Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Systematic Review Article

Orchids of Dibru-Saikhowa: A Systematic Review on Their Traditional Use, Pharmacological Activity and Phytochemistry

Author(s): Pal Gogoi and Saikat Sen*

Volume 23, Issue 24, 2023

Published on: 11 September, 2023

Page: [2277 - 2299] Pages: 23

DOI: 10.2174/1568026623666230830125205

Price: $65

Abstract

Background: Dibru-Saikhowa National Park and Biosphere Reserve (DSNPBR), Assam, India, is a part of biodiversity hotspots and a store house of many orchid species. This systematic review was conducted to document the medicinal importante of orchids available in DSNPBR and to analyse their importance in drug discovery.

Methods: This systematic review was conducted using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Scientific databases were used to search relevant literature to document ethnomedicinal uses, pharmacological activity and phytochemistry of orchid species available in DSNPBR.

Results: We have analysed 84 articles to document relevant information on 52 orchid species available in DSNPBR. Dendrobium (n = 13) is the top genus. Different orchid species available in DSNPBR were used traditionally in India, Nepal, Bangladesh, and China to cure gastrointestinal disorders, disease-associated pain and inflammation, skin diseases, wound, arthritis, menstrual pain, tuberculosis etc. The pre-clinical investigations confirmed that extract/fraction/isolated compounds of orchids possess antirheumatic, anticancer, antitumor, anti-inflammatory, antidiabetic, antimicrobial, nephroprotective and neuroprotective activities through different mechanisms. Biomolecules isolated from orchid species like Dendrobium nobile alkaloids, polysaccharides have shown a potential to be developed as future drug molecules. Many phytochemicals isolated have demonstrated in vitro anticancer activities. The lack of clinical data in support of the therapeutic effectiveness of orchids is a major limitation.

Conclusion: Orchids found in DSNPBR hold great significance in traditional culture for their medicinal properties and have been effectively studied for their bioactivities. Nevertheless, to confirm their effectiveness as therapeutics, conducting methodical research, examining their molecular mechanisms, and performing toxicity tests are necessary.

Keywords: Dibru-Saikhowa, Drug discovery, Medicinal value, Orchid, Phytoconstituents, Traditional medicine.

Graphical Abstract
[1]
Fonge, B.A.; Essomo, S.E.; Bechem, T.E.; Tabot, P.T.; Arrey, B.D.; Afanga, Y.; Assoua, E.M. Market trends and ethnobotany of orchids of Mount Cameroon. J. Ethnobiol. Ethnomed., 2019, 15(1), 29.
[http://dx.doi.org/10.1186/s13002-019-0308-1] [PMID: 31238949]
[2]
Hinsley, A.; de Boer, H.J.; Fay, M.F.; Gale, S.W.; Gardiner, L.M.; Gunasekara, R.S.; Kumar, P.; Masters, S.; Metusala, D.; Roberts, D.L.; Veldman, S.; Wong, S.; Phelps, J. A review of the trade in orchids and its implications for conservation. Bot. J. Linn. Soc., 2018, 186(4), 435-455.
[http://dx.doi.org/10.1093/botlinnean/box083]
[3]
Hossain, M.M. Therapeutic orchids: Traditional uses and recent advances-an overview. Fitoterapia, 2011, 82(2), 102-140.
[http://dx.doi.org/10.1016/j.fitote.2010.09.007] [PMID: 20851751]
[4]
Chase, M.W.; Cameron, K.M.; Freudenstein, J.V.; Pridgeon, A.M.; Salazar, G.; van den Berg, C.; Schuiteman, A. An updated classification of Orchidaceae. Bot. J. Linn. Soc., 2015, 177(2), 151-174.
[http://dx.doi.org/10.1111/boj.12234]
[5]
Barbhuiya, H.A.; Verma, D.; Dey, S.; Salunkhe, C.K. An illustrated guide to the Orchids of Assam; Balipara Foundation: Assam, 2021.
[6]
Gogoi, K.; Borah, R.L.; Sharma, G.C. Orchid flora of Dibru-Saikhowa National Park and biosphere reserve, Assam, India. Pleione, 2010, 4, 124-134.
[7]
Purkayastha, J.; Dutta, M.; Nath, S.C. Ethnomedicinal plants from Dibru-Saikhowa biosphere reserve, Assam. Indian J. Tradit. Knowl., 2007, 6, 477-480.
[8]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 2021, 372, n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[9]
Gogoi, K. The genus dendrobium in dibru-saikhowa national park and biosphere reserve. J. Orchid. Soc. India., 2005, 19, 17-25.
[10]
Kumar, A.; Medhi, A.; Das, D.J. Traditional ethno-medicinal knowledge of Mishing tribes residing in the core zone of Dibru-Saikhowa National park, Assam. India. J. Med. Plants. Stud., 2018, 6, 77-80.
[11]
Gogoi, K. Orchids of Dibru-Saikhowa National Park and Biosphere Reserve; Department of Environment & Forest, Tinsukia Wildlife Division: Tinsukia, India, 2005.
[12]
Gogoi, K. Wild orchids of Assam A Pictorial Guide; Assam Biodiversity Board: Guwahati, 2017.
[13]
Zheng, X.; Xing, F. Ethnobotanical study on medicinal plants around Mt.Yinggeling, Hainan Island, China. J. Ethnopharmacol., 2009, 124(2), 197-210.
[http://dx.doi.org/10.1016/j.jep.2009.04.042] [PMID: 19409476]
[14]
Malla, B.; Gauchan, D.P.; Chhetri, R.B. An ethnobotanical study of medicinal plants used by ethnic people in Parbat district of western Nepal. J. Ethnopharmacol., 2015, 165, 103-117.
[http://dx.doi.org/10.1016/j.jep.2014.12.057] [PMID: 25571849]
[15]
Panda, A.; Mandal, D. The folklore medicinal orchids of Sikkim. Anc. Sci. Life, 2013, 33(2), 90.
[http://dx.doi.org/10.4103/0257-7941.139043] [PMID: 25284941]
[16]
Ebrahimkunju, S.A.; Sivadasan, M.; Ahmed, A.H. Ethnomedicinal aspects of angiospermic epiphytes and parasites of Kerala. Indian J. Tradit. Knowl., 2012, 11, 250-258.
[17]
Lee, S.; Xiao, C.; Pei, S. Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China. J. Ethnopharmacol., 2008, 117(2), 362-377.
[http://dx.doi.org/10.1016/j.jep.2008.02.001] [PMID: 18359178]
[18]
Nongdam, P. Ethno-medicinal uses of some orchids of Nagaland, North-east India. Res. J. Med. Plant, 2014, 8(3), 126-139.
[http://dx.doi.org/10.3923/rjmp.2014.126.139]
[19]
Dash, P.; Sahoo, S.L.; Bal, S. Ethnobotanical studies on orchids of Niyamgiri hill ranges, Orissa, India. Ethnobot. Leafl., 2008, 12, 70-78.
[20]
Sharma, C.; Kumari, T.; Arya, K.R. Ethnopharmacological survey on bone healing plants with special references to Pholidota articulata and Coelogyne cristata (Orchidaceae) used in folk tradition of Kumaon, Uttarakhand, India. Int. J. Pharm. Res. Health Sci., 2014, 2, 185-190.
[21]
Thant, M.T.; Sritularak, B.; Chatsumpun, N.; Mekboonsonglarp, W.; Punpreuk, Y.; Likhitwitayawuid, K. Three novel biphenanthrene derivatives and a new phenylpropanoid ester from Aerides multiflora and their α-glucosidase inhibitory activity. Plants, 2021, 10(2), 385.
[http://dx.doi.org/10.3390/plants10020385] [PMID: 33671404]
[22]
Katta, J.; Rampilla, V.; Khasim, S.M. A study on phytochemical and anticancer activities of epiphytic orchid Aerides odorata Lindl. European. J. Med. Plant., 2019, 28, 1-21.
[23]
Paul, P.; Chowdhury, A.; Nath, D. Antimicrobial efficacy of orchid extracts as potential inhibitors of antibiotic resistant strains of Escherichia col. Asian J. Pharm. Clin. Res., 2013, 6, 108-111.
[24]
Katta, J.; Khasim, S.M. Antimicrobial and in vitro cytotoxic studies of Acampe praemorsa and Aeridis odarata of orchidaceae. Ann. Plant. Sci., 2018, 7, 2088-2095.
[http://dx.doi.org/10.21746/aps.2018.7.2.19]
[25]
Auberon, F.; Olatunji, O.; Krisa, S.; Antheaume, C.; Herbette, G.; Bonté, F.; Mérillon, J.M.; Lobstein, A. Two new stilbenoids from the aerial parts of Arundina graminifolia (Orchidaceae). Molecules, 2016, 21(11), 1430-1439.
[http://dx.doi.org/10.3390/molecules21111430] [PMID: 27801800]
[26]
Auberon, F.; Olatunji, O.J.; Krisa, S.; Herbette, G.; Antheaume, C.; Bonté, F.; Mérillon, J.M.; Lobstein, A. Arundinosides A-G, new glucosyloxybenzyl 2 R -benzylmalate derivatives from the aerial parts of Arundina graminifolia. Fitoterapia, 2018, 125, 199-207.
[http://dx.doi.org/10.1016/j.fitote.2017.11.019] [PMID: 29170123]
[27]
Yan, X.; Tang, B.; Liu, M. Phenanthrenes from Arundina graminifolia and in vitro evaluation of their antibacterial and anti-haemolytic properties. Nat. Prod. Res., 2018, 32(6), 707-710.
[http://dx.doi.org/10.1080/14786419.2017.1332606] [PMID: 28553728]
[28]
Hu, Q.F.; Zhou, B.; Ye, Y.Q.; Jiang, Z.Y.; Huang, X.Z.; Li, Y.K.; Du, G.; Yang, G.Y.; Gao, X.M. Cytotoxic deoxybenzoins and diphenylethylenes from Arundina graminifolia. J. Nat. Prod., 2013, 76(10), 1854-1859.
[http://dx.doi.org/10.1021/np400379u] [PMID: 24063582]
[29]
Du, G.; Shen, Y.; Yang, L.; Shu, L.; Wen, M-L.; Hu, Q-F. Bibenzyl derivatives of Arundina graminifolia and their cytotoxicity. Chem. Nat. Compd., 2014, 49(6), 1019-1022.
[http://dx.doi.org/10.1007/s10600-014-0813-3]
[30]
Shu, L.; Shen, Y.; Yang, L.; Gao, X.; Hu, Q-F. Flavonoids derivatives from Arundina graminifolia and their cytotoxicity. Asian J. Chem., 2013, 25(15), 8358-8360.
[http://dx.doi.org/10.14233/ajchem.2013.14743A]
[31]
Liu, Q.; Wang, H.; Lin, F. Study on the structures and anti-hepatic fibrosis activity of stilbenoids from Arundina graminifolia (D. Don) Hochr. IOP Conf Ser: Mater Sci Eng, 2017.
[http://dx.doi.org/10.1088/1757-899X/274/1/012024]
[32]
Xu, J.; Yu, H.; Qing, C.; Zhang, Y.; Liu, Y.; Chen, Y. Two new biphenanthrenes with cytotoxic activity from Bulbophyllum odoratissimum. Fitoterapia, 2009, 80(7), 381-384.
[http://dx.doi.org/10.1016/j.fitote.2009.05.007] [PMID: 19446615]
[33]
Chen, Y.; Xu, J.; Yu, H.; Qing, C.; Zhang, Y.; Wang, L.; Liu, Y.; Wang, J. Cytotoxic phenolics from Bulbophyllum odoratissimum. Food Chem., 2008, 107(1), 169-173.
[http://dx.doi.org/10.1016/j.foodchem.2007.07.077]
[34]
Zhang, W.G.; Zhao, R.; Ren, J.; Ren, L-X.; Lin, J-G.; Liu, D-L.; Wu, Y-L.; Yao, X-S. Synthesis and anti-proliterative in-vitro activity of two natural dihydrostilbenes and their analogues. Arch. Pharm., 2007, 340(5), 244-250.
[http://dx.doi.org/10.1002/ardp.200600146]
[35]
Radhika, B.; Murthy, J.V.V.S.N.; Grace, D. N. Preliminary phytochemical analysis & antibacterial activity against clinical pathogens of medicinally important orchid Cymbidium aloifolium (L.) sw. Int. J. Pharm. Sci. Rev. Res., 2013, 13, 3925-3931.
[36]
Howlader, M.A.; Alam, M.; Ahmed, K.T.; Khatun, F.; Apu, A.S. Antinociceptive and anti-inflammatory activity of the ethanolic extract of Cymbidium aloifolium (L.). Pak. J. Biol. Sci., 2011, 14(19), 909-911.
[http://dx.doi.org/10.3923/pjbs.2011.909.911] [PMID: 22518936]
[37]
Liu, H.; Wu, H.; Wang, Q. Health-promoting effects of dietary polysaccharide extracted from Dendrobium aphyllum on mice colon, including microbiota and immune modulation. Int. J. Food Sci. Technol., 2019, 54(5), 1684-1696.
[http://dx.doi.org/10.1111/ijfs.14050]
[38]
Gong, C.Y.; Yu, Z.Y.; Lu, B.; Yang, L.; Sheng, Y.C.; Fan, Y.M.; Ji, L.L.; Wang, Z.T. Ethanol extract of Dendrobium chrysotoxum Lindl ameliorates diabetic retinopathy and its mechanism. Vascul. Pharmacol., 2014, 62(3), 134-142.
[http://dx.doi.org/10.1016/j.vph.2014.04.007] [PMID: 24846859]
[39]
Xu, X.; Chen, X.; Yang, R.; Li, Z.; Zhou, H.; Bai, Y.; Yu, M.; Li, B.; Ding, G. Crepidtumines A and B, Two novel indolizidine alkaloids from Dendrobium crepidatum. Sci. Rep., 2020, 10(1), 9564.
[http://dx.doi.org/10.1038/s41598-020-66552-2] [PMID: 32533030]
[40]
Xu, X.; Li, Z.; Yang, R.; Zhou, H.; Bai, Y.; Yu, M.; Ding, G.; Li, B. Crepidatumines C and D, two new indolizidine alkaloids from Dendrobium crepidatum lindl. ex Paxt. Molecules, 2019, 24(17), 3071-3078.
[http://dx.doi.org/10.3390/molecules24173071] [PMID: 31450800]
[41]
Li, Q.; Xie, Y.; Su, J.; Ye, Q.; Jia, Z. Isolation and structural characterization of a neutral polysaccharide from the stems of Dendrobium densiflorum. Int. J. Biol. Macromol., 2012, 50(5), 1207-1211.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.03.005] [PMID: 22459925]
[42]
Wang, Y.J.; Wan, D.L.; Li, Q. M. Structural characteristics and immunostimulatory activities of a new polysaccharide from Dendrobium fimbriatum Hook. Food. Funct., 2021, 12, 057-3068.
[http://dx.doi.org/10.1039/D0FO03336G]
[43]
Na Ranong, S.; Likhitwitayawuid, K.; Mekboonsonglarp, W.; Sritularak, B. New dihydrophenanthrenes from Dendrobium infundibulum. Nat. Prod. Res., 2019, 33(3), 420-426.
[http://dx.doi.org/10.1080/14786419.2018.1455050] [PMID: 29569485]
[44]
Xu, Y.Y.; Xu, Y.S.; Wang, Y.; Wu, Q.; Lu, Y.F.; Liu, J.; Shi, J.S. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice. J. Pharm. Pharmacol., 2017, 69(10), 1409-1417.
[http://dx.doi.org/10.1111/jphp.12778] [PMID: 28722145]
[45]
Luo, A.; He, X.; Zhou, S.; Fan, Y.; He, T.; Chun, Z. in vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl. extracts. Int. J. Biol. Macromol., 2009, 45(4), 359-363.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.07.008] [PMID: 19643127]
[46]
Ma, C.; Meng, C.W.; Zhou, Q.M.; Peng, C.; Liu, F.; Zhang, J.W.; Zhou, F.; Xiong, L. New sesquiterpenoids from the stems of Dendrobium nobile and their neuroprotective activities. Fitoterapia, 2019, 138, 104351-104356.
[http://dx.doi.org/10.1016/j.fitote.2019.104351] [PMID: 31476401]
[47]
Meng, C.W.; He, Y.L.; Peng, C.; Ding, X.J.; Guo, L.; Xiong, L. Picrotoxane sesquiterpenoids from the stems of Dendrobium nobile and their absolute configurations and angiogenesis effect. Fitoterapia, 2017, 121, 206-211.
[http://dx.doi.org/10.1016/j.fitote.2017.07.017] [PMID: 28778562]
[48]
Shin, H.K.; Kim, T.W.; Kim, Y.J.; Park, S.R.; Seo, C.S.; Ha, H.; Jung, J.Y. Protective effects of Dendrobium nobile against cisplatin nephrotoxicity both in-vitro and in-vivo. Iran. J. Pharm. Res., 2017, 16(Suppl.), 197-206.
[PMID: 29844791]
[49]
Song, J.I.; Kang, Y.J.; Yong, H.Y.; Kim, Y.C.; Moon, A. Denbinobin, a phenanthrene from dendrobium nobile, inhibits invasion and induces apoptosis in SNU-484 human gastric cancer cells. Oncol. Rep., 2012, 27(3), 813-818.
[PMID: 22089965]
[50]
Kim, J.H.; Oh, S.Y.; Han, S.B.; Uddin, G.M.; Kim, C.Y.; Lee, J.K. Anti-inflammatory effects of Dendrobium nobile derived phenanthrenes in LPS-stimulated murine macrophages. Arch. Pharm. Res., 2015, 38(6), 1117-1126.
[http://dx.doi.org/10.1007/s12272-014-0511-5] [PMID: 25370607]
[51]
Hwang, J.S.; Lee, S.A.; Hong, S.S.; Han, X.H.; Lee, C.; Kang, S.J.; Lee, D.; Kim, Y.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. Bioorg. Med. Chem. Lett., 2010, 20(12), 3785-3787.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.054] [PMID: 20483604]
[52]
Cheng, L.; Guo, D.L.; Zhang, M.S.; Linghu, L.; Fu, S.B.; Deng, Y.; He, Y.Q.; Xiao, S.J. Dihydrophenanthrofurans and bisbibenzyl derivatives from the stems of Dendrobium nobile. Fitoterapia, 2020, 143, 104586-104589.
[http://dx.doi.org/10.1016/j.fitote.2020.104586] [PMID: 32247772]
[53]
Miyazawa, M.; Shimamura, H.; Nakamura, S.; Sugiura, W.; Kosaka, H.; Kameoka, H. Moscatilin from Dendrobium nobile, a naturally occurring bibenzyl compound with potential antimutagenic activity. J. Agric. Food Chem., 1999, 47(5), 2163-2167.
[http://dx.doi.org/10.1021/jf970930a] [PMID: 10552513]
[54]
Zhang, S.; Tu, H.; Zhu, J.; Liang, A.; Huo, P.; Shan, K.; He, J.; Zhao, M.; Chen, X.; Lei, X. Dendrobium nobile Lindl. polysaccharides improve follicular development in PCOS rats. Int. J. Biol. Macromol., 2020, 149, 826-834.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.196] [PMID: 31978473]
[55]
Huang, S.; Wu, Q.; Liu, H.; Ling, H.; He, Y.; Wang, C.; Wang, Z.; Lu, Y.; Lu, Y. Alkaloids of dendrobium nobile lindl. Altered hepatic lipid homeostasis via regulation of bile acids. J. Ethnopharmacol., 2019, 241, 111976-111980.
[http://dx.doi.org/10.1016/j.jep.2019.111976] [PMID: 31132462]
[56]
Xiong, T.W.; Liu, B.; Wu, Q.; Xu, Y.Y.; Liu, P.; Wang, Y.; Liu, J.; Shi, J.S. Beneficial effects of Dendrobium nobile Lindl. Alkaloids (DNLA) on anxiety and depression induced by chronic unpredictable stress in rats. Brain Res., 2021, 1771, 147647-147654.
[http://dx.doi.org/10.1016/j.brainres.2021.147647] [PMID: 34481787]
[57]
Shi, J.; Zhang, W.; Wu, Q.; Lu, Y.; Gong, Q.; Zhang, F. Protective effects of Dendrobium nobile Lindl. alkaloids on amyloid beta (25–35)-induced neuronal injury. Neural Regen. Res., 2017, 12(7), 1131-1136.
[http://dx.doi.org/10.4103/1673-5374.211193] [PMID: 28852396]
[58]
Joshi, P.R.; Paudel, M.R.; Chand, M.B.; Pradhan, S.; Pant, K.K.; Joshi, G.P.; Bohara, M.; Wagner, S.H.; Pant, B.; Pant, B. Cytotoxic effect of selected wild orchids on two different human cancer cell lines. Heliyon, 2020, 6(5), e03991.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03991] [PMID: 32455176]
[59]
Bose, B.; Choudhury, H.; Tandon, P.; Kumaria, S. Studies on secondary metabolite profiling, anti-inflammatory potential, in vitro photoprotective and skin-aging related enzyme inhibitory activities of Malaxis acuminata, a threatened orchid of nutraceutical importance. J. Photochem. Photobiol. B, 2017, 173, 686-695.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.07.010] [PMID: 28743100]
[60]
Sharma, C.; Dixit, M.; Singh, R.; Agrawal, M.; Mansoori, M.N.; Kureel, J.; Singh, D.; Narender, T.; Arya, K.R. Potential osteogenic activity of ethanolic extract and oxoflavidin isolated from Pholidota articulata Lindley. J. Ethnopharmacol., 2015, 170, 57-65.
[http://dx.doi.org/10.1016/j.jep.2015.04.045] [PMID: 25959442]
[61]
Kumar, A.; Mahanty, B.; Goswami, R.C.D. in vitro antidiabetic, antioxidant activities and GC–MS analysis of Rhynchostylis retusa and Euphorbia neriifolia leaf extracts. 3 Biotech., 2021, 11, 315-319.
[62]
Liu, L.; Yin, Q.M.; Yan, X.; Hu, C.; Wang, W.; Wang, R.K.; Luo, X.; Zhang, X.W. Bioactivity-guided isolation of cytotoxic phenanthrenes from Spiranthes sinensis. J. Agric. Food Chem., 2019, 67(26), 7274-7280.
[http://dx.doi.org/10.1021/acs.jafc.9b01117] [PMID: 31244200]
[63]
Shie, P.H.; Yang, C.P.; Huang, G.J.; Wang, S.Y.; Kuo, Y.H. J. Sinensol-C isolated from Spiranthes sinensis inhibits adipogenesis in 3T3-L1 cells through the regulation of adipogenic transcription factors and AMPK activation. Molecules, 2020, 25(18), 4204-4210.
[http://dx.doi.org/10.3390/molecules25184204] [PMID: 32937822]
[64]
Simmler, C.; Antheaume, C.; André, P.; Bonté, F.; Lobstein, A. Glucosyloxybenzyl eucomate derivatives from Vanda teres stimulate HaCaT cytochrome c oxidase. J. Nat. Prod., 2011, 74(5), 949-955.
[http://dx.doi.org/10.1021/np1006636] [PMID: 21510636]
[65]
Cakova, V.; Urbain, A.; Antheaume, C.; Rimlinger, N.; Wehrung, P.; Bonté, F.; Lobstein, A. Identification of phenanthrene derivatives in Aerides rosea (Orchidaceae) using the combined systems HPLC-ESI-HRMS/MS and HPLC-DAD-MS-SPE-UV-NMR. Phytochem. Anal., 2015, 26(1), 34-39.
[http://dx.doi.org/10.1002/pca.2533] [PMID: 25130411]
[66]
Liu, M.F.; Han, Y.; Xing, D.M.; Shi, Y.; Xu, L.Z.; Du, L.J.; Ding, Y. A new stilbenoid from Arundina graminifolia. J. Asian Nat. Prod. Res., 2004, 6(3), 229-232.
[http://dx.doi.org/10.1080/10286020310001653219] [PMID: 15224422]
[67]
Auberon, F.; Olatunji, O.J.; Waffo-Teguo, P.; Adekoya, A.E.; Bonté, F.; Mérillon, J.M.; Lobstein, A. New glucosyloxybenzyl 2R-benzylmalate derivatives from the undergrounds parts of Arundina graminifolia (Orchidaceae). Fitoterapia, 2019, 135, 33-43.
[http://dx.doi.org/10.1016/j.fitote.2019.03.030] [PMID: 30953692]
[68]
Chen, Y.G.; Xu, J.J.; Yu, H. 3,7-dihydroxy-2,4,6-trimethoxyphenanthrene, a new phenanthrene from Bulbophyllum odoratissimum. J. Korean. Chem. Soc, 2007, 51, 352-355.
[69]
Yang, L.; Qin, L.H.; Bligh, S.W.A.; Bashall, A.; Zhang, C.F.; Zhang, M.; Wang, Z.T.; Xu, L.S. A new phenanthrene with a spirolactone from Dendrobium chrysanthum and its anti-inflammatory activities. Bioorg. Med. Chem., 2006, 14(10), 3496-3501.
[http://dx.doi.org/10.1016/j.bmc.2006.01.004] [PMID: 16431116]
[70]
Ye, Q.H.; Zhao, W.M.; Qin, G.W. Lignans from Dendrobium chrysanthum. J. Asian Nat. Prod. Res., 2004, 6(1), 39-43.
[http://dx.doi.org/10.1080/1028602031000119808] [PMID: 14989379]
[71]
Shang, Z.Z.; Xu, T.T.; Wang, C.Q.; Li, Q-M.; Zha, X-Q.; Pan, L-H.; Luo, J-P. Bioactivity-guided investigation for isolation and immunoregulatory potential of polysaccharides from Dendrobium chrysotoxum stems. Process Biochem., 2021, 104, 124-131.
[http://dx.doi.org/10.1016/j.procbio.2021.03.014]
[72]
Chen, Y.; Li, Y.; Qing, C.; Zhang, Y.; Wang, L.; Liu, Y. 1,4,5-Trihydroxy-7-methoxy-9H-fluoren-9-one, a new cytotoxic compound from Dendrobium chrysotoxum. Food Chem., 2008, 108(3), 973-976.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.007] [PMID: 26065760]
[73]
Hu, J.; Fan, W.; Dong, F.; Miao, Z.; Zhou, J. Chemical components of Dendrobium chrysotoxum. Chin. J. Chem., 2012, 30(6), 1327-1330.
[http://dx.doi.org/10.1002/cjoc.201100670]
[74]
Yang, H.; Chou, G.X.; Wang, Z.T.; Guo, Y-W.; Hu, Z-B.; Xu, L-S. Two new compounds from dendrobium chrysotoxum. Helv. Chim. Acta, 2004, 87(2), 394-399.
[http://dx.doi.org/10.1002/hlca.200490037]
[75]
Dong, F.W.; Luo, H.R.; Wan, Q.L.; Xu, F-Q.; Fan, W-W.; Wang, K-J.; Li, N.; Hu, J-M. Two new bibenzyl glucosides from dendrobium chrysotoxum. Bull. Korean Chem. Soc., 2012, 33(7), 2247-2250.
[http://dx.doi.org/10.5012/bkcs.2012.33.7.2247]
[76]
Zheng, W.P.; Tang, Y.P.; Zhi, F.; Lou, F.C. Dihydroayapin, a new coumarin compound from Dendrobium densiflorum. J. Asian Nat. Prod. Res., 2000, 2(4), 301-304.
[http://dx.doi.org/10.1080/10286020008041369] [PMID: 11249612]
[77]
Fan, C.; Wang, W.; Wang, Y.; Qin, G.; Zhao, W. Chemical constituents from Dendrobium densiflorum. Phytochemistry, 2001, 57(8), 1255-1258.
[http://dx.doi.org/10.1016/S0031-9422(01)00168-6] [PMID: 11454354]
[78]
Wu, Y.G.; Wang, K.W.; Zhao, Z.R.; Zhang, P.; Liu, H.; Zhou, G.J.; Cheng, Y.; Wu, W.J.; Cai, Y.H.; Wu, B.L.; Chen, F.Y. A novel polysaccharide from Dendrobium devonianum serves as a TLR4 agonist for activating macrophages. Int. J. Biol. Macromol., 2019, 133, 564-574.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.125] [PMID: 31004640]
[79]
Sun, J.; Zhang, F.; Yang, M.; Zhang, J.; Chen, L.; Zhan, R.; Li, L.; Chen, Y. Isolation of α-glucosidase inhibitors including a new flavonol glycoside from Dendrobium devonianum. Nat. Prod. Res., 2014, 28(21), 1900-1905.
[http://dx.doi.org/10.1080/14786419.2014.955495] [PMID: 25189122]
[80]
Xu, F.Q.; Fan, W.W.; Zi, C.T.; Dong, F.W.; Yang, D.; Zhou, J.; Hu, J.M. Four new glycosides from the stems of Dendrobium fimbriatum Hook. Nat. Prod. Res., 2017, 31(7), 797-801.
[http://dx.doi.org/10.1080/14786419.2016.1247076] [PMID: 27798974]
[81]
Rajput, D.; Saikia, L.R. GCMS analysis of phyto components of the musky smelling Dendrobium-Dendrobium moschatum. Eco. Env. Cons, 2020, 26, 215-220.
[82]
Zhou, X.M.; Zheng, C.J.; Wu, J.T.; Chen, G.Y.; Zhang, B.; Sun, C.G. A new phenolic glycoside from the stem of Dendrobium nobile. Nat. Prod. Res., 2017, 31(9), 1042-1046.
[http://dx.doi.org/10.1080/14786419.2016.1266352] [PMID: 27931121]
[83]
Yang, H.; Sung, S.H.; Kim, Y.C. Antifibrotic phenanthrenes of Dendrobium nobile stems. J. Nat. Prod., 2007, 70(12), 1925-1929.
[http://dx.doi.org/10.1021/np070423f] [PMID: 18052323]
[84]
Zhang, X.; Xu, J.K.; Wang, J.; Wang, N.L.; Kurihara, H.; Kitanaka, S.; Yao, X.S. Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. J. Nat. Prod., 2007, 70(1), 24-28.
[http://dx.doi.org/10.1021/np060449r] [PMID: 17253844]
[85]
Ren, J.; Xie, Y.G.; Guo, Y.G.; Yan, S-K.; Jin, H-Z. Chemical constituents of liparis viridiflora. Chem. Nat. Compd., 2019, 55(3), 552-554.
[http://dx.doi.org/10.1007/s10600-019-02740-5]
[86]
Singh, D.; Kumar, S.; Pandey, R.; Hasanain, M.; Sarkar, J.; Kumar, B. Bioguided chemical characterization of the antiproliferative fraction of edible pseudo bulbs of Malaxis acuminata D. Don by HPLC-ESI-QTOF-MS. Med. Chem. Res., 2017, 26(12), 3307-3314.
[http://dx.doi.org/10.1007/s00044-017-2023-6]
[87]
Li, C.Y.; Liu, J.; Su, X.H.; Yuan, Z.P.; Zhong, Y.J.; Li, Y.F.; Liang, B. New dimeric phenanthrene and flavone from Spiranthes sinensis. J. Asian Nat. Prod. Res., 2013, 15(4), 417-421.
[http://dx.doi.org/10.1080/10286020.2013.764868] [PMID: 23421825]
[88]
Lin, Y.L.; Wang, W.Y.; Kuo, Y.H.; Liu, Y.H. Homocyclotirucallane and two dihydrophenanthrenes from Spiranthes sinensis. Chem. Pharm. Bull. (Tokyo), 2001, 49(9), 1098-1101.
[http://dx.doi.org/10.1248/cpb.49.1098] [PMID: 11558594]
[89]
Lin, Y.L.; Huang, R.L.; Don, M.J.; Kuo, Y.H. Dihydrophenanthrenes from Spiranthes s inensis. J. Nat. Prod., 2000, 63(12), 1608-1610.
[http://dx.doi.org/10.1021/np000170p] [PMID: 11141097]
[90]
Ghai, D.; Verma, J.; Kaur, A.; Takur, K.; Pawar, S.V.; Sembi, J.K. Bioprospection of orchids and appraisal of their therapeutic indications. Wiley: UK, 2021; pp. 401-424.
[http://dx.doi.org/10.1002/9781119718017.ch20]
[91]
Wattanathamsan, O.; Treesuwan, S.; Sritularak, B.; Pongrakhananon, V. Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis. J. Nat. Med., 2018, 72(2), 503-513.
[http://dx.doi.org/10.1007/s11418-018-1176-z] [PMID: 29426985]
[92]
Liu, H.; Ma, J.; Gong, F.; Wei, F.; Zhang, X.; Wu, H. Structural characterisation and immunomodulatory effects of polysaccharides isolated from Dendrobium aphyllum. Int. J. Food Sci. Technol., 2018, 53(5), 1185-1194.
[http://dx.doi.org/10.1111/ijfs.13695]
[93]
Nie, J.; Jiang, L.S.; Zhang, Y.; Tian, Y.; Li, L.S.; Lu, Y.L.; Yang, W.J.; Shi, J.S. Dendrobium nobile Lindl. alkaloids decreases the level of intracellular β-amyloid by improving impaired autolysosomal proteolysis in APP/PS1 mice. Front. Pharmacol., 2018, 9, 1479-1497.
[http://dx.doi.org/10.3389/fphar.2018.01479] [PMID: 30618767]
[94]
Zhou, J.; Zhang, Y.; Li, S.; Zhou, Q.; Lu, Y.; Shi, J.; Liu, J.; Wu, Q.; Zhou, S. Dendrobium nobile Lindl. alkaloids-mediated protection against CCl4-induced liver mitochondrial oxidative damage is dependent on the activation of Nrf2 signaling pathway. Biomed. Pharmacother., 2020, 129, 110351-110362.
[http://dx.doi.org/10.1016/j.biopha.2020.110351] [PMID: 32535387]
[95]
Li, L.S.; Lu, Y.L.; Nie, J.; Xu, Y.Y.; Zhang, W.; Yang, W.J.; Gong, Q.H.; Lu, Y.F.; Lu, Y.; Shi, J.S. Dendrobium nobile Lindl alkaloid, a novel autophagy inducer, protects against axonal degeneration induced by Aβ 25-35 in hippocampus neurons in vitro. CNS Neurosci. Ther., 2017, 23(4), 329-340.
[http://dx.doi.org/10.1111/cns.12678] [PMID: 28261990]
[96]
Jin, C.; Du, Z.; Lin, L.; Zhou, L.; Li, S.; Liu, Q.; Ding, K. structural characterisation of mannoglucan from Dendrobium nobile Lindl and the neuritogenesis-induced effect of its acetylated derivative on PC-12 cells. Polymers (Basel), 2017, 9(12), 399-404.
[http://dx.doi.org/10.3390/polym9090399] [PMID: 30965702]
[97]
Liu, H.; Ma, L.; Wang, Q. Possible metabolic pathway of a novel bioactive polysaccharide extracted from Dendrobium aphyllum: An in vivo study. J. Food Sci., 2019, 84(5), 1216-1223.
[http://dx.doi.org/10.1111/1750-3841.14594] [PMID: 31066927]
[98]
Su, W.; Zeng, L.; Chen, W. Moscatilin suppresses the breast cancer both in vitro and in vivo by inhibiting HDAC3. Dose Response, 2021, 19(1)
[http://dx.doi.org/10.1177/15593258211001251] [PMID: 33795998]
[99]
Fay, M.F. Orchid conservation: how can we meet the challenges in the twenty-first century? Bot. Stud., 2018, 59(1), 16.
[http://dx.doi.org/10.1186/s40529-018-0232-z] [PMID: 29872972]
[100]
Süntar, I. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev., 2020, 19(5), 1199-1209.
[http://dx.doi.org/10.1007/s11101-019-09629-9]
[101]
Lee, E.; Han, A.R.; Nam, B.; Kim, Y.R.; Jin, C.H.; Kim, J.B.; Eun, Y.G.; Jung, C.H. Moscatilin induces apoptosis in human head and neck squamous cell carcinoma cells via JNK signaling pathway. Molecules, 2020, 25(4), 901-926.
[http://dx.doi.org/10.3390/molecules25040901] [PMID: 32085431]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy