Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Nano-based Therapeutics for Rheumatoid Arthritis: Recent Patents and Development

Author(s): Manish Makhija, Deeksha Manchanda and Manu Sharma*

Volume 19, Issue 1, 2025

Published on: 26 September, 2023

Page: [56 - 75] Pages: 20

DOI: 10.2174/1872210518666230905155459

Price: $65

Abstract

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease marked by inflammation of synovium and generation of autoantibodies. Bone and cartilage are frequently damaged along with weakening of tendons and ligaments resulting in disability. An effective RA treatment needs a multi-disciplinary approach which relies upon pathophysiology that is still partially understood. In RA patients, inflammation was induced by pro-inflammatory cytokines including IL-1, IL-6 & IL-10. The conventional dosage regimens for treating RA have drawbacks such as ineffectiveness, greater doses, frequent dosing, relatively expensive and serious adverse effects. To formulate an effective treatment plan for RA, research teams have recently focused on producing several nanoformulations containing anti-inflammatory APIs with an aim to target the inflamed area. Nanomedicines have recently gained popularity in the treatment of RA. Interestingly, unbelievable improvements have been observed in current years in diagnosis and management of RA utilizing nanotechnology. Various patents and clinical trial data have been reported in relevance to RA treatment.

Keywords: Rheumatoid arthritis, anti-inflammatory, nano-based therapeutics, nanoformulations, cytokines, nanomedicines.

Graphical Abstract
[1]
Chaudhari K, Rizvi S, Syed BA. Rheumatoid arthritis: Current and future trends. Nat Rev Drug Discov 2016; 15(5): 305-6.
[http://dx.doi.org/10.1038/nrd.2016.21] [PMID: 27080040]
[2]
Zheng M, Jia H, Wang H, et al. Application of nanomaterials in the treatment of Rheumatoid arthritis. RSC Advances 2021; 11(13): 7129-37.
[http://dx.doi.org/10.1039/D1RA00328C] [PMID: 35423287]
[3]
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6(1): 15.
[http://dx.doi.org/10.1038/s41413-018-0016-9] [PMID: 29736302]
[4]
Joseph A, Brasington R, Kahl L, Ranganathan P, Cheng TP, Atkinson J. Immunologic rheumatic disorders. J Allergy Clin Immunol 2010; 125(2) (Suppl. 2): S204-15.
[http://dx.doi.org/10.1016/j.jaci.2009.10.067] [PMID: 20176259]
[5]
Brzustewicz E, Henc I, Daca A, et al. Autoantibodies, C-reactive protein, erythrocyte sedimentation rate and serum cytokine profiling in monitoring of early treatment. Cent Eur J Immunol 2017; 3(3): 259-68.
[http://dx.doi.org/10.5114/ceji.2017.70968] [PMID: 29204090]
[6]
Lin YJ, Anzaghe M, Schülke S. Update on the pathomechanism, diagnosis, and treatment options for Rheumatoid arthritis. Cells 2020; 9(4): 880.
[http://dx.doi.org/10.3390/cells9040880] [PMID: 32260219]
[7]
Almutairi K, Nossent J, Preen D, Keen H, Inderjeeth C. The global prevalence of Rheumatoid arthritis: A meta-analysis based on a systematic review. Rheumatol Int 2021; 41(5): 863-77.
[http://dx.doi.org/10.1007/s00296-020-04731-0] [PMID: 33175207]
[8]
Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. Is the incidence of Rheumatoid arthritis rising?: Results from Olmsted County, Minnesota, 1955-2007. Arthritis Rheum 2010; 62(6): 1576-82.
[http://dx.doi.org/10.1002/art.27425] [PMID: 20191579]
[9]
Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol 2014; 35(3): 347-69.
[http://dx.doi.org/10.1016/j.yfrne.2014.04.004] [PMID: 24793874]
[10]
Crowson CS, Matteson EL, Myasoedova E, et al. The lifetime risk of adult-onset Rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum 2011; 63(3): 633-9.
[http://dx.doi.org/10.1002/art.30155] [PMID: 21360492]
[11]
Almutairi KB, Nossent JC, Preen DB, Keen HI, Inderjeeth CA. The prevalence of Rheumatoid arthritis: A systematic review of population-based studies. J Rheumatol 2021; 48(5): 669-76.
[http://dx.doi.org/10.3899/jrheum.200367] [PMID: 33060323]
[12]
McInnes IB, O’Dell JR. State-of-the-art: Rheumatoid arthritis. Ann Rheum Dis 2010; 69(11): 1898-906.
[13]
Coutant F, Miossec P. Altered dendritic cell functions in autoimmune diseases: Distinct and overlapping profiles. Nat Rev Rheumatol 2016; 12(12): 703-15.
[http://dx.doi.org/10.1038/nrrheum.2016.147] [PMID: 27652503]
[14]
Yu MB, Langridge WHR. The function of myeloid dendritic cells in Rheumatoid arthritis. Rheumatol Int 2017; 37(7): 1043-51.
[http://dx.doi.org/10.1007/s00296-017-3671-z] [PMID: 28236220]
[15]
Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve Rheumatoid arthritis. J Control Release 2017; 252: 108-24.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.032] [PMID: 28257989]
[16]
Dolati S, Sadreddini S, Rostamzadeh D, Ahmadi M, Jadidi-Niaragh F, Yousefi M. Utilization of nanoparticle technology in Rheumatoid arthritis treatment. Biomed Pharmacother 2016; 80: 30-41.
[http://dx.doi.org/10.1016/j.biopha.2016.03.004] [PMID: 27133037]
[17]
Shrivastava AK, Pandey A. Inflammation and Rheumatoid arthritis. J Physiol Biochem 2013; 69(2): 335-47.
[http://dx.doi.org/10.1007/s13105-012-0216-5] [PMID: 23385669]
[18]
Hwang J, Rodgers K, Oliver JC, Schluep T. α-methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for Rheumatoid arthritis therapy. Int J Nanomedicine 2008; 3(3): 359-71.
[PMID: 18990945]
[19]
Aletaha D, Smolen JS. Diagnosis and management of Rheumatoid arthritis: A review. JAMA 2018; 320(13): 1360-72.
[http://dx.doi.org/10.1001/jama.2018.13103] [PMID: 30285183]
[20]
Mateen S, Zafar A, Moin S, Khan AQ, Zubair S. Understanding the role of cytokines in the pathogenesis of Rheumatoid arthritis. Clin Chim Acta 2016; 455: 161-71.
[http://dx.doi.org/10.1016/j.cca.2016.02.010] [PMID: 26883280]
[21]
Paulissen SMJ, van Hamburg JP, Dankers W, Lubberts E. The role and modulation of CCR6+ Th17 cell populations in Rheumatoid arthritis. Cytokine 2015; 74(1): 43-53.
[http://dx.doi.org/10.1016/j.cyto.2015.02.002] [PMID: 25828206]
[22]
Roy K, Kanwar RK, Kanwar JR. Molecular targets in arthritis and recent trends in nanotherapy. Int J Nanomedicine 2015; 10: 5407-20.
[PMID: 26345140]
[23]
Pham CTN. Nanotherapeutic approaches for the treatment of Rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011; 3(6): 607-19.
[http://dx.doi.org/10.1002/wnan.157] [PMID: 21837725]
[24]
Danks L, Takayanagi H. Immunology and bone. J Biochem 2013; 154(1): 29-39.
[http://dx.doi.org/10.1093/jb/mvt049] [PMID: 23750028]
[25]
Marahleh A, Kitaura H, Ohori F, et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front Immunol 2019; 10: 2925.
[http://dx.doi.org/10.3389/fimmu.2019.02925] [PMID: 31921183]
[26]
Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000; 106(12): 1481-8.
[http://dx.doi.org/10.1172/JCI11176] [PMID: 11120755]
[27]
Kobayashi K, Takahashi N, Jimi E, et al. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 2000; 191(2): 275-86.
[http://dx.doi.org/10.1084/jem.191.2.275] [PMID: 10637272]
[28]
Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts. J Biol Chem 2000; 275(7): 4858-64.
[http://dx.doi.org/10.1074/jbc.275.7.4858] [PMID: 10671521]
[29]
Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010; 62(9): 2569-81.
[http://dx.doi.org/10.1002/art.27584] [PMID: 20872595]
[30]
Scher JU. B-cell therapies for Rheumatoid arthritis. Bull NYU Hosp Jt Dis 2012; 70(3): 200-3.
[PMID: 23259629]
[31]
Nishimura K, Sugiyama D, Kogata Y, et al. Meta-analysis: Diagnostic accuracy of anti-cyclic citrullinated peptide antibody and Rheumatoid factor for Rheumatoid arthritis. Ann Intern Med 2007; 146(11): 797-808.
[http://dx.doi.org/10.7326/0003-4819-146-11-200706050-00008] [PMID: 17548411]
[32]
Ingegnoli F, Castelli R, Gualtierotti R. Rheumatoid factors: Clinical applications. Dis Markers 2013; 35(6): 727-34.
[http://dx.doi.org/10.1155/2013/726598] [PMID: 24324289]
[33]
Steiner G. Auto-antibodies and autoreactive T-cells in Rheumatoid arthritis. Clin Rev Allergy Immunol 2007; 32(1): 23-36.
[http://dx.doi.org/10.1007/BF02686079] [PMID: 17426358]
[34]
Wegner N, Lundberg K, Kinloch A, et al. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of Rheumatoid arthritis. Immunol Rev 2010; 233(1): 34-54.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00850.x] [PMID: 20192991]
[35]
Aggarwal R, Liao K, Nair R, Ringold S, Costenbander KH. Anti-citrullinated peptide antibody assays and their role in the diagnosis of Rheumatoid arthritis. Arthritis Rheum 2009; 61(11): 1472-83.
[http://dx.doi.org/10.1002/art.24827] [PMID: 19877103]
[36]
Gerlag DM, Safy M, Maijer KI, et al. Effects of B-cell directed therapy on the preclinical stage of Rheumatoid arthritis: The PRAIRI study. Ann Rheum Dis 2019; 78(2): 179-85.
[http://dx.doi.org/10.1136/annrheumdis-2017-212763] [PMID: 30504445]
[37]
Forslind K, Ahlmén M, Eberhardt K, Hafström I, Svensson B. Prediction of radiological outcome in early Rheumatoid arthritis in clinical practice: Role of antibodies to citrullinated peptides (anti-CCP). Ann Rheum Dis 2004; 63(9): 1090-5.
[http://dx.doi.org/10.1136/ard.2003.014233] [PMID: 15308518]
[38]
Rönnelid J, Wick MC, Lampa J, et al. Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early Rheumatoid arthritis: Anti-CP status predicts worse disease activity and greater radiological progression. Ann Rheum Dis 2005; 64(12): 1744-9.
[http://dx.doi.org/10.1136/ard.2004.033571] [PMID: 15843452]
[39]
De Rycke L, Peene I, Hoffman IEA, et al. Rheumatoid factor and anticitrullinated protein antibodies in Rheumatoid arthritis: Diagnostic value, associations with radiological progression rate, and extra-articular manifestations. Ann Rheum Dis 2004; 63(12): 1587-93.
[http://dx.doi.org/10.1136/ard.2003.017574] [PMID: 15547083]
[40]
Coutant F. Pathogenic effects of anti-citrullinated protein antibodies in Rheumatoid arthritis – role for glycosylation. Joint Bone Spine 2019; 86(5): 562-7.
[http://dx.doi.org/10.1016/j.jbspin.2019.01.005] [PMID: 30685537]
[41]
Krishnamurthy A, Joshua V, Haj Hensvold A, et al. Identification of a novel chemokine-dependent molecular mechanism underlying Rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 2016; 75(4): 721-9.
[http://dx.doi.org/10.1136/annrheumdis-2015-208093] [PMID: 26612338]
[42]
Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. Genetic and environmental risk factors for Rheumatoid arthritis. Best Pract Res Clin Rheumatol 2017; 31(1): 3-18.
[http://dx.doi.org/10.1016/j.berh.2017.08.003] [PMID: 29221595]
[43]
Petrovská N, Prajzlerová K, Vencovský J, Šenolt L, Filková M. The pre-clinical phase of Rheumatoid arthritis: From risk factors to prevention of arthritis. Autoimmun Rev 2021; 20(5): 102797.
[http://dx.doi.org/10.1016/j.autrev.2021.102797] [PMID: 33746022]
[44]
MacGregor AJ, Snieder H, Rigby AS, et al. Characterizing the quantitative genetic contribution to Rheumatoid arthritis using data from twins. Arthritis Rheum 2000; 43(1): 30-7.
[http://dx.doi.org/10.1002/1529-0131(200001)43:1<30::AID-ANR5>3.0.CO;2-B] [PMID: 10643697]
[45]
van der Helm-van Mil AHM, Verpoort KN, Breedveld FC, Huizinga TWJ, Toes REM, de Vries RRP. The HLA–DRB1 shared epitope alleles are primarily a risk factor for anti–cyclic citrullinated peptide antibodies and are not an independent risk factor for development of Rheumatoid arthritis. Arthritis Rheum 2006; 54(4): 1117-21.
[http://dx.doi.org/10.1002/art.21739] [PMID: 16572446]
[46]
Ding B, Padyukov L, Lundström E, et al. Different patterns of associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative Rheumatoid arthritis in the extended major histocompatibility complex region. Arthritis Rheum 2009; 60(1): 30-8.
[http://dx.doi.org/10.1002/art.24135] [PMID: 19116921]
[47]
Kokkonen H, Johansson M, Innala L, Jidell E, Rantapää-Dahlqvist S. The PTPN22 1858C/T polymorphism is associated with anti-cyclic citrullinated peptide antibody-positive early Rheumatoid arthritis in northern Sweden. Arthritis Res Ther 2007; 9(3): R56.
[http://dx.doi.org/10.1186/ar2214] [PMID: 17553139]
[48]
Källberg H, Padyukov L, Plenge RM, et al. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of Rheumatoid arthritis. Am J Hum Genet 2007; 80(5): 867-75.
[http://dx.doi.org/10.1086/516736] [PMID: 17436241]
[49]
Zhang X, Li W, Zhang X, et al. Association between polymorphism in TRAF1/C5 gene and risk of Rheumatoid arthritis: A meta-analysis. Mol Biol Rep 2014; 41(1): 317-24.
[http://dx.doi.org/10.1007/s11033-013-2864-0] [PMID: 24234752]
[50]
Sigurdsson S, Padyukov L, Kurreeman FAS, et al. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with Rheumatoid arthritis. Arthritis Rheum 2007; 56(7): 2202-10.
[http://dx.doi.org/10.1002/art.22704] [PMID: 17599733]
[51]
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet 2016; 388(10055): 2023-38.
[http://dx.doi.org/10.1016/S0140-6736(16)30173-8] [PMID: 27156434]
[52]
van Drongelen V, Holoshitz J. Human leukocyte antigen–disease associations in Rheumatoid arthritis. Rheum Dis Clin North Am 2017; 43(3): 363-76.
[http://dx.doi.org/10.1016/j.rdc.2017.04.003] [PMID: 28711139]
[53]
Viatte S, Plant D, Han B, et al. Association of HLA-DRB1 haplotypes with Rheumatoid arthritis severity, mortality, and treatment re-sponse. JAMA 2015; 313(16): 1645-56.
[http://dx.doi.org/10.1001/jama.2015.3435] [PMID: 25919528]
[54]
Begovich AB, Carlton VEH, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with Rheumatoid arthritis. Am J Hum Genet 2004; 75(2): 330-7.
[http://dx.doi.org/10.1086/422827] [PMID: 15208781]
[55]
Lee AT, Li W, Liew A, et al. The PTPN22 R620W polymorphism associates with RF positive Rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun 2005; 6(2): 129-33.
[http://dx.doi.org/10.1038/sj.gene.6364159] [PMID: 15674368]
[56]
Cutolo M, Villaggio B, Craviotto C, Pizzorni C, Seriolo B, Sulli A. Sex hormones and Rheumatoid arthritis. Autoimmun Rev 2002; 1(5): 284-9.
[http://dx.doi.org/10.1016/S1568-9972(02)00064-2] [PMID: 12848982]
[57]
Salliot C, Bombardier C, Saraux A, Combe B, Dougados M. Hormonal replacement therapy may reduce the risk for RA in women with early arthritis who carry HLA-DRB1 *01 and/or *04 alleles by protecting against the production of anti-CCP: Results from the ESPOIR cohort. Ann Rheum Dis 2010; 69(9): 1683-6.
[http://dx.doi.org/10.1136/ard.2009.111179] [PMID: 19740903]
[58]
Tobón GJ, Youinou P, Saraux A. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis. Autoimmun Rev 2010; 9(5): A288-92.
[http://dx.doi.org/10.1016/j.autrev.2009.11.019] [PMID: 19944780]
[59]
Littlejohn EA, Monrad SU. Early diagnosis and treatment of Rheumatoid arthritis. Prim Care 2018; 45(2): 237-55.
[http://dx.doi.org/10.1016/j.pop.2018.02.010] [PMID: 29759122]
[60]
McGraw WT, Potempa J, Farley D, Travis J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect Immun 1999; 67(7): 3248-56.
[http://dx.doi.org/10.1128/IAI.67.7.3248-3256.1999] [PMID: 10377098]
[61]
Tan EM, Smolen JS. Historical observations contributing insights on etiopathogenesis of Rheumatoid arthritis and role of Rheumatoid factor. J Exp Med 2016; 213(10): 1937-50.
[http://dx.doi.org/10.1084/jem.20160792] [PMID: 27621417]
[62]
Harley JB, Chen X, Pujato M, et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet 2018; 50(5): 699-707.
[http://dx.doi.org/10.1038/s41588-018-0102-3] [PMID: 29662164]
[63]
Wilson C, Tiwana H, Ebringer A. Molecular mimicry between HLA-DR alleles associated with Rheumatoid arthritis and Proteus mirabilis as the aetiological basis for autoimmunity. Microbes Infect 2000; 2(12): 1489-96.
[http://dx.doi.org/10.1016/S1286-4579(00)01303-4] [PMID: 11099935]
[64]
Tiwana H, Wilson C, Alvarez A, Abuknesha R, Bansal S, Ebringer A. Cross-reactivity between the Rheumatoid arthritis-associated motif EQKRAA and structurally related sequences found in Proteus mirabilis. Infect Immun 1999; 67(6): 2769-75.
[http://dx.doi.org/10.1128/IAI.67.6.2769-2775.1999] [PMID: 10338479]
[65]
Li S, Yu Y, Yue Y, Zhang Z, Su K. Microbial infection and Rheumatoid arthritis. J Clin Cell Immunol 2013; 4(6): 174.
[PMID: 25133066]
[66]
Vessey MP, Villard-Mackintosh L, Yeates D. Oral contraceptives, cigarette smoking and other factors in relation to arthritis. Contraception 1987; 35(5): 457-64.
[http://dx.doi.org/10.1016/0010-7824(87)90082-5] [PMID: 3621942]
[67]
Lee YH, Bae SC, Song GG. Coffee or tea consumption and the risk of Rheumatoid arthritis: A meta-analysis. Clin Rheumatol 2014; 33(11): 1575-83.
[http://dx.doi.org/10.1007/s10067-014-2631-1] [PMID: 24763752]
[68]
Rosell M, Wesley AM, Rydin K, Klareskog L, Alfredsson L. Dietary fish and fish oil and the risk of Rheumatoid arthritis. Epidemiology 2009; 20(6): 896-901.
[http://dx.doi.org/10.1097/EDE.0b013e3181b5f0ce] [PMID: 19730266]
[69]
Pattison DJ, Harrison RA, Symmons DP. The role of diet in susceptibility to Rheumatoid arthritis: A systematic review. J Rheumatol 2004; 31(7): 1310-9.
[PMID: 15229949]
[70]
Benito-Garcia E, Feskanich D, Hu FB, Mandl LA, Karlson EW. Protein, iron, and meat consumption and risk for Rheumatoid arthritis: A prospective cohort study. Arthritis Res Ther 2007; 9(1): R16.
[http://dx.doi.org/10.1186/ar2123] [PMID: 17288585]
[71]
Mehri F, Jenabi E, Bashirian S, Shahna FG, Khazaei S. The association between occupational exposure to silica and risk of developing Rheumatoid arthritis: A meta-analysis. Saf Health Work 2020; 11(2): 136-42.
[http://dx.doi.org/10.1016/j.shaw.2020.02.001] [PMID: 32596007]
[72]
Alaya Z, Braham M, Aissa S, Kalboussi H, Bouajina E. A case of Caplan syndrome in a recently diagnosed patient with silicosis: A case report. Radiol Case Rep 2018; 13(3): 663-6.
[http://dx.doi.org/10.1016/j.radcr.2018.03.004] [PMID: 30023036]
[73]
Samanta J, Kendall J, Samanta A. 10-minute consultation: Polyarthralgia. BMJ 2003; 326(7394): 859.
[http://dx.doi.org/10.1136/bmj.326.7394.859] [PMID: 12702621]
[74]
2018 Chinese guideline for the diagnosis and treatment of Rheumatoid arthritis. Zhonghua Nei Ke Za Zhi 2018; 57(4): 242-51.
[PMID: 29614581]
[75]
Kgoebane K, Ally MMTM, Duim-Beytell MC, Suleman FE. The role of imaging in Rheumatoid arthritis. SA J Radiol 2018; 22(1): 1316.
[http://dx.doi.org/10.4102/sajr.v22i1.1316] [PMID: 31754498]
[76]
Bhatnagar S, Khera E, Liao J, et al. Oral and subcutaneous administration of a near-infrared fluorescent molecular imaging agent detects inflammation in a mouse model of Rheumatoid arthritis. Sci Rep 2019; 9(1): 4661.
[http://dx.doi.org/10.1038/s41598-019-38548-0] [PMID: 30858419]
[77]
Cheung KK, Hall-Craggs MA. Update on imaging in rheumatology – recent advances. Medicine (Abingdon) 2018; 46(3): 170-4.
[http://dx.doi.org/10.1016/j.mpmed.2017.12.004]
[78]
Trenkmann M, Brock M, Ospelt C, Gay S. Epigenetics in Rheumatoid arthritis. Clin Rev Allergy Immunol 2010; 39(1): 10-9.
[http://dx.doi.org/10.1007/s12016-009-8166-6] [PMID: 19707891]
[79]
Stanczyk J, Pedrioli DML, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in Rheumatoid arthritis. Arthritis Rheum 2008; 58(4): 1001-9.
[http://dx.doi.org/10.1002/art.23386] [PMID: 18383392]
[80]
Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in Rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58(5): 1284-92.
[http://dx.doi.org/10.1002/art.23429] [PMID: 18438844]
[81]
Ouboussad L, Hunt L, Hensor EMA, et al. Profiling microRNAs in individuals at risk of progression to Rheumatoid arthritis. Arthritis Res Ther 2017; 19(1): 288.
[http://dx.doi.org/10.1186/s13075-017-1492-9] [PMID: 29273071]
[82]
Wu LF, Zhang Q, Mo XB, et al. Identification of novel Rheumatoid arthritis-associated MiRNA-204-5p from plasma exosomes. Exp Mol Med 2022; 54(3): 334-45.
[http://dx.doi.org/10.1038/s12276-022-00751-x] [PMID: 35354913]
[83]
Cush JJ. Rheumatoid arthritis. Med Clin North Am 2021; 105(2): 355-65.
[http://dx.doi.org/10.1016/j.mcna.2020.10.006] [PMID: 33589108]
[84]
Egerer K, Feist E, Burmester GR. The serological diagnosis of Rheumatoid arthritis: Antibodies to citrullinated antigens. Dtsch Arztebl Int 2009; 106(10): 159-63.
[PMID: 19578391]
[85]
Rönnelid J, Turesson C, Kastbom A. Autoantibodies in Rheumatoid arthritis – Laboratory and clinical perspectives. Front Immunol 2021; 12: 685312.
[http://dx.doi.org/10.3389/fimmu.2021.685312] [PMID: 34054878]
[86]
Smolen JS, Breedveld FC, Burmester GR, et al. Treating Rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis 2016; 75(1): 3-15.
[http://dx.doi.org/10.1136/annrheumdis-2015-207524] [PMID: 25969430]
[87]
Köhler BM, Günther J, Kaudewitz D, Lorenz HM. Current therapeutic options in the treatment of Rheumatoid arthritis. J Clin Med 2019; 8(7): 938.
[http://dx.doi.org/10.3390/jcm8070938] [PMID: 31261785]
[88]
Staheli LT, Hall JG, Jaffe KM, Paholke DO, Eds. Arthrogryposis: A text atlas. Cambridge university press 1998.
[89]
Fraenkel L, Bathon JM, England BR, et al. 2021 American College of Rheumatology guideline for the treatment of Rheumatoid arthritis. Arthritis Rheumatol 2021; 73(7): 1108-23.
[http://dx.doi.org/10.1002/art.41752] [PMID: 34101376]
[90]
Smolen JS, Landewé RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of Rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis 2020; 79(6): 685-99.
[http://dx.doi.org/10.1136/annrheumdis-2019-216655] [PMID: 31969328]
[91]
Ong CKS, Lirk P, Tan CH, Seymour RA. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin Med Res 2007; 5(1): 19-34.
[http://dx.doi.org/10.3121/cmr.2007.698] [PMID: 17456832]
[92]
Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther 2013; 15(S3) (Suppl. 3): S2.
[http://dx.doi.org/10.1186/ar4174] [PMID: 24267197]
[93]
van Everdingen AA, Jacobs JWG, Siewertsz van Reesema DR, Bijlsma JWJ. Low-dose prednisone therapy for patients with early active Rheumatoid arthritis: Clinical efficacy, disease-modifying properties, and side effects: A randomized, double-blind, placebo-controlled clinical trial. Ann Intern Med 2002; 136(1): 1-12.
[http://dx.doi.org/10.7326/0003-4819-136-1-200201010-00006] [PMID: 11777359]
[94]
Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid arthritis: A brief overview of the treatment. Med Princ Pract 2018; 27(6): 501-7.
[http://dx.doi.org/10.1159/000493390] [PMID: 30173215]
[95]
Nahin RL. Estimates of pain prevalence and severity in adults: United States, 2012. J Pain 2015; 16(8): 769-80.
[http://dx.doi.org/10.1016/j.jpain.2015.05.002] [PMID: 26028573]
[96]
Whittle SL, Richards BL. van der HEIJDE DM, Buchbinder R. The efficacy and safety of opioids in inflammatory arthritis: A Cochrane systematic review. J Rheumatol Suppl 2012; 90: 40-6.
[http://dx.doi.org/10.3899/jrheum.120341] [PMID: 22942328]
[97]
Zamora-Legoff JA, Achenbach SJ, Crowson CS, Krause ML, Davis JM III, Matteson EL. Opioid use in patients with Rheumatoid arthritis 2005–2014: A population-based comparative study. Clin Rheumatol 2016; 35(5): 1137-44.
[http://dx.doi.org/10.1007/s10067-016-3239-4] [PMID: 27022929]
[98]
Monti S, Klersy C, Gorla R, et al. Factors influencing the choice of first- and second-line biologic therapy for the treatment of Rheumatoid arthritis: Real-life data from the Italian LORHEN Registry. Clin Rheumatol 2017; 36(4): 753-61.
[http://dx.doi.org/10.1007/s10067-016-3528-y] [PMID: 28058538]
[99]
Bywall KS, Kihlbom U, Hansson M, et al. Patient preferences on Rheumatoid arthritis second-line treatment: A discrete choice experiment of Swedish patients. Arthritis Res Ther 2020; 22(1): 288.
[http://dx.doi.org/10.1186/s13075-020-02391-w] [PMID: 33341117]
[100]
Pandey K. Nimisha. An overview on promising nanotechnological approaches for the treatment of psoriasis. Recent Pat Nanotechnol 2020; 14(2): 102-18.
[http://dx.doi.org/10.2174/1872210514666200204124130] [PMID: 32013854]
[101]
Nam JL, Takase-Minegishi K, Ramiro S, et al. Efficacy of biological disease-modifying antirheumatic drugs: A systematic literature review informing the 2016 update of the EULAR recommendations for the management of Rheumatoid arthritis. Ann Rheum Dis 2017; 76(6): 1113-36.
[http://dx.doi.org/10.1136/annrheumdis-2016-210713] [PMID: 28283512]
[102]
Van Ede AE, Laan RFJM, Rood MJ, et al. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in Rheumatoid arthritis: A forty-eight-week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2001; 44(7): 1515-24.
[http://dx.doi.org/10.1002/1529-0131(200107)44:7<1515::AID-ART273>3.0.CO;2-7] [PMID: 11465701]
[103]
O’Connor A, Thorne C, Kang H, Tin D, Pope JE. The rapid kinetics of optimal treatment with subcutaneous methotrexate in early inflammatory arthritis: An observational study. BMC Musculoskelet Disord 2016; 17(1): 364.
[http://dx.doi.org/10.1186/s12891-016-1213-6] [PMID: 27558249]
[104]
Behrens F, Koehm M, Burkhardt H. Update 2011: Leflunomide in Rheumatoid arthritis – strengths and weaknesses. Curr Opin Rheumatol 2011; 23(3): 282-7.
[http://dx.doi.org/10.1097/BOR.0b013e328344fddb] [PMID: 21427581]
[105]
Rozman B. Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet 2002; 41(6): 421-30.
[http://dx.doi.org/10.2165/00003088-200241060-00003] [PMID: 12074690]
[106]
Gaffo A, Saag KG, Curtis JR. Treatment of Rheumatoid arthritis. Am J Health Syst Pharm 2006; 63(24): 2451-65.
[http://dx.doi.org/10.2146/ajhp050514] [PMID: 17158693]
[107]
Alfaro-Lara R, Espinosa-Ortega HF, Arce-Salinas CA. Systematic review and meta-analysis of the efficacy and safety of leflunomide and methotrexate in the treatment of Rheumatoid arthritis. Reumatología Clínica (English Edition) 2019; 15(3): 133-9.
[http://dx.doi.org/10.1016/j.reumae.2017.07.011] [PMID: 28867467]
[108]
Kalden JR, Schattenkirchner M, Sörensen H, et al. The efficacy and safety of leflunomide in patients with active Rheumatoid arthritis: A five-year followup study. Arthritis Rheum 2003; 48(6): 1513-20.
[http://dx.doi.org/10.1002/art.11015] [PMID: 12794818]
[109]
da Silva JC, Mariz HA, da Rocha Júnior LF, et al. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and Rheumatoid arthritis patients. Clinics (São Paulo) 2013; 68(6): 766-71.
[http://dx.doi.org/10.6061/clinics/2013(06)07] [PMID: 23778483]
[110]
Niknahad H, Heidari R, Mohammadzadeh R, et al. Sulfasalazine induces mitochondrial dysfunction and renal injury. Ren Fail 2017; 39(1): 745-53.
[http://dx.doi.org/10.1080/0886022X.2017.1399908] [PMID: 29214868]
[111]
Volin MV, Campbell PL, Connors MA, Woodruff DC, Koch AE. The effect of sulfasalazine on Rheumatoid arthritic synovial tissue chemokine production. Exp Mol Pathol 2002; 73(2): 84-92.
[http://dx.doi.org/10.1006/exmp.2002.2460] [PMID: 12231210]
[112]
Augusto JF, Sayegh J, Simon A, et al. A case of sulphasalazine-induced DRESS syndrome with delayed acute interstitial nephritis. Nephrol Dial Transplant 2009; 24(9): 2940-2.
[http://dx.doi.org/10.1093/ndt/gfp277] [PMID: 19509026]
[113]
DeMichele J, Rezaizadeh H, Goldstein JI. Sulfasalazine crystalluria-induced anuric renal failure. Clin Gastroenterol Hepatol 2012; 10(2): A32.
[http://dx.doi.org/10.1016/j.cgh.2011.09.027] [PMID: 21982969]
[114]
Peper SM, Lew R, Mikuls T, et al. Rheumatoid arthritis treatment after methotrexate: The durability of triple therapy versus etanercept. Arthritis Care Res 2017; 69(10): 1467-72.
[http://dx.doi.org/10.1002/acr.23255] [PMID: 28388820]
[115]
Boutet MA, Courties G, Nerviani A, et al. Novel insights into macrophage diversity in Rheumatoid arthritis synovium. Autoimmun Rev 2021; 20(3): 102758.
[http://dx.doi.org/10.1016/j.autrev.2021.102758] [PMID: 33476818]
[116]
Miller DR. Treatment options for Rheumatoid arthritis. Drug Top 1999; 143: 53-62.
[117]
Arkin MR, Wells JA. Small-molecule inhibitors of protein–protein interactions: Progressing towards the dream. Nat Rev Drug Discov 2004; 3(4): 301-17.
[http://dx.doi.org/10.1038/nrd1343] [PMID: 15060526]
[118]
Dhillon S. Tofacitinib: A review in Rheumatoid arthritis. Drugs 2017; 77(18): 1987-2001.
[http://dx.doi.org/10.1007/s40265-017-0835-9] [PMID: 29139090]
[119]
Yamaoka K. Benefit and risk of tofacitinib in the treatment of Rheumatoid arthritis: A focus on herpes zoster. Drug Saf 2016; 39(9): 823-40.
[http://dx.doi.org/10.1007/s40264-016-0430-0] [PMID: 27193610]
[120]
Mayence A, Vanden EJ, Baricitinib A. 2018 novel FDA-approved small molecule inhibiting janus kinases. Pharmaceuticals 2019; 12(1): 37.
[http://dx.doi.org/10.3390/ph12010037] [PMID: 30871014]
[121]
Kunwar S, Collins CE, Constantinescu F. Baricitinib, a Janus kinase inhibitor, in the treatment of Rheumatoid arthritis: A systematic litera-ture review and meta-analysis of randomized controlled trials. Clin Rheumatol 2018; 37(10): 2611-20.
[http://dx.doi.org/10.1007/s10067-018-4199-7] [PMID: 30006916]
[122]
Salaffi F, Carotti M, Di Carlo M, Tardella M, Giovagnoni A. High-resolution computed tomography of the lung in patients with Rheumatoid arthritis. Medicine (Baltimore) 2019; 98(38): e17088.
[http://dx.doi.org/10.1097/MD.0000000000017088] [PMID: 31567944]
[123]
McInnes IB, Byers NL, Higgs RE, et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations. Arthritis Res Ther 2019; 21(1): 183.
[http://dx.doi.org/10.1186/s13075-019-1964-1] [PMID: 31375130]
[124]
Bechman K, Yates M, Galloway JB. The new entries in the therapeutic armamentarium: The small molecule JAK inhibitors. Pharmacol Res 2019; 147: 104392.
[http://dx.doi.org/10.1016/j.phrs.2019.104392] [PMID: 31401212]
[125]
Mogul A, Corsi K, McAuliffe L. Baricitinib: The second FDA-approved JAK inhibitor for the treatment of Rheumatoid arthritis. Ann Pharmacother 2019; 53(9): 947-53.
[http://dx.doi.org/10.1177/1060028019839650] [PMID: 30907116]
[126]
Qiu C, Zhao X, She L, et al. Baricitinib induces LDL-C and HDL-C increases in Rheumatoid arthritis: A meta-analysis of randomized controlled trials. Lipids Health Dis 2019; 18(1): 54.
[http://dx.doi.org/10.1186/s12944-019-0994-7] [PMID: 30777075]
[127]
You H, Xu D, Zhao J, et al. JAK inhibitors: Prospects in connective tissue diseases. Clin Rev Allergy Immunol 2020; 59(3): 334-51.
[http://dx.doi.org/10.1007/s12016-020-08786-6] [PMID: 32222877]
[128]
Hu CJ, Zhang L, Zhou S, et al. Effectiveness of iguratimod as monotherapy or combined therapy in patients with Rheumatoid arthritis: A systematic review and meta-analysis of RCTs. J Orthop Surg Res 2021; 16(1): 457.
[http://dx.doi.org/10.1186/s13018-021-02603-2] [PMID: 34271950]
[129]
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-molecule kinase inhibitors for the treatment of nononcologic diseases. J Med Chem 2021; 64(3): 1283-345.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01511] [PMID: 33481605]
[130]
Rein P, Mueller RB. Treatment with biologicals in Rheumatoid arthritis: An overview. Rheumatol Ther 2017; 4(2): 247-61.
[http://dx.doi.org/10.1007/s40744-017-0073-3] [PMID: 28831712]
[131]
deLuca LS, Gommerman JL. Fine-tuning of dendritic cell biology by the TNF superfamily. Nat Rev Immunol 2012; 12(5): 339-51.
[http://dx.doi.org/10.1038/nri3193] [PMID: 22487654]
[132]
Mahmood Z, Schmalzing M, Dörner T, Tony HP, Muhammad K. Therapeutic cytokine inhibition modulates activation and homing receptors of peripheral memory b cell subsets in Rheumatoid arthritis patients. Front Immunol 2020; 11: 572475.
[http://dx.doi.org/10.3389/fimmu.2020.572475] [PMID: 33042152]
[133]
Pala O, Diaz A, Blomberg BB, Frasca D. B lymphocytes in Rheumatoid arthritis and the effects of anti–TNF-α agents on B lymphocytes: A review of the literature. Clin Ther 2018; 40(6): 1034-45.
[http://dx.doi.org/10.1016/j.clinthera.2018.04.016] [PMID: 29801753]
[134]
Charles P, Elliott MJ, Davis D, et al. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-α therapy in Rheumatoid arthritis. J Immunol 1999; 163(3): 1521-8.
[http://dx.doi.org/10.4049/jimmunol.163.3.1521] [PMID: 10415055]
[135]
Gómez-Gómez GJ, Masedo Á, Yela C, Martínez-Montiel MP, Casís B. Current stage in inflammatory bowel disease: What is next? World J Gastroenterol 2015; 21(40): 11282-303.
[http://dx.doi.org/10.3748/wjg.v21.i40.11282] [PMID: 26525013]
[136]
Ogata A, Kato Y, Higa S, Yoshizaki K. IL-6 inhibitor for the treatment of Rheumatoid arthritis: A comprehensive review. Mod Rheumatol 2019; 29(2): 258-67.
[http://dx.doi.org/10.1080/14397595.2018.1546357] [PMID: 30427250]
[137]
Raimondo MG, Biggioggero M, Crotti C, Becciolini A, Favalli EG. Profile of sarilumab and its potential in the treatment of Rheumatoid arthritis. Drug Des Devel Ther 2017; 11: 1593-603.
[http://dx.doi.org/10.2147/DDDT.S100302] [PMID: 28579757]
[138]
Bozec A, Luo Y, Engdahl C, Figueiredo C, Bang H, Schett G. Abatacept blocks anti-citrullinated protein antibody and Rheumatoid factor mediated cytokine production in human macrophages in IDO-dependent manner. Arthritis Res Ther 2018; 20(1): 24.
[http://dx.doi.org/10.1186/s13075-018-1527-x] [PMID: 29415763]
[139]
Maxwell LJ, Singh JA. Abatacept for Rheumatoid arthritis: A Cochrane systematic review. J Rheumatol 2010; 37(2): 234-45.
[http://dx.doi.org/10.3899/jrheum.091066] [PMID: 20080922]
[140]
Peichl P, Alten R, Galeazzi M, et al. Abatacept retention and clinical outcomes in Austrian patients with Rheumatoid arthritis: Real-world data from the 2-year ACTION study. Wien Med Wochenschr 2020; 170(5-6): 132-40.
[http://dx.doi.org/10.1007/s10354-019-00710-8] [PMID: 31654156]
[141]
Blair HA, Deeks ED. Abatacept: A review in Rheumatoid arthritis. Drugs 2017; 77(11): 1221-33.
[http://dx.doi.org/10.1007/s40265-017-0775-4] [PMID: 28608166]
[142]
Mysler E, Pineda C, Horiuchi T, et al. Clinical and regulatory perspectives on biosimilar therapies and intended copies of biologics in rheumatology. Rheumatol Int 2016; 36(5): 613-25.
[http://dx.doi.org/10.1007/s00296-016-3444-0] [PMID: 26920148]
[143]
Yoo DH, Hrycaj P, Miranda P, et al. A randomised, double-blind, parallel-group study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab when coadministered with methotrexate in patients with active Rheumatoid arthritis: The PLANETRA study. Ann Rheum Dis 2013; 72(10): 1613-20.
[http://dx.doi.org/10.1136/annrheumdis-2012-203090] [PMID: 23687260]
[144]
Yoo DH, Racewicz A, Brzezicki J, et al. A phase III randomized study to evaluate the efficacy and safety of CT-P13 compared with reference infliximab in patients with active Rheumatoid arthritis: 54-week results from the PLANETRA study. Arthritis Res Ther 2016; 18(1): 82.
[http://dx.doi.org/10.1186/s13075-016-0981-6] [PMID: 27038608]
[145]
Yuan F, Quan L, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for Rheumatoid arthritis. Adv Drug Deliv Rev 2012; 64(12): 1205-19.
[http://dx.doi.org/10.1016/j.addr.2012.03.006] [PMID: 22433784]
[146]
Movahedi M, Beauchamp ME, Abrahamowicz M, et al. Risk of incident diabetes mellitus associated with the dosage and duration of oral glucocorticoid therapy in patients with Rheumatoid arthritis. Arthritis Rheumatol 2016; 68(5): 1089-98.
[PMID: 26663814]
[147]
Meka RR, Venkatesha SH, Acharya B, Moudgil KD. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy. Nanomedicine (Lond) 2019; 14(11): 1455-69.
[http://dx.doi.org/10.2217/nnm-2018-0501] [PMID: 30938236]
[148]
Mitragotri S, Yoo JW. Designing micro- and nano-particles for treating Rheumatoid arthritis. Arch Pharm Res 2011; 34(11): 1887-97.
[http://dx.doi.org/10.1007/s12272-011-1109-9] [PMID: 22139688]
[149]
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[PMID: 26286636]
[150]
Purohit D, Manchanda D, Makhija M, et al. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Pat Nanotechnol 2021; 15(1): 15-34.
[http://dx.doi.org/10.2174/1872210514666200909154409] [PMID: 32912128]
[151]
Oliveira IM, Gonçalves C, Reis RL, Oliveira JM. Engineering nanoparticles for targeting Rheumatoid arthritis: Past, present, and future trends. Nano Res 2018; 11(9): 4489-506.
[http://dx.doi.org/10.1007/s12274-018-2071-3]
[152]
Wang Q, He L, Fan D, Liang W, Fang J. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of Rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle. J Mater Chem B Mater Biol Med 2020; 8(9): 1841-51.
[http://dx.doi.org/10.1039/C9TB02538C] [PMID: 32016224]
[153]
Kushwaha P, Saxena S, Shukla B. A recent overview on dermatological applications of liposomes. Recent Pat Nanotechnol 2021; 15(4): 310-21.
[http://dx.doi.org/10.2174/1872210514666201021145233] [PMID: 33087038]
[154]
Jia M, Deng C, Luo J, et al. A novel dexamethasone-loaded liposome alleviates Rheumatoid arthritis in rats. Int J Pharm 2018; 540(1-2): 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.001] [PMID: 29408684]
[155]
Kataria S, Sandhu P, Bilandi AJAY, Akanksha M, Kapoor B. Stealth liposomes: A review. Int J Res Ayurveda Pharm 2011; 2(5)
[156]
Saraswat AL, Maher TJ. Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of quercetin. J Drug Deliv Sci Technol 2020; 55: 101477.
[http://dx.doi.org/10.1016/j.jddst.2019.101477]
[157]
Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta Biomembr 1992; 1104(1): 226-32.
[http://dx.doi.org/10.1016/0005-2736(92)90154-E] [PMID: 1550849]
[158]
Nayak D, Tippavajhala VK. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Iran J Pharm Res 2021; 20(1): 186-205.
[PMID: 34400952]
[159]
Zhao YP, Han JF, Zhang FY, et al. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for Rheumatoid arthritis therapy. Drug Deliv 2022; 29(1): 2269-82.
[http://dx.doi.org/10.1080/10717544.2022.2096718] [PMID: 35815790]
[160]
Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2006; 24(1): 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[161]
Grobmyer SR, Iwakuma N, Sharma P, Moudgil BM. What is cancer nanotechnology? Methods Mol Biol 2010; 624: 1-9.
[http://dx.doi.org/10.1007/978-1-60761-609-2_1] [PMID: 20217585]
[162]
Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol 2014; 6(1): 9-26.
[http://dx.doi.org/10.1039/c3ib40165k] [PMID: 24104563]
[163]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[164]
Droppa-Almeida D, de Oliveira CR, Padilha FF, de Souza RR, de Albuquerque-Júnior RLC. Polymeric nanoparticles for the treatment of prostate cancer-technological prospecting and critical analysis. Recent Pat Nanotechnol 2023; 17(1): 8-14.
[http://dx.doi.org/10.2174/1872210516666220131092642] [PMID: 35100962]
[165]
Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL–PEG micelles for effective treatment of Rheumatoid arthritis. J Control Release 2016; 230: 64-72.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.035] [PMID: 27057749]
[166]
Sailaja AK, Lola VS. Formulation of mefenamic acid loaded polymeric nanoparticles for the treatment of Rheumatoid arthritis. J Bionanosci 2018; 12(2): 177-83.
[http://dx.doi.org/10.1166/jbns.2018.1525]
[167]
Qushawy M, Alenzi AM, Albalawi SA, Alghamdi SG, Albalawi RF, Albalawi HS. Review on different vesicular drug delivery Systems (VDDSs) and their applications. Recent Pat Nanotechnol 2023; 17(1): 18-32.
[http://dx.doi.org/10.2174/1872210516666220228150624] [PMID: 35227188]
[168]
Momekova DB, Gugleva VE, Petrov PD. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega 2021; 6(49): 33265-73.
[http://dx.doi.org/10.1021/acsomega.1c05083] [PMID: 34926878]
[169]
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020; 56: 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[170]
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J Nanomater 2016; 2016: 1-13.
[http://dx.doi.org/10.1155/2016/7372306]
[171]
Akbari J, Saeedi M, Morteza-Semnani K, et al. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J Drug Target 2022; 30(1): 108-17.
[http://dx.doi.org/10.1080/1061186X.2021.1941060] [PMID: 34116599]
[172]
Paradkar M, Vaghela S. Thiocolchicosideniosomal gel formulation for the pain management of Rheumatoid arthritis through topical drug delivery. Drug Deliv Lett 2018; 8(2): 159-68.
[http://dx.doi.org/10.2174/2210303108666180216151234]
[173]
Conacher M, Alexander J, Brewer JM. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 2001; 19(20-22): 2965-74.
[http://dx.doi.org/10.1016/S0264-410X(00)00537-5] [PMID: 11282208]
[174]
Ahmed S, Kassem MA, Sayed S. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: Construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomedicine 2020; 15: 9783-98.
[http://dx.doi.org/10.2147/IJN.S278688] [PMID: 33324052]
[175]
Mahmoud TM, Nafady MM, Farouk HO, et al. Novel bile salt stabilized vesicles-mediated effective topical delivery of diclofenac sodium: A new therapeutic approach for pain and inflammation. Pharmaceuticals (Basel) 2022; 15(9): 1106.
[http://dx.doi.org/10.3390/ph15091106] [PMID: 36145327]
[176]
Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 2009; 5(2): 184-91.
[http://dx.doi.org/10.1016/j.nano.2008.08.003] [PMID: 19095502]
[177]
Cortesi R, Esposjto E, Luca G, Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials 2002; 23(11): 2283-94.
[http://dx.doi.org/10.1016/S0142-9612(01)00362-3] [PMID: 12013175]
[178]
Jain SK, Chaurasiya A, Gupta Y, et al. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J Microencapsul 2008; 25(5): 289-97.
[http://dx.doi.org/10.1080/02652040701799598] [PMID: 18608808]
[179]
Essaghraoui A, Belfkira A, Hamdaoui B, Nunes C, Lima SAC, Reis S. Improved dermal delivery of cyclosporine a loaded in solid lipid nanoparticles. Nanomaterials (Basel) 2019; 9(9): 1204.
[http://dx.doi.org/10.3390/nano9091204] [PMID: 31461853]
[180]
Shilpi S, Vimal VD, Soni V. Assessment of lactoferrin-conjugated solid lipid nanoparticles for efficient targeting to the lung. Prog Biomater 2015; 4(1): 55-63.
[http://dx.doi.org/10.1007/s40204-015-0037-z] [PMID: 29470795]
[181]
Valdes SA, Alzhrani RF, Rodriguez A. Lansakara-P DSP, Thakkar SG, Cui Z. A solid lipid nanoparticle formulation of 4-(N)-docosahexaenoyl 2′, 2′-difluorodeoxycytidine with increased solubility, stability, and antitumor activity. Int J Pharm 2019; 570: 118609.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118609] [PMID: 31415878]
[182]
Esposito E, Sguizzato M, Drechsler M, et al. Lipid nanostructures for antioxidant delivery: A comparative preformulation study. Beilstein J Nanotechnol 2019; 10(1): 1789-801.
[http://dx.doi.org/10.3762/bjnano.10.174] [PMID: 31501750]
[183]
Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for Rheumatoid arthritis therapy. Drug Deliv 2018; 25(1): 716-22.
[http://dx.doi.org/10.1080/10717544.2018.1447050] [PMID: 29516758]
[184]
Pham CV, Van MC, Thi HP, et al. Development of ibuprofen-loaded solid lipid nanoparticle-based hydrogels for enhanced in vitro dermal permeation and in vivo topical anti-inflammatory activity. J Drug Deliv Sci Technol 2020; 57: 101758.
[http://dx.doi.org/10.1016/j.jddst.2020.101758]
[185]
Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceutics 2020; 12(3): 288.
[http://dx.doi.org/10.3390/pharmaceutics12030288] [PMID: 32210127]
[186]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[187]
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016; 12(1): 143-61.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[188]
Sharma M, Chaudhary D. Exploration of bromelain laden nanostructured lipid carriers: An oral platform for bromelain delivery in Rheumatoid arthritis management. Int J Pharm 2021; 594: 120176.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120176] [PMID: 33326825]
[189]
Chen M, Daddy JCKA, Xiao Y, Ping Q, Zong L. Advanced nanomedicine for Rheumatoid arthritis treatment: Focus on active targeting. Expert Opin Drug Deliv 2017; 14(10): 1141-4.
[http://dx.doi.org/10.1080/17425247.2017.1372746] [PMID: 28847165]
[190]
Zewail M, Nafee N, Helmy MW, Boraie N. Coated nanostructured lipid carriers targeting the joints – An effective and safe approach for the oral management of Rheumatoid arthritis. Int J Pharm 2019; 567: 118447.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118447] [PMID: 31226475]
[191]
Zhang S, Wu L, Cao J, et al. Effect of magnetic nanoparticles size on Rheumatoid arthritis targeting and photothermal therapy. Colloids Surf B Biointerfaces 2018; 170: 224-32.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.016] [PMID: 29929166]
[192]
Liu Y, Cao F, Sun B, Bellanti JA, Zheng SG. Magnetic nanoparticles: A new diagnostic and treatment platform for Rheumatoid arthritis. J Leukoc Biol 2021; 109(2): 415-24.
[http://dx.doi.org/10.1002/JLB.5MR0420-008RR] [PMID: 32967052]
[193]
Subbiah L, Palanisamy S, Thamizhmurasu S, et al. Development of Meloxicam-chitosan magnetic nanoconjugates for targeting Rheumatoid arthritis joints: Pharmaceutical characterization and preclinical assessment on murine models. J Magn Magn Mater 2021; 523: 167571.
[http://dx.doi.org/10.1016/j.jmmm.2020.167571]
[194]
Santamaria P. Nanoparticle compositions for sustained therapy. Patent US20190060484A1, 2019.
[195]
Bernard MA, Tachado SD. Compositions and methods for treating inflammatory diseases. Patent WO2019195179A1, 2019.
[196]
Spallitta FA. Treating autoimmune disorders with chloroquine and/or hydroxychloroquine. Patent WO2019136221A1, 2019.
[197]
Chen Q, Chen Y, Yu H, Ehrlich MG. Nanocarriers and their processing for diagnostics and therapeutics. Patent US10555948B2, 2020.
[198]
Eliasof S. Cyclodextrin-based polymers for therapeutic delivery. Patent US20200046845A1, 2020.
[199]
Dodd A, Meiser F, Norret M, Russell A, Bosch H W. Novel formulation of meloxicam. Patent US20210002267A1, 2021.
[200]
Stephan M. Nanoparticles for gene expression and uses thereof. Patent US20210128485A1, 2021.
[201]
Drennan T. Nano-penetrative cannabinoid oil blends and compositions and methods of formulation thereof. Patent US20210330638A1, 2021.
[202]
Dang TT, Nguyen TD. Inflammation-responsive anti-inflammatory hydrogels. Patent WO2021112772A1, 2021.
[203]
Plakogiannis FM, Lather T. Transdermal and/or topical pharmaceutical formulations comprising cannabidiol and/or tetrahydrocannabinol for the treatment of chronic pain. Patent WO2021214545A1, 2021.
[204]
Audell RA, Berenson RJ, Leung CYP. Microstructure systems and methods for pain treatment. Patent US20210252264A1, 2021.
[205]
Fraser C. Tolerogenic synthetic nanocarriers. Patent AU2022211839A1, 2022.
[206]
Cao G, Li YL, Mei S, Pan Y, Qian D, Zhuo J. Bipyrazole derivatives as jak inhibitors. Patent AU2022263454A1, 2022.
[207]
Anderson DG, Dorkin JR, Fenton OS, Kauffman KJ, Mcclellan RL. Alkenyl substituted 2,5-piperazinediones and their use in compositions for delivering an agent to a subject or cell. Patent AU2022259755A, 2022.
[208]
Reimann K, Wang R, Yu B. Humanized anti-cd40 antibodies and uses thereof. Patent AU2022241635A1, 2022.
[209]
INCMNSZ - Rheumatoid Arthritis Cohort (IRAC). Patent NCT033897112022,
[210]
Study to assess the safety and efficacy of enbrel administered by sofusa doseconnect for Rheumatoid arthritis. Patent NCT04559412, 2023.
[211]
A phase 2 study of Hemay007 in patients with Rheumatoid arthritis. Patent NCT05247216, 2022.
[212]
Regional registry-based biobank development and pharmacogenetic analysis in Rheumatoid arthritis (RABiobank). Patent NCT03555240, 2019.
[213]
To assess the efficacy and safety of pf-06650833, pf-06651600, and tofacitinib alone and in combination in participants with active Rheumatoid arthritis with an inadequate response to methotrexate. Patent NCT04413617, 2023.
[214]
Rheumatoid arthritis MEDIcation adherence (REMEDIA). Patent NCT05413759, 2022.
[215]
Rheumatoid arthritis patients and porphyromonas gingivalis. Patent NCT02905175, 2019.
[216]
Safety, tolerability, pharmacokinetics and pharmacodynamics study of VAY736 in Rheumatoid arthritis patients. Patent NCT02675803, 2020.
[217]
A study of TJ003234 in Rheumatoid arthritis patients. Patent NCT04457856, 2022.
[218]
Efficacy study of dextromethorphan to treat Rheumatoid arthritis. Patent NCT02368093, 2015.
[219]
A study to assess the safety, tolerability and pharmacokinetics of multiple subcutaneous injections of abbv-257 in subjects with Rheumatoid arthritis. Patent NCT02531178, 2016.
[220]
Effect of electroacupuncture on refractory pain in juvenile Rheumatoid arthritis: Randomized controlled trial. Patent NCT05504382, 2022.
[221]
Early phase study to assess efficacy and safety of AZD9567 versus prednisolone in patients with Rheumatoid arthritis. Patent NCT03368235, 2020.
[222]
The effects of hyperbaric oxygen on Rheumatoid arthritis. Patent NCT02984943, 2020.
[223]
Study in Rheumatoid arthritis for subjects who completed preceding study M13-390 with adalimumab. Patent NCT01752855, 2014.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy