Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

The Effects of Apple Cider Vinegar on Cardiometabolic Risk Factors: A Systematic Review and Meta-analysis of Clinical Trials

Author(s): Sahar Dadkhah Tehrani, Mahdi Keshani, Mohammad Hossein Rouhani, Seyed Adel Moallem, Mohammad Bagherniya* and Amirhossein Sahebkar*

Volume 32, Issue 11, 2025

Published on: 22 August, 2023

Page: [2257 - 2274] Pages: 18

DOI: 10.2174/0929867331666230822102021

Price: $65

Abstract

Background: Cardiometabolic syndrome (CMS) is a set of metabolic abnormalities that are risk factors for cardiovascular disease (CVD). Apple cider vinegar (ACV) has been used in several studies as a natural agent to improve CMS risk factors. The present study aimed to perform a systematic review and meta-analysis of the effects of ACV consumption on lipid and glycemic parameters.

Methods: PubMed, Scopus, and ISI Web of Science databases were systematically searched to find clinical trials evaluating the effects of ACV consumption on CMS risk factors.

Results: Overall, 25 clinical trials (33 arms) comprising 1320 adults were entered in this study. ACV consumption could significantly improve the levels of FBG (-21.20 mg/dl; 95% CI: -32.31 to -2.21; I2: 95.8%), HbA1c (-0.91mg/dl; 95% CI: -1.62 to -0.21; I2: 98.9%), and TC (-6.72 mg/dl; 95% CI: -12.91 to -0.53; I2:50.8%). No significant results were observed for BMI, HOMA-IR, serum insulin, TG, LDL-C, and HDL-C. Subgroup analysis showed a significant decrease in FBG, HbA1c, TC, and TG in diabetic patients. In this type of analysis, ACV consumption significantly reduced FBG levels when administered for both duration subgroups (≥12 and <12 weeks). Moreover, in the subgroup analysis based on duration, TG concentration was significantly decreased following ACV consumption for ≥ 12 weeks.

Conclusion: This meta-analysis showed that consumption of ACV has a favorable effect in decreasing some CMS risk factors including FBG, HbA1c, and TC.

Keywords: Apple cider vinegar, cardiometabolic risk factors, fasting blood glucose, HBA1C, cholesterol, cardiometabolic syndrome.

« Previous
[1]
Kirk, E.P.; Klein, S. Pathogenesis and pathophysiology of the cardiometabolic syndrome. J. Clin. Hypertens., 2009, 11(12), 761-765.
[http://dx.doi.org/10.1111/j.1559-4572.2009.00054.x] [PMID: 20021538]
[2]
Mozaffarian, D; Benjamin, EJ; Go, AS; Arnett, DK; Blaha, MJ; Cushman, M Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation, 2015, 131(4), e29-e322.
[3]
Shah, K.; Sharma, K.; Saxena, D. Editorial: Health technology assessment in cardiovascular diseases. Front. Cardiovasc. Med., 2023, 10, 1108503.
[http://dx.doi.org/10.3389/fcvm.2023.1108503] [PMID: 36760565]
[4]
Cardiovascular diseases (CVDs): World Health Organization (WHO). 2021. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[5]
Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; Kazakiewicz, D.; de Benito Rubio, V.; Ignatiuk, B.; Raisi-Estabragh, Z.; Pawlak, A.; Karagiannidis, E.; Treskes, R.; Gaita, D.; Beltrame, J.F.; McConnachie, A.; Bardinet, I.; Graham, I.; Flather, M.; Elliott, P.; Mossialos, E.A.; Weidinger, F.; Achenbach, S.; Mimoza, L.; Artan, G.; Aurel, D.; Chettibi, M.; Hammoudi, N.; Vardanyan, K.; Pepoyan, S.; Sisakian, H.; Scherr, D.; Siostrzonek, P.; Metzer, B.; Mustafayev, I.; Jahangirov, T.; Rustamova, Y.; Mitkovskaya, N.; Shibeka, N.; Stelmashok, V.; De Pauw, M.; Lancellotti, P.; Claeys, M.; Kušljugić, Z.; Džubur, A.; Smajić, E.; Tokmakova, M.; Traykov, V.; Milicic, D.; Pasalic, M.; Pavasovic, S.; Christodoulides, T.; Papasavvas, I.; Eftychiou, C.; Linhart, A.; Táborský, M.; Hutyra, M.; Sørensen, J.T.; Andersen, M.J.; Kristensen, S.D.; Abdelhamid, M.; Shokry, K.; Kampus, P.; Laine, M.; Niemelä, M.; Iung, B.; Cohen, A.; Leclercq, C.; Trapaidze, D.; Etsadashvili, K.; Aladashvili, A.; Bestehorn, K.; Baldus, S.; Zeiher, A.M.; Kanakakis, J.; Patrianakos, A.; Chrysohoou, C.; Csanádi, Z.; Becker, D.; Járai, Z.; Hrafnkelsdóttir, Þ.J.; Maher, V.; Crowley, J.; Dalton, B.; Wolak, A.; Assa, E.B.; Zafrir, B.; Murrone, A.; Spaccarotella, C.; Urbinati, S.; Salim, B.; Orazbek, S.; Ayan, A.; Bajraktari, G.; Poniku, D.A.; Erkin, M.; Saamay, A.; Kurban, K.; Erglis, A.; Jegere, S.; Bajare, I.; Mohammed, M.; Sarkis, A.; Saadeh, G.; Šlapikas, R.; Lapinskas, T.; Čelutkienė, J.; Ellafi, K.; El Ghamari, F.; Beissel, J.; Banu, C.; Felice, T.; Xuereb, R.; Popovici, M.; Lisii, D.; Rudi, V.; Boskovic, A.; Rabrenovic, M.; Ztot, S.; Abir-Khalil, S.; Meeder, J.G.; van Rossum, A.C.; Elsendoorn, M.; Kostov, J.; Kostovska, E.S.; Kedev, S.; Angel, K.; Mjølstad, O.C.; Bleie, Ø.; Gierlotka, M.; Dąbrowski, R.; Jankowski, P.; Baptista, S.B.; Ferreira, J.; Gil, V.; Badila, E.; Gaita, D.; Popescu, B.A.; Shlyakhto, E.; Zvartau, N.; Kotova, E.; Foscoli, M.; Zavatta, M.; Stojkovic, S.; Tesic, M.; Juricic, S.; Kaliská, G.; Hatala, R.; Hlivák, P.; Fras, Z.; Bunc, M.; Pernat, A.; Cequier, Á.; Anguita, M.; Muñiz, J.; Johansson, B.; Platonov, P.; Carballo, D.; Rüdiger-Stürchler, M.; Tanner, F.C.; Shebli, H.E.; Kabbani, S.; Abid, L.; Faouzi, A.; Abdessalem, S.; Aytekin, V.; Atar, I.; Kovalenko, V.; Nesukay, E.; Archbold, A.; Tayal, U.; Wilkinson, C.; Kurbanov, R.; Fozilov, K.; Mirmaksudov, M.; Boateng, D.; Daval, G.; Momotyuk, G.; Sebastiao, D. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J., 2022, 43(8), 716-799.
[http://dx.doi.org/10.1093/eurheartj/ehab892] [PMID: 35016208]
[6]
Tarride, J.E.; Lim, M.; DesMeules, M.; Luo, W.; Burke, N.; O’Reilly, D.; Bowen, J.; Goeree, R. A review of the cost of cardiovascular disease. Can. J. Cardiol., 2009, 25(6), e195-e202.
[http://dx.doi.org/10.1016/S0828-282X(09)70098-4] [PMID: 19536390]
[7]
Isomaa, B.; Almgren, P.; Tuomi, T.; Forsén, B.; Lahti, K.; Nissén, M.; Taskinen, M.R.; Groop, L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care, 2001, 24(4), 683-689.
[http://dx.doi.org/10.2337/diacare.24.4.683] [PMID: 11315831]
[8]
Abid, M.; Memon, Z.; Shaheen, S.; Ahmed, F.; Shaikh, M.Z.; Agha, F. Comparison of apple cider vinegar and metformin combination with metformin alone in newly diagnosed type 2 diabetic patients: A randomized controlled trial. Int. J. Med. Res. Health Sci., 2020, 9(2), 1-7.
[9]
Francini, A.; Sebastiani, L. Phenolic compounds in apple (Malus x domestica Borkh.): Compounds characterization and stability during postharvest and after processing. Antioxidants, 2013, 2(3), 181-193.
[http://dx.doi.org/10.3390/antiox2030181] [PMID: 26784345]
[10]
Budak, N.H.; Ozçelik, F.; Güzel-Seydim, Z.B. Antioxidant activity and phenolic content of apple cider. Turk. J. Agri. - Food Sci. Technol., 2015, 3(6), 356-360.
[http://dx.doi.org/10.24925/turjaf.v3i6.356-360.265]
[11]
Petsiou, E.I.; Mitrou, P.I.; Raptis, S.A.; Dimitriadis, G.D. Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight. Nutr. Rev., 2014, 72(10), 651-661.
[http://dx.doi.org/10.1111/nure.12125] [PMID: 25168916]
[12]
Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J. Cochrane handbook for systematic reviews of interventions; John Wiley & Sons, 2019.
[http://dx.doi.org/10.1002/9781119536604]
[13]
Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol., 2005, 5(1), 13.
[http://dx.doi.org/10.1186/1471-2288-5-13] [PMID: 15840177]
[14]
DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials, 1986, 7(3), 177-188.
[http://dx.doi.org/10.1016/0197-2456(86)90046-2] [PMID: 3802833]
[15]
Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med., 2002, 21(11), 1539-1558.
[http://dx.doi.org/10.1002/sim.1186] [PMID: 12111919]
[16]
Bashiri, R; Ghadiri-Anari, A; Hekmatimoghadam, H; Dehghani, A; Najarzadeh, A The effect of apple vinegar on lipid profiles and anthropometric indices in type 2 diabetes patients with dyslipidemia: A randomized clinical trial. SSU J., 2014, 22(5), 1543-53.
[17]
Halima, B.H.; Sarra, K.; Mohamed, S.; Louay, T.; Fethi, B.S.; Houda, B.J. Apple cider vinegar ameliorates hyperglycemia and hyperlipidemia in Tunisian type 2 diabetic patients. Int. J. Multidisciplinary Curr. Res., 2017, 5, 1453-1459.
[18]
Chiu, H.F.; Chiang, M.; Liao, H.J.; Shen, Y.C.; Venkatakrishnan, K.; Cheng, I.S.; Wang, C.K. The ergogenic activity of cider vinegar: A randomized cross-over, double-blind, clinical trial. Sports Med. Health Sci., 2020, 2(1), 38-43.
[http://dx.doi.org/10.1016/j.smhs.2020.02.001] [PMID: 35783333]
[19]
Gheflati, A.; Bashiri, R.; Ghadiri-Anari, A.; Reza, J.Z.; Kord, M.T.; Nadjarzadeh, A. The effect of apple vinegar consumption on glycemic indices, blood pressure, oxidative stress, and homocysteine in patients with type 2 diabetes and dyslipidemia: A randomized controlled clinical trial. Clin. Nutr. ESPEN, 2019, 33, 132-138.
[http://dx.doi.org/10.1016/j.clnesp.2019.06.006] [PMID: 31451249]
[20]
Hjorth, P.; Petersen, S.M.; Launholt, T.L.; Nielsen, C.T. Effect of apple vinegar intake on metabolic parameters and constipation in patients with schizophrenia treated with clozapine: A pilot study. Nord. J. Psychiatry, 2021, 75(2), 152-154.
[http://dx.doi.org/10.1080/08039488.2020.1799432] [PMID: 32762505]
[21]
Johnston, C.S.; Kim, C.M.; Buller, A.J. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care, 2004, 27(1), 281-282.
[http://dx.doi.org/10.2337/diacare.27.1.281] [PMID: 14694010]
[22]
Johnston, C.S.; White, A.M.; Kent, S.M. Preliminary evidence that regular vinegar ingestion favorably influences hemoglobin A1c values in individuals with type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2009, 84(2), e15-e17.
[http://dx.doi.org/10.1016/j.diabres.2009.02.005] [PMID: 19269707]
[23]
Johnston, C.S.; Steplewska, I.; Long, C.A.; Harris, L.N.; Ryals, R.H. Examination of the antiglycemic properties of vinegar in healthy adults. Ann. Nutr. Metab., 2010, 56(1), 74-79.
[http://dx.doi.org/10.1159/000272133] [PMID: 20068289]
[24]
Johnston, C.S.; Buller, A.J. Vinegar and peanut products as complementary foods to reduce postprandial glycemia. J. Am. Diet. Assoc., 2005, 105(12), 1939-1942.
[http://dx.doi.org/10.1016/j.jada.2005.07.012] [PMID: 16321601]
[25]
Kausar, S.; Abbas, M.A.; Ahmad, H.; Yousef, N.; Ahmed, Z.; Humayun, N. Effect of apple cider vinegar in type 2 diabetic patients with poor glycemic control: A randomized placebo controlled design®. Int. J. Med. Res. Health Sci., 2019, 8(2), 149-159.
[26]
Khezri, S.S.; Saidpour, A.; Hosseinzadeh, N.; Amiri, Z. Beneficial effects of Apple Cider Vinegar on weight management, Visceral Adiposity Index and lipid profile in overweight or obese subjects receiving restricted calorie diet: A randomized clinical trial. J. Funct. Foods, 2018, 43, 95-102.
[http://dx.doi.org/10.1016/j.jff.2018.02.003]
[27]
Kondo, T.; Kishi, M.; Fushimi, T.; Ugajin, S.; Kaga, T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci. Biotechnol. Biochem., 2009, 73(8), 1837-1843.
[http://dx.doi.org/10.1271/bbb.90231] [PMID: 19661687]
[28]
Mehdi, M.; Seyed-Mostafa, H-z.; Saeedeh, N.; Mahboobeh, M.; Milad, M.; Ahmadreza, S. The effect of white vinegar on some blood biochemical factors in type 2 diabetic patients. J. Diabetes Endocrinol., 2013, 4(1), 1-5.
[29]
Ebrahimi-Mamaghani, M.; Arefhosseini, S.; Golzarand, M.; Aliasgarzadeh, A.; Vahed-Jabbary, M. Long-term effects of processed Berberis vulgaris on some metabolic syndrome components. Iranian J. Endocrinol. Meta., 2009, 11(1), 41-47.
[30]
Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lambadiari, V.; Dimitriadis, P.; Spanoudi, F.; Raptis, S.A.; Dimitriadis, G. The role of acetic acid on glucose uptake and blood flow rates in the skeletal muscle in humans with impaired glucose tolerance. Eur. J. Clin. Nutr., 2015, 69(6), 734-739.
[http://dx.doi.org/10.1038/ejcn.2014.289] [PMID: 25626409]
[31]
Mitrou, P.; Petsiou, E.; Papakonstantinou, E.; Maratou, E.; Lambadiari, V.; Dimitriadis, P. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. J. Diabetes Res., 2015, 2015(1), 175204.
[http://dx.doi.org/10.1155/2015/175204]
[32]
Nazni, P.; Singh, R.; Devi, R.S.; Singh, H.; Singh, S.; Singh, K. Assessment of hypoglycemic effects of apple cider vinegar in type 2 diabetes. Int. J. Food Nut. Sci., 2015, 4(1), 206.
[33]
Feise, NK; Johnston, CS Commercial vinegar tablets do not display the same physiological benefits for managing postprandial glucose concentrations as liquid vinegar. J. Nutr. Metab., 2020, 2020(1), 9098739.
[http://dx.doi.org/10.1155/2020/9098739]
[34]
Mousavi, E.; Sajjadi, P.; Firoozjahi, A.; Moazezi, Z. Effect of apple cider vinegar on postprandial blood glucose in type 2 diabetic patients treated with hypoglycemic agents. J. Babol. Univ. Med. Sci., 2013, 15(6), 7-11.
[35]
Panetta, CJ; Jonk, YC; Shapiro, AC Prospective randomized clinical trial evaluating the impact of vinegar on lipids in non-diabetics. World J. Cardiovasc. Dis., 2013, 3(2)
[http://dx.doi.org/10.4236/wjcd.2013.32027]
[36]
Pusparatha, S.B.; Devi, R.G.; Jyothipriya, A. Effects of apple cider vinegar on diabetic and obese patients. Drug Invent. Today, 2019, 12(5)
[37]
Salbe, A.D.; Johnston, C.S.; Buyukbese, M.A.; Tsitouras, P.D.; Harman, S.M. Vinegar lacks antiglycemic action on enteral carbohydrate absorption in human subjects. Nutr. Res., 2009, 29(12), 846-849.
[http://dx.doi.org/10.1016/j.nutres.2009.10.021] [PMID: 19963157]
[38]
Mohammadpourhodki, R.; Sargolzaei, M.S. The effects of apple vinegar on fasting blood sugar (FBS) and glycosylated hemoglobin in patients with type 2 diabetes. Prensa Med. Argent., 2018, 104(6)
[39]
Thinathayalan, D.; Yuan, B.; Kaur, J.; Albert, Y.; Yan, N. The effects of apple cider vinegar on weight, blood pressure, blood glucose level and heart rate of 60 MMMC medical students randomized controlled trial. Med J., 2019, 6, 88.
[40]
Kausar, S.; Humayun, A.; Ahmed, Z.; Abbas, M.A.; Tahir, A. Effect of apple cider vinegar on glycemic control, hyperlipidemia and control on body weight in type 2 diabetes patients. Health Sciences., 2019, 8(5), 59-74.
[41]
Levitan, E.B.; Song, Y.; Ford, E.S.; Liu, S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch. Intern. Med., 2004, 164(19), 2147-2155.
[http://dx.doi.org/10.1001/archinte.164.19.2147] [PMID: 15505129]
[42]
Nakajima, A.; Ebihara, K. Effect of prolonged vinegar feeding on postprandial blood glucose response in rats. J. Japanese Soci. Nut. Food Sci., 1988, 41(6), 487-9.
[43]
Brighenti, F.; Castellani, G.; Benini, L.; Casiraghi, M.C.; Leopardi, E.; Crovetti, R.; Testolin, G. Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. Eur. J. Clin. Nutr., 1995, 49(4), 242-247.
[PMID: 7796781]
[44]
Liljeberg, H.; Björck, I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur. J. Clin. Nutr., 1998, 52(5), 368-371.
[http://dx.doi.org/10.1038/sj.ejcn.1600572] [PMID: 9630389]
[45]
Östman, E.; Granfeldt, Y.; Persson, L.; Björck, I. Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur. J. Clin. Nutr., 2005, 59(9), 983-988.
[http://dx.doi.org/10.1038/sj.ejcn.1602197] [PMID: 16015276]
[46]
Leeman, M.; Östman, E.; Björck, I. Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. Eur. J. Clin. Nutr., 2005, 59(11), 1266-1271.
[http://dx.doi.org/10.1038/sj.ejcn.1602238] [PMID: 16034360]
[47]
Thompson, L.U.; Yoon, J.H.; Jenkins, D.J.A.; Wolever, T.M.S.; Jenkins, A.L. Relationship between polyphenol intake and blood glucose response of normal and diabetic individuals. Am. J. Clin. Nutr., 1984, 39(5), 745-751.
[http://dx.doi.org/10.1093/ajcn/39.5.745] [PMID: 6711476]
[48]
Fushimi, T.; Suruga, K.; Oshima, Y.; Fukiharu, M.; Tsukamoto, Y.; Goda, T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br. J. Nutr., 2006, 95(5), 916-924.
[http://dx.doi.org/10.1079/BJN20061740] [PMID: 16611381]
[49]
Mansouri, A.; Shishehbor, F.; Sarkaki, A.; Jalali, M.T.; Latifi, M. The effect of apple vinegar on blood glucose control and lipid profile in rats. J. Adv. Med. Biomed. Res., 2007, 15(61), 39-48.
[50]
Mahbubeh, S.; Sedighe, A.; Shaghayegh, H.; Bahar, N. Reduces cholesterol induced atherosclerotic lesions in aorta artery in hypercholesterolemic rabbits. J. Med. Plants Res., 2011, 5(9), 1518-1525.
[51]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.C.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A.M. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[52]
Cook, N.; Samman, S. Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7(2), 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[53]
Yamashita, H.; Fujisawa, K.; Ito, E.; Idei, S.; Kawaguchi, N.; Kimoto, M.; Hiemori, M.; Tsuji, H. Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci. Biotechnol. Biochem., 2007, 71(5), 1236-1243.
[http://dx.doi.org/10.1271/bbb.60668] [PMID: 17485860]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy