento, A.P.; Matoba-Júnior, F.; Tanomaru-Filho, M.; Yoko Ito, I. Determination of the maximum inhibitory dilution of cetylpyridinium chloride-based mouthwashes against staphylococcus aureus: an in vitro study. J. Appl. Oral Sci., 2008, 16(4), 275-279.
[http://dx.doi.org/10.1590/S1678-77572008000400009] [PMID: 19089260]
[114]
Quave, C.L.; Plano, L.R.W.; Pantuso, T.; Bennett, B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 2008, 118(3), 418-428.
[http://dx.doi.org/10.1016/j.jep.2008.05.005] [PMID: 18556162]
[115]
Razavi, S.M.; Zarrini, G.; Molavi, G.; Ghasemi, G. Bioactivity of malva sylvestris L., a medicinal plant from iran. Iran. J. Basic Med. Sci., 2011, 14(6), 574-579.
[PMID: 23493458]
[116]
Cogo, L.L.; Monteiro, C.L.B.; Miguel, M.D.; Miguel, O.G.; Cunico, M.M.; Ribeiro, M.L.; Camargo, E.R.; Kussen, G.M.B.; Nogueira, K.S.; Costa, L.M.D. Anti-Helicobacter pylori activity of plant extracts traditionally used for the treatment of gastrointestinal disorders. Braz. J. Microbiol., 2010, 41(2), 304-309.
[http://dx.doi.org/10.1590/S1517-83822010000200007] [PMID: 24031496]
[117]
Bonjar, S. Evaluation of antibacterial properties of some medicinal plants used in Iran. J. Ethnopharmacol., 2004, 94(2-3), 301-305.
[http://dx.doi.org/10.1016/j.jep.2004.06.007] [PMID: 15325735]
[118]
Coelho de Souza, G.; Haas, A.P.S.; von Poser, G.L.; Schapoval, E.E.S.; Elisabetsky, E. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J. Ethnopharmacol., 2004, 90(1), 135-143.
[http://dx.doi.org/10.1016/j.jep.2003.09.039] [PMID: 14698521]
[119]
Sleiman, N.H.; Daher, C.F. Malva sylvestris water extract: A potential anti-Inflammatory and anti-ulcerogenic remedy. Planta Med., 2009, 75(9), PH10.
[http://dx.doi.org/10.1055/s-0029-1234727]
[120]
Magro, A.; Carolino, M.; Bastos, M.; Mexia, A. Efficacy of plant extracts against stored products fungi. Rev. Iberoam. Micol., 2006, 23(3), 176-178.
[http://dx.doi.org/10.1016/S1130-1406(06)70039-0] [PMID: 17196025]
[121]
Chiclana, C.F.; Enrique, A.; Consolini, A.E. Topical antiinflammatory activity of Malva sylvestris L. (Malvaceae) on carragenin-induced edema in rats. Lat. Am. J. Pharm., 2009, 28(2), 275-278.
[122]
Benso, B.; Franchin, M.; Massarioli, A.P.; Paschoal, J.A.R.; Alencar, S.M.; Franco, G.C.N.; Rosalen, P.L. Anti-inflammatory, anti-osteoclastogenic and antioxidant effects of Malva sylvestris extract and fractions: in vitro and in vivo studies. PLoS One, 2016, 11(9), e0162728.
[http://dx.doi.org/10.1371/journal.pone.0162728] [PMID: 27643502]
[123]
Choi, K.S.; Kundu, J.K.; Chun, K.S.; Na, H.K.; Surh, Y.J. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: P38 MAP kinase and JNK as potential targets. Arch. Biochem. Biophys., 2014, 559, 38-45.
[http://dx.doi.org/10.1016/j.abb.2014.05.016] [PMID: 24875145]
[124]
Kauss, T.; Moynet, D.; Rambert, J.; Al-Kharrat, A.; Brajot, S.; Thiolat, D.; Ennemany, R.; Fawaz, F.; Mossalayi, M.D. Rutoside decreases human macrophage-derived inflammatory mediators and improves clinical signs in adjuvant-induced arthritis. Arthritis Res. Ther., 2008, 10(1), R19.
[http://dx.doi.org/10.1186/ar2372] [PMID: 18252009]
[125]
Seddighfar, M.; Mirghazanfari, S.M.; Dadpay, M. Analgesic and anti-inflammatory properties of hydroalcoholic extracts of Malva sylvestris, Carum carvi or Medicago sativa, and their combination in a rat model. J. Integr. Med., 2020, 18(2), 181-188.
[http://dx.doi.org/10.1016/j.joim.2020.02.003] [PMID: 32113847]
[126]
Esteves, P.F.; Sato, A.; Esquibel, M.A.; de Campos-Buzzi, F.; Meira, A.V.; Cechinel-Filho, V. Antinociceptive activity of Malva sylvestris L. Lat. Am. J. Pharm., 2009, 28(3), 454-456.
[127]
Petkova, N.; Popova, A.; Alexieva, I. Antioxidant properties and some phytochemical components of the edible medicinal Malva sylvestris L. Faslnamah-i Giyahan-i Daruyi, 2019, 7(1), 96-99.
[128]
DellaGreca, M.; Cutillo, F.; Abrosca, B. D.; Fiorentino, A.; Pacifico, S.; Zarrelli, A. Antioxidant and radical scavenging properties of Malva sylvestris. Nat. Prod. Commun., 2009, 4(7), 1934578X0900400702.
[http://dx.doi.org/10.1177/1934578X0900400702]
[129]
Nehir El, S.; Karakaya, S. Radical scavenging and iron-chelating activities of some greens used as traditional dishes in Mediterranean diet. Int. J. Food Sci. Nutr., 2004, 55(1), 67-74.
[http://dx.doi.org/10.1080/09637480310001642501] [PMID: 14630594]
[130]
Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother. Res., 2007, 21(7), 615-621.
[http://dx.doi.org/10.1002/ptr.2129] [PMID: 17357975]
[131]
Marouane, W.; Soussi, A.; Murat, J.C.; Bezzine, S.; El Feki, A. The protective effect of Malva sylvestris on rat kidney damaged by vanadium. Lipids Health Dis., 2011, 10(1), 65.
[http://dx.doi.org/10.1186/1476-511X-10-65] [PMID: 21513564]
[132]
Irfan, A.; Imran, M.; Khalid, M.; Sami Ullah, M.; Khalid, N.; Assiri, M.A.; Thomas, R.; Muthu, S.; Raza Basra, M.A.; Hussein, M.; Al-Sehemi, A.G.; Shahzad, M. Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. J. Saudi Chem. Soc., 2021, 25(8), 101277.
[http://dx.doi.org/10.1016/j.jscs.2021.101277]
[133]
Hussain, L.; Ikram, J.; Rehman, K.; Tariq, M.; Ibrahim, M.; Akash, M.S.H. Hepatoprotective effects of Malva sylvestris L. against paracetamol-induced hepatotoxicity. Turk. J. Biol., 2014, 38(3), 396-402.
[http://dx.doi.org/10.3906/biy-1312-32]
[134]
Mohi-Ud-Din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A.J.C.d.m Possible pathways of hepatotoxicity caused by chemical agents. Curr. Drug Metab., 2019, 20(11), 867-879.
[http://dx.doi.org/10.2174/1389200220666191105121653]
[135]
Matsuo, K.; Irie, N. Osteoclast–osteoblast communication. Arch. Biochem. Biophys., 2008, 473(2), 201-209.
[http://dx.doi.org/10.1016/j.abb.2008.03.027] [PMID: 18406338]
[136]
Matsuoka, K.; Park, K.; Ito, M.; Ikeda, K.; Takeshita, S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J. Bone Miner. Res., 2014, 29(7), 1522-1530.
[http://dx.doi.org/10.1002/jbmr.2187] [PMID: 24470120]
[137]
Zaidi, M. Skeletal remodeling in health and disease. Nat. Med., 2007, 13(7), 791-801.
[http://dx.doi.org/10.1038/nm1593] [PMID: 17618270]
[138]
Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A.; Hamedi, B. Wound healing activity of Malva sylvestris and Punica granatum in alloxan-induced diabetic rats. Acta Pol. Pharm., 2010, 67(5), 511-516.
[PMID: 20873419]
[139]
Ghorbani, A. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran. J. Ethnopharmacol., 2005, 102(1), 58-68.
[http://dx.doi.org/10.1016/j.jep.2005.05.035] [PMID: 16024194]
[140]
Zargari, A. Medicinal Plants, 5th edn; Tehran University Publication: Tehran, 1992.
[141]
PERSICUS. 2nd National Congress on Medicinal Plants 15, 16 May 2013 Tehran-Iran 2013.
[142]
Nasiri, E.; Hosseinimehr, S.J.; Azadbakht, M.; Akbari, J.; Enayati-Fard, R.; Azizi, S. Effect of Malva sylvestris cream on burn injury and wounds in rats. Avicenna J. Phytomed., 2015, 5(4), 341-354.
[PMID: 26909337]
[143]
Hamedi, A.; Rezaei, H.; Azarpira, N.; Jafarpour, M.; Ahmadi, F. Effects of Malva sylvestris and its isolated polysaccharide on experimental ulcerative colitis in rats. J. Evid. Based Complementary Altern. Med., 2016, 21(1), 14-22.
[http://dx.doi.org/10.1177/2156587215589184] [PMID: 26045553]
[144]
Dumas, M.; Noblesse, E.; Krzych, V.; Cauchard, J.H. Use of an extract of common mallow as an hydrating agent, and cosmetic composition containing it. U.S Patent US8455013B2, 2013.
[145]
Mohamadi Yarijani, Z.; Najafi, H.; Shackebaei, D.; Madani, S.H.; Modarresi, M.; Jassemi, S.V. Amelioration of renal and hepatic function, oxidative stress, inflammation and histopathologic damages by Malva sylvestris extract in gentamicin induced renal toxicity. Biomed. Pharmacother., 2019, 112, 108635.
[http://dx.doi.org/10.1016/j.biopha.2019.108635] [PMID: 30798126]
[146]
Benso, B.; Rosalen, P.L.; Pasetto, S.; Marquezin, M.C.S.; Freitas-Blanco, V.; Murata, R.M. Malva sylvestris derivatives as inhibitors of HIV-1 BaL infection. Nat. Prod. Res., 2021, 35(6), 1064-1069.
[http://dx.doi.org/10.1080/14786419.2019.1619720] [PMID: 31429300]
[147]
Chitnis, S.; Mondal, D.; Agrawal, K.C. Zidovudine (AZT) treatment suppresses granulocyte-monocyte colony stimulating factor receptor type alpha (GM-CSFRα) gene expression in murine bone marrow cells. Life Sci., 2002, 71(8), 967-978.
[http://dx.doi.org/10.1016/S0024-3205(02)01790-3] [PMID: 12084393]
[148]
Talbourdet, S.; Sadick, N.S.; Lazou, K.; Bonnet-Duquennoy, M.; Kurfurst, R.; Neveu, M.; Heusèle, C.; André, P.; Schnebert, S.; Draelos, Z.D.; Perrier, E. Modulation of gene expression as a new skin anti-aging strategy. J. Drugs Dermatol., 2007, 6(Suppl. 6), s25-s33.
[PMID: 17691207]
[149]
Guarrera, P.M. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia, 2005, 76(1), 1-25.
[http://dx.doi.org/10.1016/j.fitote.2004.09.006] [PMID: 15664457]
[150]
Camejo-Rodrigues, J.; Ascensão, L.; Bonet, M.À.; Vallès, J. An ethnobotanical study of medicinal and aromatic plants in the Natural Park of “Serra de São Mamede” (Portugal). J. Ethnopharmacol., 2003, 89(2-3), 199-209.
[http://dx.doi.org/10.1016/S0378-8741(03)00270-8] [PMID: 14611883]
[151]
Zhen-yu, W. Impact of anthocyanin fromMalva sylvestris on plasma lipids and free radical. J. For. Res., 2005, 16(3), 228-232.
[http://dx.doi.org/10.1007/BF02856821]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy