Abstract
Angiogenesis during reactive and pathologic processes is characteristically associated with inflammation. Macrophages and dendritic cells present in the inflammatory infiltrate contribute to the angiogenic process by multiple mechanisms. Macrophages produce a broad array of angiogenic growth factors and cytokines, generate conduits for blood flow through proteolytic mechanisms, and promote the remodeling of arterioles into arteries. They can also inhibit angiogenesis and cause reabsorption of neovessels by inducing endothelial cell death. Dendritic cells can stimulate or inhibit angiogenesis depending on their activation status and subset specificity. Dendritic cells stimulate angiogenesis by secreting angiogenic factors and cytokines, promoting the proangiogenic activity of T lymphocytes, and trans-differentiating into endothelial cells. Inflammatory infiltrates associated with angiogenesis also contain Tie2+, VEGFR2+, and GR1+ myelomonocytic cells which actively regulate the angiogenic process through paracrine mechanisms. In this paper we review our current knowledge of this field and discuss how recent advances have provided the rationale for novel therapeutic approaches against cancer.
Keywords: Macrophages, dendritic cells, myeloid cells, neovascularization, arteriogenesis
Current Pharmaceutical Design
Title: Regulation of Angiogenesis by Macrophages, Dendritic Cells, and Circulating Myelomonocytic Cells
Volume: 15 Issue: 4
Author(s): Zhao Ming (David) Dong, Alfred C. Aplin and Roberto F. Nicosia
Affiliation:
Keywords: Macrophages, dendritic cells, myeloid cells, neovascularization, arteriogenesis
Abstract: Angiogenesis during reactive and pathologic processes is characteristically associated with inflammation. Macrophages and dendritic cells present in the inflammatory infiltrate contribute to the angiogenic process by multiple mechanisms. Macrophages produce a broad array of angiogenic growth factors and cytokines, generate conduits for blood flow through proteolytic mechanisms, and promote the remodeling of arterioles into arteries. They can also inhibit angiogenesis and cause reabsorption of neovessels by inducing endothelial cell death. Dendritic cells can stimulate or inhibit angiogenesis depending on their activation status and subset specificity. Dendritic cells stimulate angiogenesis by secreting angiogenic factors and cytokines, promoting the proangiogenic activity of T lymphocytes, and trans-differentiating into endothelial cells. Inflammatory infiltrates associated with angiogenesis also contain Tie2+, VEGFR2+, and GR1+ myelomonocytic cells which actively regulate the angiogenic process through paracrine mechanisms. In this paper we review our current knowledge of this field and discuss how recent advances have provided the rationale for novel therapeutic approaches against cancer.
Export Options
About this article
Cite this article as:
(David) Dong Ming Zhao, Aplin C. Alfred and Nicosia F. Roberto, Regulation of Angiogenesis by Macrophages, Dendritic Cells, and Circulating Myelomonocytic Cells, Current Pharmaceutical Design 2009; 15 (4) . https://dx.doi.org/10.2174/138161209787315783
DOI https://dx.doi.org/10.2174/138161209787315783 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employ in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, prediction, to monitor of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal fluid ...read more
Current Pharmaceutical challenges in the treatment and diagnosis of neurological dysfunctions
Neurological dysfunctions (MND, ALS, MS, PD, AD, HD, ALS, Autism, OCD etc..) present significant challenges in both diagnosis and treatment, often necessitating innovative approaches and therapeutic interventions. This thematic issue aims to explore the current pharmaceutical landscape surrounding neurological disorders, shedding light on the challenges faced by researchers, clinicians, and ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Non-Camptothecin DNA Topoisomerase I Inhibitors in Cancer Therapy
Current Topics in Medicinal Chemistry Cancer Diagnosis and Treatment Guidance: Role of MRI and MRI Probes in the Era of Molecular Imaging
Current Pharmaceutical Biotechnology Cellular Changes, Molecular Pathways and the Immune System Following Photodynamic Treatment
Current Medicinal Chemistry <i>DBX2</i> Promotes Glioblastoma Cell Proliferation by Regulating <i>REST</i> Expression
Current Pharmaceutical Biotechnology A Nanoparticle-Encapsulated Non-Nucleoside Reverse-Transcriptase Inhibitor with Enhanced Anti-HIV-1 Activity and Prolonged Circulation Time in Plasma
Current Pharmaceutical Design COX-2, Cell Proliferation and PMA in Head-and-Neck Cancer Cells
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Application of Coatings with Smart Functions
Mini-Reviews in Organic Chemistry Prognostic and Predictive Biomarkers in Cancer
Current Cancer Drug Targets Progress in Research of K<sub>V</sub>1.1 and K<sub>V</sub>1.3 Channels as Therapeutic Targets
Current Topics in Medicinal Chemistry Aberrant Splicing, Hyaluronan Synthases and Intracellular Hyaluronan as Drivers of Oncogenesis and Potential Drug Targets
Current Cancer Drug Targets A Connecting Switch Among Aging, Diabetes and Tumor: Avenue Leading to Cancer Therapeutics
Current Cancer Therapy Reviews Contribution of Inflammation to Fat Redistribution and Metabolic Disturbances in HIV-1 Infected Patients
Current Pharmaceutical Design Integrins as Novel Drug Targets for Overcoming Innate Drug Resistance
Current Cancer Drug Targets Vascular Endothelial Growth Factor and Vascular Endothelial Growth Factor Receptor Inhibitors as Anti-Angiogenic Agents in Cancer Therapy
Recent Patents on Anti-Cancer Drug Discovery Editorial (Thematic Issue: Microglia - A Therapeutic Target in Neurological Diseases and Disorders)
CNS & Neurological Disorders - Drug Targets ZD6474, a Small Molecule Tyrosine Kinase Inhibitor, Potentiates the Anti-Tumor and Anti-Metastasis Effects of Radiation for Human Nasopharyngeal Carcinoma
Current Cancer Drug Targets Calixarenes in Lipase Biocatalysis and Cancer Therapy
Current Organic Chemistry Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity
Current Topics in Medicinal Chemistry Low Concentration of Salinomycin Prevents Regrowth and Partially Depletes Human Glioma Cells Surviving High Concentrations of Alkylating Agents
Clinical Cancer Drugs Dexamethasone Reduces Cell Adhesion and Migration of T47D Breast Cancer Cell Line
Anti-Cancer Agents in Medicinal Chemistry