Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Salivary Antiviral and Antibacterial Properties in the Encounter of SARS-CoV-2

Author(s): Nooshin Mohtasham, Rahimeh Bargi, Alieh Farshbaf, Maryam Vahabzadeh Shahri, Kiana Kamyab Hesari and Farnaz Mohajertehran*

Volume 29, Issue 27, 2023

Published on: 06 September, 2023

Page: [2140 - 2148] Pages: 9

DOI: 10.2174/1381612829666230904150823

Price: $65

Abstract

Due to the high mortality rate of COVID-19 and its high variability and mutability, it is essential to know the body's defense mechanisms against this virus. Saliva has numerous functions, such as digestion, protection, and antimicrobial effects. Salivary diagnostic tests for many oral and systemic diseases will be available soon because saliva is a pool of biological markers. The most important antiviral and antibacterial compounds identified in saliva include lysozyme, lactoferrin (LF), mucins, cathelicidin, salivary secretory immunoglobulin (SIgA), chromogranin A, cathelicidin, salivary agglutinin (SAG) (gp340, DMBT1), α, β defensins, cystatin, histatins, secretory leukocyte protease inhibitor (SLPI), heat shock protein (HSP), adrenomedullin and microRNA (miRNAs). Antimicrobial peptides (AMPs) in saliva could be used in the future as models for designing effective oral microbial antibiotics. The antiviral properties of the peptides in saliva may be one of the future treatments for the COVID-19 virus. In this review, we investigate compounds with antiviral and antibacterial properties in saliva and the importance of these compounds in saliva in exposure to the COVID-19 virus. Due to the transmission route of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) into the oral cavity in the lower and upper respiratory tract, studies of salivary antiviral properties in these patients are very important. Some of the antiviral effects of saliva, especially mucin, α, β-defensins, IgA, IgG, IgM, lysozyme, SAG, SLPI, and histatins, may play a greater role in neutralizing or eliminating COVID-19.

Keywords: Antiviral, antibacterial, saliva, SARS-CoV-2, microRNA, COVID-19.

[2]
Jafari A, Pouya DF, Niknam Z, Abdollahpour-Alitappeh M, Rezaei-Tavirani M, Rasmi Y. Current advances and challenges in COVID-19 vaccine development: From conventional vaccines to next-generation vaccine platforms. Mol Biol Rep 2022; 49(6): 4943-57.
[http://dx.doi.org/10.1007/s11033-022-07132-7] [PMID: 35235159]
[4]
Kelleni MT. Tocilizumab, remdesivir, favipiravir, and dexamethasone repurposed for COVID-19: A comprehensive clinical and pharmacovigilant reassessment. SN Compr Clin Med 2021; 3(4): 919-23.
[http://dx.doi.org/10.1007/s42399-021-00824-4] [PMID: 33644693]
[5]
Estcourt L, Callum J. Convalescent plasma for COVID-19 - making sense of the inconsistencies. N Engl J Med 2022; 386(18): 1753-4.
[http://dx.doi.org/10.1056/NEJMe2204332] [PMID: 35507487]
[6]
Thakur S, Sasi S, Pillai SG, et al. SARS-CoV-2 mutations and their impact on diagnostics, therapeutics and vaccines. Front Med 2022; 9: 815389.
[http://dx.doi.org/10.3389/fmed.2022.815389] [PMID: 35273977]
[7]
Li Y, Ren B, Peng X, et al. Saliva is a non-negligible factor in the spread of COVID-19. Mol Oral Microbiol 2020; 35(4): 141-5.
[http://dx.doi.org/10.1111/omi.12289] [PMID: 32367576]
[8]
Arinawati DY, Novianti M, Eds. Saliva as diagnostic medium to detect infectious disease in human body: A review. International Conference on Sustainable Innovation on Health Sciences and Nursing (ICOSI-HSN 2022).
[http://dx.doi.org/10.2991/978-94-6463-070-1_50]
[9]
Nguyen-Kim H, Beckmann C, Redondo M, et al. COVID salivary diagnostics: A comparative technical study. J Med Virol 2022; 94(9): 4277-86.
[http://dx.doi.org/10.1002/jmv.27883] [PMID: 35614569]
[10]
Trobajo-Sanmartín C, Adelantado M, Navascués A, et al. Self-collection of saliva specimens as a suitable alternative to nasopharyngeal swabs for the diagnosis of SARS-CoV-2 by RT-qPCR. J Clin Med 2021; 10(2): 299.
[http://dx.doi.org/10.3390/jcm10020299] [PMID: 33467501]
[11]
Goode MR, Cheong SY, Li N, Ray WC, Bartlett CW. Collection and extraction of saliva DNA for next generation sequencing. J Vis Exp 2014; 90: e51697.
[12]
Baghizadeh Fini M. Oral saliva and COVID-19. Oral Oncol 2020; 108: 104821.
[http://dx.doi.org/10.1016/j.oraloncology.2020.104821] [PMID: 32474389]
[13]
Mohtasham N, Ayatollahi H, Saghravanian N, et al. Evaluation of tissue and serum expression levels of lactate dehydrogenase isoenzymes in patients with head and neck squamous cell carcinoma. Anticancer Agents Med Chem 2020; 19(17): 2072-8.
[http://dx.doi.org/10.2174/1871520619666191014160818] [PMID: 31660843]
[14]
Mohtasham N, Anvari K, Memar B, et al. Expression of E-cadherin and matrix metalloproteinase-9 in oral squamous cell carcinoma and histologically negative surgical margins and association with clinicopathological parameters. Rev Roum Morphol Embryol 2014; 55(1): 117-21.
[PMID: 24715175]
[15]
Kadeh H, Kamyab-Hesari K, Mohtasham N, Aghazadeh N, Biglarian M, Memar B. The expression of MMP-2 and Ki-67 in head and neck melanoma, and their correlation with clinic-pathologic indices. J Cancer Res Ther 2014; 10(3): 696-700.
[http://dx.doi.org/10.4103/0973-1482.138122] [PMID: 25313763]
[16]
Kumar V, Abbas AK, Fausto N, Aster JC. Robbins and Cotran pathologic basis of disease, professional edition e-book; Elsevier health sciences 2014.
[17]
Mohtasham N, Ayatollahi H, Saghravanian N, Zare R, Shakeri M-T, Sahebkar A. Evaluation of tissue and serum expression levels of lactate dehydrogenase isoenzymes in patients with head and neck squamous cell carcinoma. Anti-Cancer Agents Med Chem 2019; 19(17): 2072-8.
[18]
Grassl N, Kulak NA, Pichler G, et al. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med 2016; 8(1): 44.
[http://dx.doi.org/10.1186/s13073-016-0293-0] [PMID: 27102203]
[19]
Tomas M, Capanoglu E, Bahrami A, et al. The direct and indirect effects of bioactive compounds against coronavirus. Food Front 2022; 3(1): 96-123.
[http://dx.doi.org/10.1002/fft2.119] [PMID: 35462942]
[20]
Zhang CZ, Cheng XQ, Li JY, et al. Saliva in the diagnosis of diseases. Int J Oral Sci 2016; 8(3): 133-7.
[http://dx.doi.org/10.1038/ijos.2016.38] [PMID: 27585820]
[21]
Lynge Pedersen AM, Belstrøm D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 2019; 80 (Suppl. 1): S3-S12.
[http://dx.doi.org/10.1016/j.jdent.2018.08.010] [PMID: 30696553]
[22]
Muramatsu M, Yoshida R, Yokoyama A, et al. Comparison of antiviral activity between IgA and IgG specific to influenza virus hemagglutinin: Increased potential of IgA for heterosubtypic immunity. PLoS One 2014; 9(1): e85582.
[http://dx.doi.org/10.1371/journal.pone.0085582] [PMID: 24465606]
[23]
Pinilla YT, Heinzel C, Caminada LF, et al. SARS-CoV-2 antibodies are persisting in saliva for more than 15 months after infection and become strongly boosted after vaccination. Front Immunol 2021; 12: 798859.
[http://dx.doi.org/10.3389/fimmu.2021.798859] [PMID: 34956236]
[24]
Fábián TK, Hermann P, Beck A, Fejérdy P, Fábián G. Salivary defense proteins: Their network and role in innate and acquired oral immunity. Int J Mol Sci 2012; 13(4): 4295-320.
[http://dx.doi.org/10.3390/ijms13044295] [PMID: 22605979]
[25]
Paul S, Bravo Vázquez LA, Reyes-Pérez PR, et al. The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res 2022; 308: 198631.
[http://dx.doi.org/10.1016/j.virusres.2021.198631] [PMID: 34788642]
[26]
Visacri MB, Nicoletti AS, Pincinato EC, et al. Role of miRNAs as biomarkers of COVID-19: A scoping review of the status and future directions for research in this field. Biomarkers Med 2021; 15(18): 1785-95.
[http://dx.doi.org/10.2217/bmm-2021-0348] [PMID: 34784802]
[27]
Bernier A, Sagan S. The diverse roles of microRNAs at the host-virus interface. Viruses 2018; 10(8): 440.
[http://dx.doi.org/10.3390/v10080440] [PMID: 30126238]
[28]
Fay E, Langlois R. MicroRNA-attenuated virus vaccines. Noncoding RNA 2018; 4(4): 25.
[http://dx.doi.org/10.3390/ncrna4040025] [PMID: 30279330]
[29]
Frenkel ES, Ribbeck K. Salivary mucins protect surfaces from colonization by cariogenic bacteria. Appl Environ Microbiol 2015; 81(1): 332-8.
[http://dx.doi.org/10.1128/AEM.02573-14] [PMID: 25344244]
[30]
Bobek LA, Situ H. MUC7 20-Mer: Investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action. Antimicrob Agents Chemother 2003; 47(2): 643-52.
[http://dx.doi.org/10.1128/AAC.47.2.643-652.2003] [PMID: 12543672]
[31]
Lu W, Liu X, Wang T, et al. Elevated MUC1 and MUC5AC mucin protein levels in airway mucus of critical ill COVID-19 patients. J Med Virol 2020; 93(2): 582.
[PMID: 32776556]
[32]
Boks MA, Gunput STG, Kosten I, et al. The human glycoprotein salivary agglutinin inhibits the interaction of DC-SIGN and langerin with oral micro-organisms. J Innate Immun 2016; 8(4): 350-61.
[http://dx.doi.org/10.1159/000443016] [PMID: 27082983]
[33]
Posse JL, Dios PD, Scully C. Infection transmission by saliva and the paradoxical protective role of saliva. Saliva Prot Transmissible Dis 2017; p. 1.
[34]
Baron S, Poast J, Cloyd MW. Why is HIV rarely transmitted by oral secretions? Saliva can disrupt orally shed, infected leukocytes. Arch Intern Med 1999; 159(3): 303-10.
[http://dx.doi.org/10.1001/archinte.159.3.303] [PMID: 9989543]
[35]
Hartshorn KL, White MR, Mogues T, Ligtenberg T, Crouch E, Holmskov U. Lung and salivary scavenger receptor glycoprotein-340 contribute to the host defense against influenza A viruses. Am J Physiol Lung Cell Mol Physiol 2003; 285(5): L1066-76.
[http://dx.doi.org/10.1152/ajplung.00057.2003] [PMID: 12871854]
[36]
Zarei M, Bose D, Ali Akbari Ghavimi S, Nouri-Vaskeh M, Mohammadi M, Sahebkar A. Potential role of glycoprotein 340 in milder SARS-CoV-2 infection in children. Expert Rev Anti Infect Ther 2021; 19(6): 675-7.
[http://dx.doi.org/10.1080/14787210.2021.1850263] [PMID: 33444084]
[37]
Han G, Sinjab A, Treekitkarnmongkol W, et al. Single-cell analysis of human lung epithelia reveals concomitant expression of the SARS-CoV-2 receptor ACE2 with multiple virus receptors and scavengers in alveolar type II cells. bioRxiv 2020; 2020.04.
[http://dx.doi.org/10.1101/2020.04.16.045617]
[38]
Brandtzaeg P. Secretory immunity with special reference to the oral cavity. J Oral Microbiol 2013; 5(1): 20401.
[http://dx.doi.org/10.3402/jom.v5i0.20401] [PMID: 23487566]
[39]
Spear GT, Alves MEAF, Cohen MH, Bremer J, Landay AL. Relationship of HIV RNA and cytokines in saliva from HIV-infected individuals. FEMS Immunol Med Microbiol 2005; 45(2): 129-36.
[http://dx.doi.org/10.1016/j.femsim.2005.03.002] [PMID: 16051064]
[40]
Varadhachary A, Chatterjee D, Garza J, et al. Salivary anti-SARS-CoV-2 IgA as an accessible biomarker of mucosal immunity against COVID-19. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.08.07.20170258]
[41]
Iyer AS, Jones FK, Nodoushani A, et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol 2020; 5(52): eabe0367.
[http://dx.doi.org/10.1126/sciimmunol.abe0367] [PMID: 33033172]
[42]
Isho B, Abe KT, Zuo M, et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol 2020; 5(52): eabe5511.
[http://dx.doi.org/10.1126/sciimmunol.abe5511] [PMID: 33033173]
[43]
Randad PR, Pisanic N, Kruczynski K, et al. COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.24.20112300]
[44]
Pisanic N, Randad PR, Kruczynski K, et al. COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva. J Clin Microbiol 2020; 59(1): e02204-20.
[http://dx.doi.org/10.1128/JCM.02204-20] [PMID: 33067270]
[45]
Li D, Calderone R, Nsouli TM, Reznikov E, Bellanti JA. Salivary and serum IgA and IgG responses to SARS-CoV-2-spike protein following SARS-CoV-2 infection and after immunization with COVID-19 vaccines. Allergy Asthma Proc 2022; 43(5): 419-30.
[http://dx.doi.org/10.2500/aap.2022.43.220045] [PMID: 36065108]
[46]
Ghazi N, Aali N, Shahrokhi VR, Mohajertehran F, Saghravanian N. Relative expression of SOX2 and OCT4 in Oral squamous cell carcinoma and oral epithelial dysplasia. Rep Biochem Mol Biol 2020; 9(2): 171-9.
[http://dx.doi.org/10.29252/rbmb.9.2.171] [PMID: 33178866]
[47]
Abiko Y, Saitoh M. Salivary defensins and their importance in oral health and disease. Curr Pharm Des 2007; 13(30): 3065-72.
[http://dx.doi.org/10.2174/138161207782110417] [PMID: 17979749]
[48]
White MR, Helmerhorst EJ, Ligtenberg A, et al. Multiple components contribute to ability of saliva to inhibit influenza viruses. Oral Microbiol Immunol 2009; 24(1): 18-24.
[http://dx.doi.org/10.1111/j.1399-302X.2008.00468.x] [PMID: 19121065]
[49]
Wilson SS, Wiens ME, Smith JG. Antiviral mechanisms of human defensins. J Mol Biol 2013; 425(24): 4965-80.
[http://dx.doi.org/10.1016/j.jmb.2013.09.038] [PMID: 24095897]
[50]
Florindo HF, Kleiner R, Vaskovich-Koubi D, et al. Immune-mediated approaches against COVID-19. Nat Nanotechnol 2020; 15(8): 630-45.
[http://dx.doi.org/10.1038/s41565-020-0732-3] [PMID: 32661375]
[51]
Al-Bayatee NT, Ad’hiah AH. Human beta-defensins 2 and 4 are dysregulated in patients with coronavirus disease 19. Microb Pathog 2021; 160: 105205.
[http://dx.doi.org/10.1016/j.micpath.2021.105205] [PMID: 34547411]
[52]
Xu C, Wang A, Marin M, et al. Human defensins Inhibit SARS- CoV-2 infection by blocking viral entry. Viruses 2021; 13(7): 1246.
[http://dx.doi.org/10.3390/v13071246] [PMID: 34206990]
[53]
Ying QL, Kemme M, Simon SR. Functions of the N-terminal domain of secretory leukoprotease inhibitor. Biochemistry 1994; 33(18): 5445-50.
[http://dx.doi.org/10.1021/bi00184a013] [PMID: 7910033]
[54]
Saghravanian N, Ghazi N, Meshkat Z, Mohtasham N. Human papillomavirus in oral leukoplakia, verrucous carcinoma, squamous cell carcinoma, and normal mucous membrane. Oman Med J 2015; 30(6): 455-60.
[http://dx.doi.org/10.5001/omj.2015.89] [PMID: 26674929]
[55]
Jana NK, Gray LR, Shugars DC. Human immunodeficiency virus type 1 stimulates the expression and production of secretory leukocyte protease inhibitor (SLPI) in oral epithelial cells: A role for SLPI in innate mucosal immunity. J Virol 2005; 79(10): 6432-40.
[http://dx.doi.org/10.1128/JVI.79.10.6432-6440.2005] [PMID: 15858026]
[56]
Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human antimicrobial peptides as therapeutics for viral infections. Viruses 2019; 11(8): 704.
[http://dx.doi.org/10.3390/v11080704] [PMID: 31374901]
[57]
Mitra P. Inhibiting fusion with cellular membrane system: Therapeutic options to prevent severe acute respiratory syndrome coronavirus-2 infection. Am J Physiol Cell Physiol 2020; 319(3): C500-9.
[http://dx.doi.org/10.1152/ajpcell.00260.2020] [PMID: 32687406]
[58]
Sibila O, Perea L, Albacar N, et al. Elevated plasma levels of epithelial and endothelial cell markers in COVID-19 survivors with reduced lung diffusing capacity six months after hospital discharge. Respir Res 2022; 23(1): 37.
[http://dx.doi.org/10.1186/s12931-022-01955-5] [PMID: 35189887]
[59]
Cambier S, Metzemaekers M, de Carvalho AC, et al. Atypical response to bacterial coinfection and persistent neutrophilic bronchoalveolar inflammation distinguish critical COVID-19 from influenza. JCI Insight 2022; 7(1): e155055.
[http://dx.doi.org/10.1172/jci.insight.155055] [PMID: 34793331]
[60]
Ng TB, Cheung RCF, Wong JH, et al. Antiviral activities of whey proteins. Appl Microbiol Biotechnol 2015; 99(17): 6997-7008.
[http://dx.doi.org/10.1007/s00253-015-6818-4] [PMID: 26198883]
[61]
Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed pharmacoth 2021; 136: 111228.
[62]
Chang R, Ng TB, Sun WZ. Lactoferrin as potential preventative and adjunct treatment for COVID-19. Int J Antimicrob Agents 2020; 56(3): 106118.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106118] [PMID: 32738305]
[63]
Bolat E, Eker F, Kaplan M, et al. Lactoferrin for COVID-19 prevention, treatment, and recovery. Front Nutr 2022; 9: 992733.
[http://dx.doi.org/10.3389/fnut.2022.992733] [PMID: 36419551]
[64]
Salaris C, Scarpa M, Elli M, et al. Protective effects of lactoferrin against SARS-CoV-2 infection in vitro. Nutrients 2021; 13(2): 328.
[http://dx.doi.org/10.3390/nu13020328] [PMID: 33498631]
[65]
Campione E, Lanna C, Cosio T, et al. Lactoferrin as antiviral treatment in COVID-19 management: Preliminary evidence. Int J Environ Res Public Health 2021; 18(20): 10985.
[http://dx.doi.org/10.3390/ijerph182010985] [PMID: 34682731]
[66]
Wotring JW, Fursmidt R, Ward L, Sexton JZ. Evaluating the in vitro efficacy of bovine lactoferrin products against SARS-CoV-2 variants of concern. J Dairy Sci 2022; 105(4): 2791-802.
[http://dx.doi.org/10.3168/jds.2021-21247] [PMID: 35221061]
[67]
Navarro R, Paredes JL, Tucto L, et al. Bovine lactoferrin for the prevention of COVID-19 infection in health care personnel: A double-blinded randomized clinical trial (LF-COVID). Biometals 2022.
[PMID: 36474100]
[68]
Wiesner J, Vilcinskas A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence 2010; 1(5): 440-64.
[http://dx.doi.org/10.4161/viru.1.5.12983] [PMID: 21178486]
[69]
Laible NJ, Germaine GR. Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: Inhibition by chitin oligosaccharides. Infect Immun 1985; 48(3): 720-8.
[http://dx.doi.org/10.1128/iai.48.3.720-728.1985] [PMID: 3922894]
[70]
Ibrahim HR, Thomas U, Pellegrini A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 2001; 276(47): 43767-74.
[http://dx.doi.org/10.1074/jbc.M106317200] [PMID: 11560930]
[71]
Brunaugh AD, Seo H, Warnken Z, Ding L, Seo SH, Smyth HDC. Development and evaluation of inhalable composite niclosamide-lysozyme particles: A broad-spectrum, patient-adaptable treatment for coronavirus infections and sequalae. PLoS One 2021; 16(2): e0246803.
[http://dx.doi.org/10.1371/journal.pone.0246803] [PMID: 33571320]
[72]
Song Y, Zhang H, Zhu Y, et al. Lysozyme protects against severe acute respiratory syndrome coronavirus 2 infection and inflammation in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2022; 63(6): 16.
[http://dx.doi.org/10.1167/iovs.63.6.16] [PMID: 35713893]
[73]
Fábián TK, Tóth Z, Fejérdy L, Kaán B, Csermely P, Fejérdy P. Photo-acoustic stimulation increases the amount of 70 kDa heat shock protein (Hsp70) in human whole saliva. A pilot study. Int J Psychophysiol 2004; 52(2): 211-6.
[http://dx.doi.org/10.1016/j.ijpsycho.2003.10.004] [PMID: 15050378]
[74]
Johnson AD, Tytell M. Exogenous HSP70 becomes cell associated, but not internalized, by stressed arterial smooth muscle cells. In Vitro Cell Dev Biol Anim 1993; 29(10): 807-12.
[http://dx.doi.org/10.1007/BF02634348] [PMID: 8118616]
[75]
Wan Q, Song D, Li H, He M. Stress proteins: The biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5(1): 125.
[http://dx.doi.org/10.1038/s41392-020-00233-4] [PMID: 32661235]
[76]
Sultan I, Howard S, Tbakhi A. Drug repositioning suggests a role for the heat shock protein 90 inhibitor geldanamycin in treating COVID-19 infection. Res Square 2020; 2020: 1-18.
[http://dx.doi.org/10.21203/rs.3.rs-18714/v1]
[77]
Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013; 12(11): 847-65.
[http://dx.doi.org/10.1038/nrd4140] [PMID: 24172333]
[78]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[79]
He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522-31.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
[80]
Trobaugh DW, Klimstra WB. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol Med 2017; 23(1): 80-93.
[http://dx.doi.org/10.1016/j.molmed.2016.11.003] [PMID: 27989642]
[81]
Liu Z, Wang J, Xu Y, et al. Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2. 2020.
[82]
Jahanbin A, Hasanzadeh N, Abdolhoseinpour F, et al. Analysis of MTHFR Gene C.677C>T and C.1298A>C polymorphisms in Iranian patients with non-syndromic cleft lip and palate. Iran J Public Health 2014; 43(6): 821-7.
[PMID: 26110153]
[83]
Martina E, Campanati A, Diotallevi F, Offidani A. Saliva and oral diseases. J Clin Med 2020; 9(2): 466.
[http://dx.doi.org/10.3390/jcm9020466] [PMID: 32046271]
[84]
Pimenta R, Viana NI, Dos Santos GA, et al. MiR-200c-3p expression may be associated with worsening of the clinical course of patients with COVID-19. Mol Biol Res Commun 2021; 10(3): 141-7.
[PMID: 34476267]
[85]
Tao R, Jurevic RJ, Coulton KK, et al. Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother 2005; 49(9): 3883-8.
[http://dx.doi.org/10.1128/AAC.49.9.3883-3888.2005] [PMID: 16127066]
[86]
Khurshid Z, Naseem M, Sheikh Z, Najeeb S, Shahab S, Zafar MS. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm J 2016; 24(5): 515-24.
[http://dx.doi.org/10.1016/j.jsps.2015.02.015] [PMID: 27752223]
[87]
Mabrouk DM. Antimicrobial peptides: features, applications and the potential use against COVID-19. Mol Biol Rep 2022; 49(10): 10039-50.
[http://dx.doi.org/10.1007/s11033-022-07572-1] [PMID: 35606604]
[88]
Mousavi Maleki MS, Rostamian M, Madanchi H. Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Rev Anti Infect Ther 2021; 19(10): 1205-17.
[http://dx.doi.org/10.1080/14787210.2021.1912593] [PMID: 33844613]
[89]
Zhang R, Jiang X, Qiao J, et al. Antimicrobial peptide DP7 with potential activity against SARS coronavirus infections. Signal Transduct Target Ther 2021; 6(1): 140.
[http://dx.doi.org/10.1038/s41392-021-00551-1] [PMID: 33795636]
[90]
Collins AR, Grubb A. Cystatin D, a natural salivary cysteine protease inhibitor, inhibits coronavirus replication at its physiologic concentration. Oral Microbiol Immunol 1998; 13(1): 59-61.
[http://dx.doi.org/10.1111/j.1399-302X.1998.tb00753.x] [PMID: 9573825]
[91]
Nireeksha N, Gollapalli P, Varma SR, Hegde MN, Kumari NS. Utilizing the potential of antimicrobial peptide LL-37 for combating SARS-CoV-2 viral load in saliva: An in silico analysis. Eur J Dent 2021; 16(03): 478-87.
[PMID: 34937110]
[92]
Udeh R, Advani S, de Guadiana Romualdo LG, Dolja-Gore X. Calprotectin, an emerging biomarker of interest in COVID-19: A systematic review and meta-analysis. J Clin Med 2021; 10(4): 775.
[http://dx.doi.org/10.3390/jcm10040775] [PMID: 33672040]
[93]
Santos JGO, Migueis DP, Amaral JB, et al. Impact of SARS- CoV- 2 on saliva: TNF-α, IL-6, IL-10, lactoferrin, lysozyme, IgG, IgA, and IgM. J Oral Biosci/ JAOB, Jpn Assoc Oral Biol 2022; 64(1): 108-13.
[http://dx.doi.org/10.1016/j.job.2022.01.007] [PMID: 35091065]
[94]
Hupf J, Mustroph J, Hanses F, Evert K, Maier LS, Jungbauer CG. RNA-expression of adrenomedullin is increased in patients with severe COVID-19. Crit Care 2020; 24(1): 527.
[http://dx.doi.org/10.1186/s13054-020-03246-1] [PMID: 32859259]
[95]
Makhoba XH, Makumire S. The capture of host cell’s resources: The role of heat shock proteins and polyamines in SARS-CoV-2 (COVID-19) pathway to viral infection. Biomol Concepts 2022; 13(1): 220-9.
[http://dx.doi.org/10.1515/bmc-2022-0008] [PMID: 35437978]
[96]
De Lorenzo R, Sciorati C, Ramirez GA, et al. Chromogranin A plasma levels predict mortality in COVID-19. PLoS One 2022; 17(4): e0267235.
[http://dx.doi.org/10.1371/journal.pone.0267235] [PMID: 35468164]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy