Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Pyrazine Moiety: Recent Developments in Cancer Treatment

Author(s): Rakesh Sahu*, Kamal Shah, Yash Gautam and Kaushilya Sahu

Volume 27, Issue 10, 2023

Published on: 31 August, 2023

Page: [821 - 843] Pages: 23

DOI: 10.2174/1385272827666230816105317

Price: $65

conference banner
Abstract

Cancer is becoming more common worldwide, impacting the vast majority of people. As a result, new anticancer drugs are currently being created, and their safety is still being assessed. Pyrazine-based medications are a substantial contribution, as they are one of the most important pharmacophores found in heterocyclic compounds both synthetically and naturally. It's a six-membered aromatic heterocycle with two nitrogen atoms with a wide range of therapeutic applications in drug development and numerous prospects for future enhancement in anticancer drugs by targeting several critical receptors. A number of pyrazine compounds have been shown to inhibit enzymes, receptors, and a range of additional cancer-fighting targets. Researchers are currently focused on the creation of pyrazine-based novel derivatives for cancer treatment in combination with other moieties. As a result, this review illuminates the recent therapeutic expansion of pyrazine-based drugs, as well as their synthetic schemes, tabulated detailed clinical trial drugs, marketed drugs with their primary target, and a list of recently patented and published research papers, all of which will help scientists build successful medications with the appropriate pharmacological activity.

Keywords: Pyrazine moiety, heterocyclic compound, synthetic scheme, anticancer, cancer treatment, pyrazine-based drugs.

Graphical Abstract
[1]
Begley, C.G.; Ellis, L.M. Raise standards for preclinical cancer research. Nature, 2012, 483(7391), 531-533.
[http://dx.doi.org/10.1038/483531a] [PMID: 22460880]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[3]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[4]
Piñeros, M.; Mery, L.; Soerjomataram, I.; Bray, F.; Steliarova-Foucher, E. Scaling up the surveillance of childhood cancer: A global roadmap. J. Natl. Cancer Inst., 2021, 113(1), 9-15.
[http://dx.doi.org/10.1093/jnci/djaa069] [PMID: 32433739]
[5]
Assessing national capacity for the prevention and control of noncommunicable diseases: Report of the 2019 global survey; World Health Organization: Geneva, 2020.
[6]
de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health, 2020, 8(2), e180-e190.
[http://dx.doi.org/10.1016/S2214-109X(19)30488-7] [PMID: 31862245]
[7]
Liu, Z.; Delavan, B.; Roberts, R.; Tong, W. Lessons learned from two decades of anticancer drugs. Trends Pharmacol. Sci., 2017, 38(10), 852-872.
[http://dx.doi.org/10.1016/j.tips.2017.06.005] [PMID: 28709554]
[8]
Wu, X.Z. A new classification system of anticancer drugs: Based on cell biological mechanisms. Med. Hypotheses, 2006, 66(5), 883-887.
[http://dx.doi.org/10.1016/j.mehy.2005.11.036] [PMID: 16414204]
[9]
Olivier, T.; Haslam, A.; Prasad, V. Anticancer drugs approved by the US food and drug administration from 2009 to 2020 according to their mechanism of action. JAMA Netw. Open, 2021, 4(12), e2138793.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.38793] [PMID: 34905002]
[10]
Sharifnia, T.; Hong, A.L.; Painter, C.A.; Boehm, J.S. Emerging opportunities for target discovery in rare cancers. Cell Chem. Biol., 2017, 24(9), 1075-1091.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.002] [PMID: 28938087]
[11]
Podraza, K.F. Synthesis and thermal rearrangement of allylic 3,5,6-trimethyl-2-pyrazinylacetates: A heterocyclic carroll rearrangement. J. Heterocycl. Chem., 1986, 23(2), 581-583.
[http://dx.doi.org/10.1002/jhet.5570230254]
[12]
Gao, J.; Luo, X.; Li, Y.; Gao, R.; Chen, H.; Ji, D. Synthesis and biological evaluation of 2-oxo-pyrazine-3-carboxamide-yl nucleoside analogues and their epimers as inhibitors of influenza A viruses. Chem. Biol. Drug Des., 2015, 85(3), 245-252.
[http://dx.doi.org/10.1111/cbdd.12382] [PMID: 24954298]
[13]
Dolezal, M.; Zitko, J. Pyrazine derivatives: A patent review (June 2012-present). Expert Opin. Ther. Pat., 2015, 25(1), 33-47.
[14]
Cheeseman, G.W.H.; Werstiuk, E.S.G. Recent advances in pyazine chemistry. Adv. Heterocycl. Chem., 1972, 14, 99-209.
[http://dx.doi.org/10.1016/S0065-2725(08)60953-8]
[15]
Kosuge, T.; Kamiya, H. Discovery of a pyrazine in a natural product: tetramethylpyrazine from cultures of a strain of Bacillus subtilis. Nature, 1962, 193(4817), 776.
[http://dx.doi.org/10.1038/193776a0] [PMID: 14458748]
[16]
Liu, W.; Tang, Y.; Guo, Y.; Sun, B.; Zhu, H.; Xiao, Y.; Dong, D.; Yang, C. Synthesis, characterization and bioactivity determination of ferrocenyl urea derivatives. Appl. Organomet. Chem., 2012, 26(4), 189-193.
[http://dx.doi.org/10.1002/aoc.2837]
[17]
Temple, C., Jr; Wheeler, G.P.; Elliott, R.D.; Rose, J.D.; Kussner, C.L.; Comber, R.N.; Montgomery, J.A. New anticancer agents: Synthesis of 1,2-dihydropyrido[3,4-b]pyrazines (1-deaza-7,8-dihydropteridines). J. Med. Chem., 1982, 25(9), 1045-1050.
[http://dx.doi.org/10.1021/jm00351a008] [PMID: 7131483]
[18]
Saito, R.; Matsumura, Y.; Suzuki, S.; Okazaki, N. Intensely blue-fluorescent 2,5-bis(benzoimidazol-2-yl)pyrazine dyes with improved solubility: Their synthesis, fluorescent properties, and application as microenvironment polarity probes. Tetrahedron, 2010, 66(42), 8273-8279.
[http://dx.doi.org/10.1016/j.tet.2010.08.036]
[19]
Niculescu-Duvaz, I.; Roman, E.; Whittaker, S.R.; Friedlos, F.; Kirk, R.; Scanlon, I.J.; Davies, L.C.; Niculescu-Duvaz, D.; Marais, R.; Springer, C.J. Novel inhibitors of the v-raf murine sarcoma viral oncogene homologue B1 (BRAF) based on a 2,6-disubstituted pyrazine scaffold. J. Med. Chem., 2008, 51(11), 3261-3274.
[http://dx.doi.org/10.1021/jm070776b] [PMID: 18473434]
[20]
Staedel, W.; Rügheimer, L. Ueber die einwirkung von ammoniak auf chloracetylbenzol. Ber. Dtsch. Chem. Ges., 1876, 9(2), 1758-1761.
[http://dx.doi.org/10.1002/cber.187600902218]
[21]
Gastaldi, G. Pyrazines synthesis. Gazz. Chim. Ital., 1921, 51, 233-255.
[22]
Lawrence, S.A. Amines: synthesis, properties and applications; Cambridge University Press, 2004.
[23]
Masuda, H.; Tanaka, M.; Akiyama, T.; Shibamoto, T. Preparation of 5-substituted 2,3-dimethylpyrazines from the reaction of 2,3-dimethyl-5,6-dihydropyrazine and aldehydes or ketones. J. Agric. Food Chem., 1980, 28(2), 244-246.
[http://dx.doi.org/10.1021/jf60228a058]
[24]
Yang, X.J.; Grégoire, S. Class II histone deacetylases: From sequence to function, regulation, and clinical implication. Mol. Cell. Biol., 2005, 25(8), 2873-2884.
[http://dx.doi.org/10.1128/MCB.25.8.2873-2884.2005] [PMID: 15798178]
[25]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[26]
Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience, 2012, 6, ed16.
[PMID: 24883085]
[27]
Kim, H.Y.; Martin, J.H.; Mclachlan, A.J.; Boddy, A.V. Precision dosing of targeted anticancer drugs-challenges in the real world. Transl. Cancer Res., 2017, 6(s10), s1500-s1511.
[http://dx.doi.org/10.21037/tcr.2017.10.30]
[28]
Maeda, H.; Khatami, M. Analyses of repeated failures in cancer therapy for solid tumors: poor tumor‐selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med., 2018, 7(1), 11.
[http://dx.doi.org/10.1186/s40169-018-0185-6] [PMID: 29541939]
[29]
Targeted therapy to treat cancer. Available at: https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies (accessed on 08 June 2022)
[30]
Yahyapour, R.; Salajegheh, A.; Safari, A.; Amini, P.; Rezaeyan, A.; Amraee, A.; Najafi, M. Radiation-induced non-targeted effect and carcinogenesis; implications in clinical radiotherapy. J. Biomed. Phys. Eng., 2018, 8(4), 435-446.
[PMID: 30568933]
[31]
Radiopharmaceuticals: Radiation therapy enters the molecular age. Available at: https://www.cancer.gov/news-events/cancer-currents-blog/2020/radio-pharmaceuticals-cancer-radiation-therapy (accessed on 08 June 2022)
[32]
Desouky, O.; Ding, N.; Zhou, G. Targeted and non-targeted effects of ionizing radiation. J. Rad. Res. Appl. Sci., 2015, 8(2), 247-254.
[http://dx.doi.org/10.1016/j.jrras.2015.03.003]
[33]
Ghosh, R.; Hansda, S. Targeted and non-targeted effects of radiation in mammalian cells: An overview. Arch. Biotech. Biomed., 2021, 5(1), 013-019.
[34]
Borowski, E.; Bontemps-Gracz, M.M.; Piwkowska, A. Strategies for overcoming ABC-transporters-mediated multidrug resistance (MDR) of tumor cells. Acta Biochim. Pol., 2005, 52(3), 609-627.
[http://dx.doi.org/10.18388/abp.2005_3421] [PMID: 16175236]
[35]
Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A.; Elaasser, M.M.; Abdel-Aziz, M.M. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds. Eur. J. Med. Chem., 2014, 85, 480-486.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.016] [PMID: 25113876]
[36]
Zhao, L.X.; Sherchan, J.; Park, J.K.; Jahng, Y.; Jeong, B.S.; Jeong, T.C.; Lee, C.S.; Lee, E.S. Synthesis, cytotoxicity and structure-activity relationship study of terpyridines. Arch. Pharm. Res., 2006, 29(12), 1091-1095.
[http://dx.doi.org/10.1007/BF02969297] [PMID: 17225456]
[37]
Braude, E.A.; Nachod, F.C.; Hoffman, J.G. Determination of organic structures by physical methods. Phys. Today, 1956, 9(3), 22.
[http://dx.doi.org/10.1063/1.3059906]
[38]
Pyrazine. Available at: https://pubchem.ncbi.nlm.nih.gov/compound/pyrazine (accessed on 10 November, 2021)
[39]
ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/home (accessed on 04 January, 2022)
[41]
Pyrazine cancer tumor. Available at: https://patents.google.com/?q=pyrazine %2c+cancer%2c+tumor%2c&oq=pyrazine%2c+cancer%2c+tumor%2c+ (accessed on 04 April, 2022)
[42]
Fan, J.; Krautkramer, K.A.; Feldman, J.L.; Denu, J.M. Metabolic regulation of histone post-translational modifications. ACS Chem. Biol., 2015, 10(1), 95-108.
[http://dx.doi.org/10.1021/cb500846u] [PMID: 25562692]
[43]
Chadha, S.; Wang, L.; Hancock, W.W.; Beier, U.H. Sirtuin-1 in immunotherapy: A Janus-headed target. J. Leukoc. Biol., 2019, 106(2), 337-343.
[http://dx.doi.org/10.1002/JLB.2RU1118-422R] [PMID: 30605226]
[44]
Pant, K.; Peixoto, E.; Richard, S.; Gradilone, S.A. Role of histone deacetylases in carcinogenesis: Potential role in cholangiocarcinoma. Cells, 2020, 9(3), 780.
[http://dx.doi.org/10.3390/cells9030780] [PMID: 32210140]
[45]
Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem., 2012, 4(4), 505-524.
[http://dx.doi.org/10.4155/fmc.12.3] [PMID: 22416777]
[46]
Ibrahim, H.S.; Abdelsalam, M.; Zeyn, Y.; Zessin, M.; Mustafa, A.H.M.; Fischer, M.A.; Zeyen, P.; Sun, P.; Bülbül, E.F.; Vecchio, A.; Erdmann, F.; Schmidt, M.; Robaa, D.; Barinka, C.; Romier, C.; Schutkowski, M.; Krämer, O.H.; Sippl, W. Synthesis, molecular docking and biological characterization of pyrazine linked 2-aminobenzamides as new class I selective histone deacetylase (HDAC) inhibitors with anti-leukemic activity. Int. J. Mol. Sci., 2021, 23(1), 369.
[http://dx.doi.org/10.3390/ijms23010369] [PMID: 35008795]
[47]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2), S21-S26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[48]
Zhang, H.; Berezov, A.; Wang, Q.; Zhang, G.; Drebin, J.; Murali, R.; Greene, M.I. ErbB receptors: From oncogenes to targeted cancer therapies. J. Clin. Invest., 2007, 117(8), 2051-2058.
[http://dx.doi.org/10.1172/JCI32278] [PMID: 17671639]
[49]
Tantawy, E.S.; Amer, A.M.; Mohamed, E.K.; Abd Alla, M.M.; Nafie, M.S. Synthesis, characterization of some pyrazine derivatives as anti-cancer agents: In vitro and in silico approaches. J. Mol. Struct., 2020, 1210, 128013.
[http://dx.doi.org/10.1016/j.molstruc.2020.128013]
[50]
Babina, I.S.; Turner, N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer, 2017, 17(5), 318-332.
[http://dx.doi.org/10.1038/nrc.2017.8] [PMID: 28303906]
[51]
Touat, M.; Ileana, E.; Postel-Vinay, S.; André, F.; Soria, J.C. Targeting FGFR signaling in cancer. Clin. Cancer Res., 2015, 21(12), 2684-2694.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2329] [PMID: 26078430]
[52]
Hallinan, N.; Finn, S.; Cuffe, S.; Rafee, S.; O’Byrne, K.; Gately, K. Targeting the fibroblast growth factor receptor family in cancer. Cancer Treat. Rev., 2016, 46, 51-62.
[http://dx.doi.org/10.1016/j.ctrv.2016.03.015] [PMID: 27109926]
[53]
Katoh, M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci., 2016, 37(12), 1081-1096.
[http://dx.doi.org/10.1016/j.tips.2016.10.003] [PMID: 27992319]
[54]
Hierro, C.; Rodon, J.; Tabernero, J. Fibroblast growth factor (FGF) receptor/FGF inhibitors: Novel targets and strategies for optimization of response of solid tumors. Semin. Oncol., 2015, 42(6), 801-819.
[http://dx.doi.org/10.1053/j.seminoncol.2015.09.027] [PMID: 26615127]
[55]
Wei, P.; Liu, B.; Wang, R.; Gao, Y.; Li, L.; Ma, Y.; Qian, Z.; Chen, Y.; Cheng, M.; Geng, M.; Shen, J.; Zhao, D.; Ai, J.; Xiong, B. Discovery of a series of dimethoxybenzene FGFR inhibitors with 5H-pyrrolo[2,3-b]pyrazine scaffold: Structure-activity relationship, crystal structural characterization and in vivo study. Acta Pharm. Sin. B, 2019, 9(2), 351-368.
[http://dx.doi.org/10.1016/j.apsb.2018.12.008] [PMID: 30972282]
[56]
Jiang, A.; Liu, Q.; Wang, R.; Wei, P.; Dai, Y.; Wang, X.; Xu, Y.; Ma, Y.; Ai, J.; Shen, J.; Ding, J.; Xiong, B. Structure-based discovery of a series of 5H-pyrrolo [2, 3-b] pyrazine FGFR kinase inhibitors. Molecules, 2018, 23(3), 698.
[http://dx.doi.org/10.3390/molecules23030698] [PMID: 29562726]
[57]
Chen, A. PARP inhibitors: Its role in treatment of cancer. Chin. J. Cancer, 2011, 30(7), 463-471.
[http://dx.doi.org/10.5732/cjc.011.10111] [PMID: 21718592]
[58]
Rose, M.; Burgess, J.T.; O’Byrne, K.; Richard, D.J.; Bolderson, E. PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Front. Cell Dev. Biol., 2020, 8, 564601.
[http://dx.doi.org/10.3389/fcell.2020.564601] [PMID: 33015058]
[59]
Patel, A.; Kaufmann, S.H. Development of PARP inhibitors: An unfinished story. Oncology, 2010, 24(1), 66-68.
[PMID: 20187324]
[60]
Furlan, A.D.; Giraldo, M.; Baskwill, A.; Irvin, E.; Imamura, M. Massage for low‐back pain. Cochrane Database Syst. Rev., 2015, 2015(9), CD001929.
[http://dx.doi.org/10.1002/14651858.CD001929.pub3]
[61]
Seo, Y.; Lee, J.H.; Park, S.; Namkung, W.; Kim, I. Expansion of chemical space based on a pyrrolo[1,2-a]pyrazine core: Synthesis and its anticancer activity in prostate cancer and breast cancer cells. Eur. J. Med. Chem., 2020, 188, 111988.
[http://dx.doi.org/10.1016/j.ejmech.2019.111988] [PMID: 31901746]
[62]
Sithanandam, G.; Kolch, W.; Duh, F.M.; Rapp, U.R. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene, 1990, 5(12), 1775-1780.
[PMID: 2284096]
[63]
Sithanandam, G.; Druck, T.; Cannizzaro, L.A.; Leuzzi, G.; Huebner, K.; Rapp, U.R. B-raf and a B-raf pseudogene are located on 7q in man. Oncogene, 1992, 7(4), 795-799.
[PMID: 1565476]
[64]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[65]
Perez, E.A. Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther., 2009, 8(8), 2086-2095.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0366] [PMID: 19671735]
[66]
Jordan, M. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2012, 2(1), 1-17.
[http://dx.doi.org/10.2174/1568011023354290] [PMID: 12678749]
[67]
Youssif, B.G.M.; Abdelrahman, M.H.; Abdelazeem, A.H. abdelgawad, M.A.; Ibrahim, H.M.; Salem, O.I.A.; Mohamed, M.F.A.; Treambleau, L.; Bukhari, S.N.A. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino[1,2-a]indol-1(2H)-ones as potential anticancer agents effecting the reactive oxygen species production. Eur. J. Med. Chem., 2018, 146, 260-273.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.042] [PMID: 29407956]
[68]
Fancelli, D.; Moll, J. Inhibitors of Aurora kinases for the treatment of cancer. Exp. Opin. Therap. Pat., 2005, 15(9), 1169-1182.
[http://dx.doi.org/10.1517/13543776.15.9.1169]
[69]
Barr, A.R.; Gergely, F. Aurora-A: the maker and breaker of spindle poles. J. Cell Sci., 2007, 120(17), 2987-2996.
[http://dx.doi.org/10.1242/jcs.013136] [PMID: 17715155]
[70]
Girdler, F.; Gascoigne, K.E.; Eyers, P.A.; Hartmuth, S.; Crafter, C.; Foote, K.M.; Keen, N.J.; Taylor, S.S. Validating Aurora B as an anti-cancer drug target. J. Cell Sci., 2006, 119(17), 3664-3675.
[http://dx.doi.org/10.1242/jcs.03145] [PMID: 16912073]
[71]
Carmena, M.; Earnshaw, W.C. The cellular geography of Aurora kinases. Nat. Rev. Mol. Cell Biol., 2003, 4(11), 842-854.
[http://dx.doi.org/10.1038/nrm1245] [PMID: 14625535]
[72]
Yang, H.; Burke, T.; Dempsey, J.; Diaz, B.; Collins, E.; Toth, J.; Beckmann, R.; Ye, X. Mitotic requirement for Aurora A kinase is bypassed in the absence of Aurora B kinase. FEBS Lett., 2005, 579(16), 3385-3391.
[http://dx.doi.org/10.1016/j.febslet.2005.04.080] [PMID: 15922328]
[73]
Bo, Y.X.; Xiang, R.; Xu, Y.; Hao, S.Y.; Wang, X.R.; Chen, S.W. Synthesis, biological evaluation and molecular modeling study of 2-amino-3,5-disubstituted-pyrazines as Aurora kinases inhibitors. Bioorg. Med. Chem., 2020, 28(5), 115351.
[http://dx.doi.org/10.1016/j.bmc.2020.115351] [PMID: 32035750]
[74]
Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther., 2008, 7(10), 3129-3140.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0013] [PMID: 18852116]
[75]
Keating, G.M.; Santoro, A. Sorafenib. Drugs, 2009, 69(2), 223-240.
[http://dx.doi.org/10.2165/00003495-200969020-00006] [PMID: 19228077]
[76]
Smalley, K.S.M.; Xiao, M.; Villanueva, J.; Nguyen, T.K.; Flaherty, K.T.; Letrero, R.; Van Belle, P.; Elder, D.E.; Wang, Y.; Nathanson, K.L.; Herlyn, M. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene, 2009, 28(1), 85-94.
[http://dx.doi.org/10.1038/onc.2008.362] [PMID: 18794803]
[77]
Zhang, Y.; Xue, D.; Wang, X.; Lu, M.; Gao, B.; Qiao, X. Screening of kinase inhibitors targeting BRAF for regulating autophagy based on kinase pathways. Mol. Med. Rep., 2014, 9(1), 83-90.
[http://dx.doi.org/10.3892/mmr.2013.1781] [PMID: 24213221]
[78]
Grune, T.; Klotz, L.O. encyclopedia of molecular pharmacology. J. Encyclopedia. Mol. Pharmacol., 2020, 1-7.
[79]
Zhou, S.; Chen, G. Design, synthesis, and bioactivity evaluation of antitumor sorafenib analogues. RSC Advances, 2018, 8(66), 37643-37651.
[http://dx.doi.org/10.1039/C8RA08246D] [PMID: 35558629]
[80]
Liu, X.; Yao, W.; Newton, R.C.; Scherle, P.A. Targeting the c-MET signaling pathway for cancer therapy. Expert Opin. Investig. Drugs, 2008, 17(7), 997-1011.
[http://dx.doi.org/10.1517/13543784.17.7.997] [PMID: 18549337]
[81]
Blumenschein, G.R., Jr; Mills, G.B.; Gonzalez-Angulo, A.M. Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J. Clin. Oncol., 2012, 30(26), 3287-3296.
[http://dx.doi.org/10.1200/JCO.2011.40.3774] [PMID: 22869872]
[82]
Sahu, R.; Mishra, R.; Kumar, R. Salahuddin; Majee, C.; Mazumder, A.; Kumar, A. Pyridine moiety: An insight into recent advances in the treatment of cancer. Mini Rev. Med. Chem., 2022, 22(2), 248-272.
[http://dx.doi.org/10.2174/1389557521666210614162031] [PMID: 34126914]
[83]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Woude, G.V. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103.
[http://dx.doi.org/10.1038/nrc3205] [PMID: 22270953]
[84]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis, biological evaluation, and docking analysis of novel tetrahydrobenzothiophene derivatives. Lett. Drug Des. Discov., 2022, 19(6), 530-540.
[http://dx.doi.org/10.2174/1570180819666220117123958]
[85]
Trusolino, L.; Bertotti, A.; Comoglio, P.M. MET signalling: Principles and functions in development, organ regeneration and cancer. Nat. Rev. Mol. Cell Biol., 2010, 11(12), 834-848.
[http://dx.doi.org/10.1038/nrm3012] [PMID: 21102609]
[86]
Cui, J.J. Inhibitors targeting hepatocyte growth factor receptor and their potential therapeutic applications. Expert Opin. Ther. Pat., 2007, 17(9), 1035-1045.
[http://dx.doi.org/10.1517/13543776.17.9.1035]
[87]
Parikh, P.K.; Ghate, M.D. Recent advances in the discovery of small molecule c-Met kinase inhibitors. Eur. J. Med. Chem., 2018, 143, 1103-1138.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.044] [PMID: 29157685]
[88]
Luo, G.; Ma, Y.; Liang, X.; Xie, G.; Luo, Y.; Zha, D.; Wang, S.; Yu, L.; Zheng, X.; Wu, W.; Zhang, C. Design, synthesis and antitumor evaluation of novel 5-methylpyrazolo[1,5-a]pyrimidine derivatives as potential c-Met inhibitors. Bioorg. Chem., 2020, 104, 104356.
[http://dx.doi.org/10.1016/j.bioorg.2020.104356] [PMID: 33142417]
[89]
Zhang, B.; Liu, X.; Xiong, H.; Zhang, Q.; Sun, X.; Yang, Z.; Xu, S.; Zheng, P.; Zhu, W. Discovery of [1,2,4]triazolo[4,3-a]pyrazine derivatives bearing a 4-oxo-pyridazinone moiety as potential c-Met kinase inhibitors. New J. Chem., 2020, 44(21), 9053-9063.
[http://dx.doi.org/10.1039/D0NJ00575D]
[90]
Altieri, D.C. Molecular cloning of effector cell protease receptor-1, a novel cell surface receptor for the protease factor Xa. J. Biol. Chem., 1994, 269(5), 3139-3142.
[http://dx.doi.org/10.1016/S0021-9258(17)41838-2] [PMID: 8106347]
[91]
Altieri, D.C. Splicing of effector cell protease receptor-1 mRNA is modulated by an unusual retained intron. Biochemistry, 1994, 33(46), 13848-13855.
[http://dx.doi.org/10.1021/bi00250a039] [PMID: 7947793]
[92]
Tamm, I.; Wang, Y.; Sausville, E.; Scudiero, D.A.; Vigna, N.; Oltersdorf, T.; Reed, J.C. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res., 1998, 58(23), 5315-5320.
[PMID: 9850056]
[93]
Sah, N.K.; Khan, Z.; Khan, G.J.; Bisen, P.S. Structural, functional and therapeutic biology of survivin. Cancer Lett., 2006, 244(2), 164-171.
[http://dx.doi.org/10.1016/j.canlet.2006.03.007] [PMID: 16621243]
[94]
Peery, R.; Cui, Q.; Kyei-Baffour, K.; Josephraj, S.; Huang, C.; Dong, Z.; Dai, M.; Zhang, J.T.; Liu, J.Y. A novel survivin dimerization inhibitor without a labile hydrazone linker induces spontaneous apoptosis and synergizes with docetaxel in prostate cancer cells. Bioorg. Med. Chem., 2022, 65, 116761.
[http://dx.doi.org/10.1016/j.bmc.2022.116761] [PMID: 35504208]
[95]
Bukhari, S.N.A. Synthesis and evaluation of new chalcones and oximes as anticancer agents. RSC Advances, 2022, 12(17), 10307-10320.
[http://dx.doi.org/10.1039/D2RA01198K] [PMID: 35424971]
[96]
Li, G.Z.; Ouyang, X.L.; Mo, Z.Y.; Gu, Y.; Cao, X.L.; Yang, L.; Tang, H.T.; Pan, Y.M. Synthesis and biological evaluation of novel 1,3-diphenylurea quinoxaline derivatives as potent anticancer agents. Med. Chem. Res., 2021, 30(8), 1496-1511.
[http://dx.doi.org/10.1007/s00044-021-02745-2]
[97]
Sasaki, T.; Rodig, S.J.; Chirieac, L.R.; Jänne, P.A. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur. J. Cancer, 2010, 46(10), 1773-1780.
[http://dx.doi.org/10.1016/j.ejca.2010.04.002] [PMID: 20418096]
[98]
Iikubo, K.; Kurosawa, K.; Matsuya, T.; Kondoh, Y.; Kamikawa, A.; Moritomo, A.; Iwai, Y.; Tomiyama, H.; Shimada, I. Synthesis and structure-activity relationships of pyrazine-2-carboxamide derivatives as novel echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1683-1692.
[http://dx.doi.org/10.1016/j.bmc.2019.03.018] [PMID: 30878193]
[99]
Yamaguchi, K.; Shirakabe, K.; Shibuya, H.; Irie, K.; Oishi, I.; Ueno, N.; Taniguchi, T.; Nishida, E.; Matsumoto, K. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science, 1995, 270(5244), 2008-2011.
[http://dx.doi.org/10.1126/science.270.5244.2008] [PMID: 8533096]
[100]
Shirakabe, K.; Yamaguchi, K.; Shibuya, H.; Irie, K.; Matsuda, S.; Moriguchi, T.; Gotoh, Y.; Matsumoto, K.; Nishida, E. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J. Biol. Chem., 1997, 272(13), 8141-8144.
[http://dx.doi.org/10.1074/jbc.272.13.8141] [PMID: 9079627]
[101]
Ninomiya-Tsuji, J.; Kishimoto, K.; Hiyama, A.; Inoue, J.; Cao, Z.; Matsumoto, K. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 1999, 398(6724), 252-256.
[http://dx.doi.org/10.1038/18465] [PMID: 10094049]
[102]
Shibuya, H.; Yamaguchi, K.; Shirakabe, K.; Tonegawa, A.; Gotoh, Y.; Ueno, N.; Irie, K.; Nishida, E.; Matsumoto, K. TAB1: An activator of the TAK1 MAPKKK in TGF-β signal transduction. Science, 1996, 272(5265), 1179-1182.
[http://dx.doi.org/10.1126/science.272.5265.1179] [PMID: 8638164]
[103]
Takaesu, G.; Kishida, S.; Hiyama, A.; Yamaguchi, K.; Shibuya, H.; Irie, K.; Ninomiya-Tsuji, J.; Matsumoto, K. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell, 2000, 5(4), 649-658.
[http://dx.doi.org/10.1016/S1097-2765(00)80244-0] [PMID: 10882101]
[104]
Kang, S.J.; Lee, J.W.; Chung, S.H.; Jang, S.Y.; Choi, J.; Suh, K.H.; Kim, Y.H.; Ham, Y.J.; Min, K.H. Synthesis and anti-tumor activity of imidazopyrazines as TAK1 inhibitors. Eur. J. Med. Chem., 2019, 163, 660-670.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.025] [PMID: 30576901]
[105]
Yang, H.; Chennamaneni, L.R.; Ho, M.W.T.; Ang, S.H.; Tan, E.S.W.; Jeyaraj, D.A.; Yeap, Y.S.; Liu, B.; Ong, E.H.; Joy, J.K.; Wee, J.L.K.; Kwek, P.; Retna, P.; Dinie, N.; Nguyen, T.T.H.; Tai, S.J.; Manoharan, V.; Pendharkar, V.; Low, C.B.; Chew, Y.S.; Vuddagiri, S.; Sangthongpitag, K.; Choong, M.L.; Lee, M.A.; Kannan, S.; Verma, C.S.; Poulsen, A.; Lim, S.; Chuah, C.; Ong, T.S.; Hill, J.; Matter, A.; Nacro, K. Optimization of selective mitogen-activated protein kinase interacting kinases 1 and 2 inhibitors for the treatment of blast crisis leukemia. J. Med. Chem., 2018, 61(10), 4348-4369.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01714] [PMID: 29683667]
[106]
Wang, S.; Li, B.; Liu, B.; Huang, M.; Li, D.; Guan, L.; Zang, J.; Liu, D.; Zhao, L. Design and synthesis of novel 6-hydroxy-4-methoxy-3-methylbenzofuran-7-carboxamide derivatives as potent Mnks inhibitors by fragment-based drug design. Bioorg. Med. Chem., 2018, 26(16), 4602-4614.
[http://dx.doi.org/10.1016/j.bmc.2018.05.004] [PMID: 30115493]
[107]
Dreas, A.; Mikulski, M.; Milik, M.; Fabritius, C.H.; Brzózka, K.; Rzymski, T. Mitogen-activated protein kinase (MAPK) interacting kinases 1 and 2 (MNK1 and MNK2) as targets for cancer therapy: Recent progress in the development of MNK inhibitors. Curr. Med. Chem., 2017, 24(28), 3025-3053.
[PMID: 28164761]
[108]
Wheater, M.J.; Johnson, P.W.M.; Blaydes, J.P. The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival. Cancer Biol. Ther., 2010, 10(7), 728-735.
[http://dx.doi.org/10.4161/cbt.10.7.12965] [PMID: 20686366]
[109]
Mishra, R.; Kumar, N.; Sachan, N. Synthesis and pharmacological study of thiophene derivatives. Int. J. Pharm. Qual. Assur., 2021, 12(3), 282-291.
[110]
Ueda, T.; Sasaki, M.; Elia, A.J.; Chio, I.I.C.; Hamada, K.; Fukunaga, R.; Mak, T.W. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc. Natl. Acad. Sci., 2010, 107(32), 13984-13990.
[http://dx.doi.org/10.1073/pnas.1008136107] [PMID: 20679220]
[111]
Landon, A.L.; Muniandy, P.A.; Shetty, A.C.; Lehrmann, E.; Volpon, L.; Houng, S.; Zhang, Y.; Dai, B.; Peroutka, R.; Mazan-Mamczarz, K.; Steinhardt, J.; Mahurkar, A.; Becker, K.G.; Borden, K.L.; Gartenhaus, R.B. MNKs act as a regulatory switch for eIF4E1 and eIF4E3 driven mRNA translation in DLBCL. Nat. Commun., 2014, 5(1), 5413.
[http://dx.doi.org/10.1038/ncomms6413] [PMID: 25403230]
[112]
Yuan, X.; Wu, H.; Bu, H.; Zheng, P.; Zhou, J.; Zhang, H. Design, synthesis and biological evaluation of pyridone-aminal derivatives as MNK1/2 inhibitors. Bioorg. Med. Chem., 2019, 27(7), 1211-1225.
[http://dx.doi.org/10.1016/j.bmc.2019.02.007] [PMID: 30824167]
[113]
Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem., 2001, 70(1), 503-533.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.503] [PMID: 11395416]
[114]
Mishra, R.; Kumar, N.; Sachan, N. Thiophene and its analogs as prospective antioxidant agents: A retrospective study. Mini Rev. Med. Chem., 2022, 22(10), 1420-1437.
[http://dx.doi.org/10.2174/1389557521666211022145458] [PMID: 34719361]
[115]
Agrawal, K.K.; Murti, Y. Tangeretin: A biologically potential citrus flavone. Curr. Tradit. Med., 2022, 8(4), 31-41.
[116]
Ciechanover, A. The ubiquitin proteolytic system and pathogenesis of human diseases: A novel platform for mechanism-based drug targeting. Biochem. Soc. Trans., 2003, 31(2), 474-481.
[http://dx.doi.org/10.1042/bst0310474] [PMID: 12653666]
[117]
Zhou, H.J.; Aujay, M.A.; Bennett, M.K.; Dajee, M.; Demo, S.D.; Fang, Y.; Ho, M.N.; Jiang, J.; Kirk, C.J.; Laidig, G.J.; Lewis, E.R.; Lu, Y.; Muchamuel, T.; Parlati, F.; Ring, E.; Shenk, K.D.; Shields, J.; Shwonek, P.J.; Stanton, T.; Sun, C.M.; Sylvain, C.; Woo, T.M.; Yang, J. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J. Med. Chem., 2009, 52(9), 3028-3038.
[http://dx.doi.org/10.1021/jm801329v] [PMID: 19348473]
[118]
Kciuk, M. Gielecińska, A.; Mujwar, S.; Mojzych, M.; Marciniak, B.; Drozda, R.; Kontek, R. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1278-1298.
[http://dx.doi.org/10.1080/14756366.2022.2052868] [PMID: 35506234]
[119]
Voges, D.; Zwickl, P.; Baumeister, W. The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu. Rev. Biochem., 1999, 68(1), 1015-1068.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.1015] [PMID: 10872471]
[120]
Lee, E.S.; Kim, N.; Kang, J.H.; Abdildinova, A.; Lee, S.H.; Lee, M.H.; Kang, N.S.; Koo, T.S.; Kim, S.Y.; Gong, Y.D. Design and Synthesis of a Novel 4-aryl-N-(2-alkoxythieno [2,3-b]pyrazine-3-yl)-4-arylpiperazine-1-carboxamide dgg200064 showed therapeutic effect on colon cancer through G2/M Arrest. Pharmaceuticals, 2022, 15(5), 502.
[http://dx.doi.org/10.3390/ph15050502] [PMID: 35631329]
[121]
Augoff, K.; Hryniewicz-Jankowska, A.; Tabola, R. Lactate dehydrogenase 5: An old friend and a new hope in the war on cancer. Cancer Lett., 2015, 358(1), 1-7.
[http://dx.doi.org/10.1016/j.canlet.2014.12.035] [PMID: 25528630]
[122]
Rani, R.; Kumar, V. Recent update on human lactate dehydrogenase enzyme 5 (h LDH5) inhibitors: A promising approach for cancer chemotherapy. Miniperspective. J. Med. Chem., 2016, 59(2), 487-496.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00168] [PMID: 26340601]
[123]
Boudreau, A.; Purkey, H.E.; Hitz, A.; Robarge, K.; Peterson, D.; Labadie, S.; Kwong, M.; Hong, R.; Gao, M.; Del Nagro, C.; Pusapati, R.; Ma, S.; Salphati, L.; Pang, J.; Zhou, A.; Lai, T.; Li, Y.; Chen, Z.; Wei, B.; Yen, I.; Sideris, S.; McCleland, M.; Firestein, R.; Corson, L.; Vanderbilt, A.; Williams, S.; Daemen, A.; Belvin, M.; Eigenbrot, C.; Jackson, P.K.; Malek, S.; Hatzivassiliou, G.; Sampath, D.; Evangelista, M.; O’Brien, T. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat. Chem. Biol., 2016, 12(10), 779-786.
[http://dx.doi.org/10.1038/nchembio.2143] [PMID: 27479743]
[124]
Zhou, Y.; Niu, W.; Luo, Y.; Li, H.; Xie, Y.; Wang, H.; Liu, Y.; Fan, S.; Li, Z.; Xiong, W.; Li, X.; Ren, C.; Tan, M.; Li, G.; Zhou, M. p53/Lactate dehydrogenase A axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wild-type p53. Cancer Sci., 2019, 110(3), 939-949.
[http://dx.doi.org/10.1111/cas.13928] [PMID: 30618169]
[125]
Dong, T.; Liu, Z.; Xuan, Q.; Wang, Z.; Ma, W.; Zhang, Q. Tumor LDH-A expression and serum LDH status are two metabolic predictors for triple negative breast cancer brain metastasis. Sci. Rep., 2017, 7(1), 6069.
[http://dx.doi.org/10.1038/s41598-017-06378-7] [PMID: 28729678]
[126]
Hou, X.; Yuan, S.; Zhao, D.; Liu, X.; Wu, X. LDH-A promotes malignant behavior via activation of epithelial-to-mesenchymal transition in lung adenocarcinoma. Biosci. Rep., 2019, 39(1), BSR20181476.
[http://dx.doi.org/10.1042/BSR20181476] [PMID: 30509961]
[127]
He, Y.; Chen, X.; Yu, Y.; Li, J.; Hu, Q.; Xue, C.; Chen, J.; Shen, S.; Luo, Y.; Ren, F.; Li, C.; Bao, J.; Yan, J.; Qian, G.; Ren, Z.; Sun, R.; Cui, G. LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma. Mol. Carcinog., 2018, 57(6), 772-783.
[http://dx.doi.org/10.1002/mc.22799] [PMID: 29569755]
[128]
Di, H.; Zhang, X.; Guo, Y.; Shi, Y.; Fang, C.; Yuan, Y.; Wang, J.; Shang, C.; Guo, W.; Li, C. Silencing LDHA inhibits proliferation, induces apoptosis and increases chemosensitivity to temozolomide in glioma cells. Oncol. Lett., 2018, 15(4), 5131-5136.
[http://dx.doi.org/10.3892/ol.2018.7932] [PMID: 29552147]
[129]
Zhao, J.; Huang, X.; Xu, Z.; Dai, J.; He, H.; Zhu, Y.; Wang, H. LDHA promotes tumor metastasis by facilitating epithelial-mesenchymal transition in renal cell carcinoma. Mol. Med. Rep., 2017, 16(6), 8335-8344.
[http://dx.doi.org/10.3892/mmr.2017.7637] [PMID: 28983605]
[130]
An, J.; Zhang, Y.; He, J.; Zang, Z.; Zhou, Z.; Pei, X.; Zheng, X.; Zhang, W.; Yang, H.; Li, S. Lactate dehydrogenase A promotes the invasion and proliferation of pituitary adenoma. Sci. Rep., 2017, 7(1), 4734.
[http://dx.doi.org/10.1038/s41598-017-04366-5] [PMID: 28680051]
[131]
Pathria, G.; Scott, D.A.; Feng, Y.; Sang, Lee J.; Fujita, Y.; Zhang, G.; Sahu, A.D.; Ruppin, E.; Herlyn, M.; Osterman, A.L.; Ronai, Z.A. Targeting the Warburg effect via LDHA inhibition engages ATF 4 signaling for cancer cell survival. EMBO J., 2018, 37(20), e99735.
[http://dx.doi.org/10.15252/embj.201899735] [PMID: 30209241]
[132]
Fantin, V.R.; St-Pierre, J.; Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9(6), 425-434.
[http://dx.doi.org/10.1016/j.ccr.2006.04.023] [PMID: 16766262]
[133]
Le, A.; Cooper, C.R.; Gouw, A.M.; Dinavahi, R.; Maitra, A.; Deck, L.M.; Royer, R.E.; Vander Jagt, D.L.; Semenza, G.L.; Dang, C.V. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci., 2010, 107(5), 2037-2042.
[http://dx.doi.org/10.1073/pnas.0914433107] [PMID: 20133848]
[134]
Zhou, Y.; Tao, P.; Wang, M.; Xu, P.; Lu, W.; Lei, P.; You, Q. Development of novel human lactate dehydrogenase A inhibitors: High-throughput screening, synthesis, and biological evaluations. Eur. J. Med. Chem., 2019, 177, 105-115.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.033] [PMID: 31129449]
[135]
Huang, E.J.; Reichardt, L.F. Trk receptors: Roles in neuronal signal transduction. Annu. Rev. Biochem., 2003, 72(1), 609-642.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161629] [PMID: 12676795]
[136]
Skaper, S.D. The neurotrophin family of neurotrophic factors: An overview. Methods Mol. Biol., 2012, 846, 1-2.
[http://dx.doi.org/10.1007/978-1-61779-536-7_1]
[137]
Deinhardt, K. Chao, MV Trk receptors. Handb. Exp. Pharmacol., 2014, 220, 103-119.
[http://dx.doi.org/10.1007/978-3-642-45106-5_5]
[138]
Smeyne, R.J.; Klein, R.; Schnapp, A.; Long, L.K.; Bryant, S.; Lewin, A.; Lira, S.A.; Barbacid, M. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature, 1994, 368(6468), 246-249.
[http://dx.doi.org/10.1038/368246a0] [PMID: 8145823]
[139]
Lucas, E.K.; Jegarl, A.; Clem, R.L. Mice lacking TrkB in parvalbumin-positive cells exhibit sexually dimorphic behavioral phenotypes. Behav. Brain Res., 2014, 274, 219-225.
[http://dx.doi.org/10.1016/j.bbr.2014.08.011] [PMID: 25127683]
[140]
Kahn, M.A.; Kumar, S.; Liebl, D.; Chang, R.; Parada, L.F.; De Vellis, J. Mice lacking NT-3, and its receptor TrkC, exhibit profound deficiencies in CNS glial cells. Glia, 1999, 26(2), 153-165.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199904)26:2<153:AID-GLIA6>3.0.CO;2-Z] [PMID: 10384880]
[141]
Cui, S.; Wang, Y.; Wang, Y.; Tang, X.; Ren, X.; Zhang, L.; Xu, Y.; Zhang, Z.; Zhang, Z.M.; Lu, X.; Ding, K. Design, synthesis and biological evaluation of 3-(imidazo[1,2-a]pyrazin-3-ylethynyl)-2-methylbenzamides as potent and selective pan-tropomyosin receptor kinase (TRK) inhibitors. Eur. J. Med. Chem., 2019, 179, 470-482.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.064] [PMID: 31271959]
[142]
Tamkun, J.W.; Deuring, R.; Scott, M.P.; Kissinger, M.; Pattatucci, A.M.; Kaufman, T.C.; Kennison, J.A. brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell, 1992, 68(3), 561-572.
[http://dx.doi.org/10.1016/0092-8674(92)90191-E] [PMID: 1346755]
[143]
Haynes, S.R.; Dollard, C.; Winston, F.; Beck, S.; Trowsdale, J.; Dawid, I.B. The bromodomain: A conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res., 1992, 20(10), 2603.
[http://dx.doi.org/10.1093/nar/20.10.2603] [PMID: 1350857]
[144]
Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; Gingras, A.C.; Arrowsmith, C.H.; Knapp, S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 2012, 149(1), 214-231.
[http://dx.doi.org/10.1016/j.cell.2012.02.013] [PMID: 22464331]
[145]
Filippakopoulos, P.; Knapp, S. Targeting bromodomains: Epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov., 2014, 13(5), 337-356.
[http://dx.doi.org/10.1038/nrd4286] [PMID: 24751816]
[146]
Middeljans, E.; Wan, X.; Jansen, P.W.; Sharma, V.; Stunnenberg, H.G.; Logie, C. SS18 together with animal-specific factors defines human BAF-type SWI/SNF complexes. PLoS One, 2012, 7(3), e33834.
[http://dx.doi.org/10.1371/journal.pone.0033834] [PMID: 22442726]
[147]
Hohmann, A.F.; Vakoc, C.R. A rationale to target the SWI/SNF complex for cancer therapy. Trends Genet., 2014, 30(8), 356-363.
[http://dx.doi.org/10.1016/j.tig.2014.05.001] [PMID: 24932742]
[148]
Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr; Laird, P.W.; Baty, J.D.; Fulton, L.L.; Fulton, R.; Heath, S.E.; Kalicki-Veizer, J.; Kandoth, C.; Klco, J.M.; Koboldt, D.C.; Kanchi, K.L.; Kulkarni, S.; Lamprecht, T.L.; Larson, D.E.; Lin, L.; Lu, C.; McLellan, M.D.; McMichael, J.F.; Payton, J.; Schmidt, H.; Spencer, D.H.; Tomasson, M.H.; Wallis, J.W.; Wartman, L.D.; Watson, M.A.; Welch, J.; Wendl, M.C.; Ally, A.; Balasundaram, M.; Birol, I.; Butterfield, Y.; Chiu, R.; Chu, A.; Chuah, E.; Chun, H.J.; Corbett, R.; Dhalla, N.; Guin, R.; He, A.; Hirst, C.; Hirst, M.; Holt, R.A.; Jones, S.; Karsan, A.; Lee, D.; Li, H.I.; Marra, M.A.; Mayo, M.; Moore, R.A.; Mungall, K.; Parker, J.; Pleasance, E.; Plettner, P.; Schein, J.; Stoll, D.; Swanson, L.; Tam, A.; Thiessen, N.; Varhol, R.; Wye, N.; Zhao, Y.; Gabriel, S.; Getz, G.; Sougnez, C.; Zou, L.; Leiserson, M.D.; Vandin, F.; Wu, H.T.; Applebaum, F.; Baylin, S.B.; Akbani, R.; Broom, B.M.; Chen, K.; Motter, T.C.; Nguyen, K.; Weinstein, J.N.; Zhang, N.; Ferguson, M.L.; Adams, C.; Black, A.; Bowen, J.; Gastier-Foster, J.; Grossman, T.; Lichtenberg, T.; Wise, L.; Davidsen, T.; Demchok, J.A.; Shaw, K.R.; Sheth, M.; Sofia, H.J.; Yang, L.; Downing, J.R.; Eley, G. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med., 2013, 368(22), 2059-2074.
[http://dx.doi.org/10.1056/NEJMoa1301689] [PMID: 23634996]
[149]
Varela, I.; Tarpey, P.; Raine, K.; Huang, D.; Ong, C.K.; Stephens, P.; Davies, H.; Jones, D.; Lin, M.L.; Teague, J.; Bignell, G.; Butler, A.; Cho, J.; Dalgliesh, G.L.; Galappaththige, D.; Greenman, C.; Hardy, C.; Jia, M.; Latimer, C.; Lau, K.W.; Marshall, J.; McLaren, S.; Menzies, A.; Mudie, L.; Stebbings, L.; Largaespada, D.A.; Wessels, L.F.; Richard, S.; Kahnoski, R.J.; Anema, J.; Tuveson, D.A.; Perez-Mancera, P.A.; Mustonen, V.; Fischer, A.; Adams, D.J.; Rust, A.; Chan-on, W.; Subimerb, C.; Dykema, K.; Furge, K.; Campbell, P.J.; Teh, B.T.; Stratton, M.R.; Futreal, P.A. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature, 2011, 469(7331), 539-542.
[http://dx.doi.org/10.1038/nature09639] [PMID: 21248752]
[150]
Wong, A.K.; Shanahan, F.; Chen, Y.; Lian, L.; Ha, P.; Hendricks, K.; Ghaffari, S.; Iliev, D.; Penn, B.; Woodland, A.M.; Smith, R.; Salada, G.; Carillo, A.; Laity, K.; Gupte, J.; Swedlund, B.; Tavtigian, S.V.; Teng, D.H.; Lees, E. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res., 2000, 60(21), 6171-6177.
[PMID: 11085541]
[151]
Medina, P.P.; Romero, O.A.; Kohno, T.; Montuenga, L.M.; Pio, R.; Yokota, J.; Sanchez-Cespedes, M. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum. Mutat., 2008, 29(5), 617-622.
[http://dx.doi.org/10.1002/humu.20730] [PMID: 18386774]
[152]
Imielinski, M.; Berger, A.H.; Hammerman, P.S.; Hernandez, B.; Pugh, T.J.; Hodis, E.; Cho, J.; Suh, J.; Capelletti, M.; Sivachenko, A.; Sougnez, C.; Auclair, D.; Lawrence, M.S.; Stojanov, P.; Cibulskis, K.; Choi, K.; de Waal, L.; Sharifnia, T.; Brooks, A.; Greulich, H.; Banerji, S.; Zander, T.; Seidel, D.; Leenders, F.; Ansén, S.; Ludwig, C.; Engel-Riedel, W.; Stoelben, E.; Wolf, J.; Goparju, C.; Thompson, K.; Winckler, W.; Kwiatkowski, D.; Johnson, B.E.; Jänne, P.A.; Miller, V.A.; Pao, W.; Travis, W.D.; Pass, H.I.; Gabriel, S.B.; Lander, E.S.; Thomas, R.K.; Garraway, L.A.; Getz, G.; Meyerson, M. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell, 2012, 150(6), 1107-1120.
[http://dx.doi.org/10.1016/j.cell.2012.08.029] [PMID: 22980975]
[153]
Versteege, I.; Sévenet, N.; Lange, J.; Rousseau-Merck, M.F.; Ambros, P.; Handgretinger, R.; Aurias, A.; Delattre, O. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature, 1998, 394(6689), 203-206.
[http://dx.doi.org/10.1038/28212] [PMID: 9671307]
[154]
Biegel, J.A.; Zhou, J.Y.; Rorke, L.B.; Stenstrom, C.; Wainwright, L.M.; Fogelgren, B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res., 1999, 59(1), 74-79.
[PMID: 9892189]
[155]
Wang, L.; Zhao, Z.; Meyer, M.B.; Saha, S.; Yu, M.; Guo, A.; Wisinski, K.B.; Huang, W.; Cai, W.; Pike, J.W.; Yuan, M.; Ahlquist, P.; Xu, W. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell, 2014, 25(1), 21-36.
[http://dx.doi.org/10.1016/j.ccr.2013.12.007] [PMID: 24434208]
[156]
Scotto, L.; Narayan, G.; Nandula, S.V.; Subramaniyam, S.; Kaufmann, A.M.; Wright, J.D.; Pothuri, B.; Mansukhani, M.; Schneider, A.; Arias-Pulido, H.; Murty, V.V. Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha. Mol. Cancer, 2008, 7(1), 58.
[http://dx.doi.org/10.1186/1476-4598-7-58] [PMID: 18559093]
[157]
Cleary, S.P.; Jeck, W.R.; Zhao, X.; Chen, K.; Selitsky, S.R.; Savich, G.L.; Tan, T.X.; Wu, M.C.; Getz, G.; Lawrence, M.S.; Parker, J.S.; Li, J.; Powers, S.; Kim, H.; Fischer, S.; Guindi, M.; Ghanekar, A.; Chiang, D.Y. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology, 2013, 58(5), 1693-1702.
[http://dx.doi.org/10.1002/hep.26540] [PMID: 23728943]
[158]
Zheng, P.; Zhang, J.; Ma, H.; Yuan, X.; Chen, P.; Zhou, J.; Zhang, H. Design, synthesis and biological evaluation of imidazo[1,5-a]pyrazin-8(7H)-one derivatives as BRD9 inhibitors. Bioorg. Med. Chem., 2019, 27(7), 1391-1404.
[http://dx.doi.org/10.1016/j.bmc.2019.02.045] [PMID: 30824168]
[159]
Cheng, S.; Coffey, G.; Zhang, X.H.; Shaknovich, R.; Song, Z.; Lu, P.; Pandey, A.; Melnick, A.M.; Sinha, U.; Wang, Y.L. SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood, 2011, 118(24), 6342-6352.
[http://dx.doi.org/10.1182/blood-2011-02-333773] [PMID: 22025527]
[160]
Bogusz, A.M.; Baxter, R.H.G.; Currie, T.; Sinha, P.; Sohani, A.R.; Kutok, J.L.; Rodig, S.J. Quantitative immunofluorescence reveals the signature of active B-cell receptor signaling in diffuse large B-cell lymphoma. Clin. Cancer Res., 2012, 18(22), 6122-6135.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0397] [PMID: 22966017]
[161]
Wong, B.R.; Grossbard, E.B.; Payan, D.G.; Masuda, E.S. Targeting Syk as a treatment for allergic and autoimmune disorders. Expert Opin. Investig. Drugs, 2004, 13(7), 743-762.
[http://dx.doi.org/10.1517/13543784.13.7.743] [PMID: 15212616]
[162]
Riccaboni, M.; Bianchi, I.; Petrillo, P. Spleen tyrosine kinases: Biology, therapeutic targets and drugs. Drug Discov. Today, 2010, 15(13-14), 517-530.
[http://dx.doi.org/10.1016/j.drudis.2010.05.001] [PMID: 20553955]
[163]
Ruzza, P.; Biondi, B.; Calderan, A. Therapeutic prospect of Syk inhibitors. Exp. Opin. Ther. Pat., 2009, 19(10), 1361-1376.
[http://dx.doi.org/10.1517/13543770903207039]
[164]
Moore, W.J.; Richard, D.; Thorarensen, A. An analysis of the diaminopyrimidine patent estates describing spleen tyrosine kinase inhibitors by Rigel and Portola. Expert Opin. Ther. Pat., 2010, 20(12), 1703-1722.
[http://dx.doi.org/10.1517/13543776.2010.534459]
[165]
Geahlen, R.L. Getting Syk: Spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci., 2014, 35(8), 414-422.
[http://dx.doi.org/10.1016/j.tips.2014.05.007] [PMID: 24975478]
[166]
Norman, P. Spleen tyrosine kinase inhibitors: A review of the patent literature 2010-2013. Expert Opin. Ther. Pat., 2014, 24(5), 573-595.
[167]
Davis, R.E.; Ngo, V.N.; Lenz, G.; Tolar, P.; Young, R.M.; Romesser, P.B.; Kohlhammer, H.; Lamy, L.; Zhao, H.; Yang, Y.; Xu, W.; Shaffer, A.L.; Wright, G.; Xiao, W.; Powell, J.; Jiang, J.; Thomas, C.J.; Rosenwald, A.; Ott, G.; Muller-Hermelink, H.K.; Gascoyne, R.D.; Connors, J.M.; Johnson, N.A.; Rimsza, L.M.; Campo, E.; Jaffe, E.S.; Wilson, W.H.; Delabie, J.; Smeland, E.B.; Fisher, R.I.; Braziel, R.M.; Tubbs, R.R.; Cook, J.R.; Weisenburger, D.D.; Chan, W.C.; Pierce, S.K.; Staudt, L.M. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature, 2010, 463(7277), 88-92.
[http://dx.doi.org/10.1038/nature08638] [PMID: 20054396]
[168]
Efremov, D.G.; Laurenti, L. The Syk kinase as a therapeutic target in leukemia and lymphoma. Exp. Opin. Investig. Drugs, 2011, 20(5), 623-636.
[http://dx.doi.org/10.1517/13543784.2011.570329] [PMID: 21438742]
[169]
Ghotra, V.P.S.; He, S.; van der Horst, G.; Nijhoff, S.; de Bont, H.; Lekkerkerker, A.; Janssen, R.; Jenster, G.; van Leenders, G.J.L.H.; Hoogland, A.M.M.; Verhoef, E.I.; Baranski, Z.; Xiong, J.; van de Water, B.; van der Pluijm, G.; Snaar-Jagalska, B.E.; Danen, E.H.J. SYK is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res., 2015, 75(1), 230-240.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0629] [PMID: 25388286]
[170]
Yu, Y.; Suryo Rahmanto, Y.; Lee, M.H.; Wu, P.H.; Phillip, J.M.; Huang, C.H.; Vitolo, M.I.; Gaillard, S.; Martin, S.S.; Wirtz, D.; Shih, I.M.; Wang, T.L. Inhibition of ovarian tumor cell invasiveness by targeting SYK in the tyrosine kinase signaling pathway. Oncogene, 2018, 37(28), 3778-3789.
[http://dx.doi.org/10.1038/s41388-018-0241-0] [PMID: 29643476]
[171]
Krisenko, M.O.; Geahlen, R.L. Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochim. Biophys. Acta Mol. Cell Res., 2015, 1853(1), 254-263.
[http://dx.doi.org/10.1016/j.bbamcr.2014.10.022] [PMID: 25447675]
[172]
Wang, C.; Wang, X.; Li, Y.; Wang, T.; Huang, Z.; Qin, Z.; Yang, S.; Xiang, R.; Fan, Y. Design and optimization of orally spleen tyrosine kinase (SYK) inhibitors for treatment of solid tumor. Bioorg. Chem., 2020, 95, 103547.
[http://dx.doi.org/10.1016/j.bioorg.2019.103547] [PMID: 31911307]
[173]
Zhu, W.; Chen, C.; Sun, C.; Xu, S.; Wu, C.; Lei, F.; Xia, H.; Tu, Q.; Zheng, P. Design, synthesis and docking studies of novel thienopyrimidine derivatives bearing chromone moiety as mTOR/PI3Kα inhibitors. Eur. J. Med. Chem., 2015, 93, 64-73.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.061] [PMID: 25659752]
[174]
Xu, S.; Sun, C.; Chen, C.; Zheng, P.; Zhou, Y.; Zhou, H.; Zhu, W. Synthesis and biological evaluation of novel 8-morpholinoimidazo[1,2-a]pyrazine derivatives bearing phenylpyridine/phenylpyrimidine-carboxamides. Molecules, 2017, 22(2), 310.
[http://dx.doi.org/10.3390/molecules22020310] [PMID: 28218676]
[175]
Sun, C.; Chen, C.; Xu, S.; Wang, J.; Zhu, Y.; Kong, D.; Tao, H.; Jin, M.; Zheng, P.; Zhu, W. Synthesis and anticancer activity of novel 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing chromone moiety. Bioorg. Med. Chem., 2016, 24(16), 3862-3869.
[http://dx.doi.org/10.1016/j.bmc.2016.06.032] [PMID: 27353887]
[176]
Wang, Q.; Li, X.; Sun, C.; Zhang, B.; Zheng, P.; Zhu, W.; Xu, S. Synthesis and structure-activity relationships of 4-morpholino-7, 8-dihydro-5H-thiopyrano [4, 3-d] pyrimidine derivatives bearing pyrazoline scaffold. Molecules, 2017, 22(11), 1870.
[http://dx.doi.org/10.3390/molecules22111870] [PMID: 29088090]
[177]
Mayer, I.A.; Abramson, V.G.; Formisano, L.; Balko, J.M.; Estrada, M.V.; Sanders, M.E.; Juric, D.; Solit, D.; Berger, M.F.; Won, H.H.; Li, Y.; Cantley, L.C.; Winer, E.; Arteaga, C.L. A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2− metastatic breast cancer. Clin. Cancer Res., 2017, 23(1), 26-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0134] [PMID: 27126994]
[178]
Patnaik, A.; Appleman, L.J.; Tolcher, A.W.; Papadopoulos, K.P.; Beeram, M.; Rasco, D.W.; Weiss, G.J.; Sachdev, J.C.; Chadha, M.; Fulk, M.; Ejadi, S.; Mountz, J.M.; Lotze, M.T.; Toledo, F.G.S.; Chu, E.; Jeffers, M.; Peña, C.; Xia, C.; Reif, S.; Genvresse, I.; Ramanathan, R.K. First-in-human phase i study of copanlisib (bay 80-6946), an intravenous pan-class i phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-hodgkin’s lymphomas. Ann. Oncol., 2016, 27(10), 1928-1940.
[http://dx.doi.org/10.1093/annonc/mdw282] [PMID: 27672108]
[179]
Burke, R.T.; Meadows, S.; Loriaux, M.M.; Currie, K.S.; Mitchell, S.A.; Maciejewski, P.; Clarke, A.S.; Dipaolo, J.A.; Druker, B.J.; Lannutti, B.J.; Spurgeon, S.E. A potential therapeutic strategy for chronic lymphocytic leukemia by combining Idelalisib and GS-9973, a novel spleen tyrosine kinase (Syk) inhibitor. Oncotarget, 2014, 5(4), 908-915.
[http://dx.doi.org/10.18632/oncotarget.1484] [PMID: 24659719]
[180]
Wang, Z.X.; Wang, S.; Qiao, X.P.; Li, W.B.; Shi, J.T.; Wang, Y.R.; Chen, S.W. Design, synthesis and biological evaluation of novel pyrazinone derivatives as PI3K/HDAC dual inhibitors. Bioorg. Med. Chem., 2022, 74, 117067.
[http://dx.doi.org/10.1016/j.bmc.2022.117067] [PMID: 36272186]
[181]
Zhong, X.; Wei, H.L.; Liu, W.S.; Wang, D.Q.; Wang, X. The crystal structures of copper(II), manganese(II), and nickel(II) complexes of a (Z)-2-hydroxy-N′-(2-oxoindolin-3-ylidene) benzohydrazide-potential antitumor agents. Bioorg. Med. Chem. Lett., 2007, 17(13), 3774-3777.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.006] [PMID: 17466518]
[182]
Mirzaei, J.; Pirelahi, H.; Amini, M.; Shafiee, A. Convenient syntheses of 5-[(2-methyl-5-nitro-1 H -imidazol-1-yl)methyl]-1,3,4-oxadiazole-2(3 H)thione and N-substituted 2-amino-5-[(2-methyl-5-nitro-1H-imidazol-1-yl)methyl]-1,3,4-thiadiazoles. J. Heterocycl. Chem., 2008, 45(3), 921-925.
[http://dx.doi.org/10.1002/jhet.5570450343]
[183]
Sahu, R.; Sharma, P.; Kumar, A. An insight into cholangiocarcinoma and recent advances in its treatment. J. Gastrointest. Cancer, 2023, 54(1), 213-226.
[PMID: 35023010]
[184]
Otrock, Z.K.; Makarem, J.A.; Shamseddine, A.I. Vascular endothelial growth factor family of ligands and receptors: Review Blood Cells Mol. Dis., 2007, 38(3), 258-268.
[http://dx.doi.org/10.1016/j.bcmd.2006.12.003] [PMID: 17344076]
[185]
Gershtein, E.S.; Dubova, E.A.; Shchegolev, A.I.; Kushkinskii, N.E. Vascular endothelial growth factor and its type 2 receptor in hepatocellular carcinoma. Bull. Exp. Biol. Med., 2010, 149(6), 749-752.
[http://dx.doi.org/10.1007/s10517-010-1043-8] [PMID: 21165437]
[186]
Smith, N.R.; Baker, D.; James, N.H.; Ratcliffe, K.; Jenkins, M.; Ashton, S.E.; Sproat, G.; Swann, R.; Gray, N.; Ryan, A.; Jürgensmeier, J.M.; Womack, C. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin. Cancer Res., 2010, 16(14), 3548-3561.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2797] [PMID: 20606037]
[187]
Wei, H.; Duan, Y.; Gou, W.; Cui, J.; Ning, H.; Li, D.; Qin, Y.; Liu, Q.; Li, Y. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2019, 181, 111552.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.055] [PMID: 31387063]
[188]
Liu, X.; Li, Y.; Zhang, Q.; Pan, Q.; Zheng, P.; Dai, X.; Bai, Z.; Zhu, W. Design, synthesis, and biological evaluation of [1,2,4]triazolo[4,3-a] pyrazine derivatives as novel dual c-Met/VEGFR-2 Inhibitors. Front Chem., 2022, 10, 815534.
[http://dx.doi.org/10.3389/fchem.2022.815534] [PMID: 35464202]
[189]
Dal Ben, D.; Lambertucci, C.; Vittori, S.; Volpini, R.; Cristalli, G. GPCRs as therapeutic targets: A view on adenosine receptors structure and functions, and molecular modeling support. J. Indian Chem. Soc., 2005, 2(3), 176-188.
[http://dx.doi.org/10.1007/BF03245920]
[190]
Vijayan, D.; Young, A.; Teng, M.W.L.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer, 2017, 17(12), 709-724.
[http://dx.doi.org/10.1038/nrc.2017.86] [PMID: 29059149]
[191]
Almerico, A.M.; Tutone, M.; Pantano, L.; Lauria, A. A3 adenosine receptor: Homology modeling and 3D-QSAR studies. J. Mol. Graph. Model., 2013, 42, 60-72.
[http://dx.doi.org/10.1016/j.jmgm.2013.03.001] [PMID: 23567933]
[192]
Guerrero, A. A2A adenosine receptor agonists and their potential therapeutic applications. An update. Curr. Med. Chem., 2018, 25(30), 3597-3612.
[http://dx.doi.org/10.2174/0929867325666180313110254] [PMID: 29532748]
[193]
Sitkovsky, M.V.; Lukashev, D.; Apasov, S.; Kojima, H.; Koshiba, M.; Caldwell, C.; Ohta, A.; Thiel, M. Physiological control of immune response and inflammatory tissue damage by hypoxia: Inducible factors and adenosine A2A receptors. Annu. Rev. Immunol., 2004, 22(1), 657-682.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104731] [PMID: 15032592]
[194]
Reddy, G.L.; Sarma, R.; Liu, S.; Huang, W.; Lei, J.; Fu, J.; Hu, W. Design, synthesis and biological evaluation of novel scaffold benzo[4,5]imidazo [1,2-a]pyrazin-1-amine: Towards adenosine A2A receptor (A2A AR) antagonist. Eur. J. Med. Chem., 2021, 210, 113040.
[http://dx.doi.org/10.1016/j.ejmech.2020.113040] [PMID: 33316692]
[195]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. Bio. Med. Res. Int., 2014, 2014, 150845.
[http://dx.doi.org/10.1155/2014/150845]
[196]
Hata, A.N.; Engelman, J.A.; Faber, A.C. The BCL2 family: Key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov., 2015, 5(5), 475-487.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0011] [PMID: 25895919]
[197]
Kubota, S.; Takigawa, M. Encyclopedia of signaling molecules; J. Encyclopedia. Sig. Mol, 2018, pp. 814-827.
[198]
Edlich, F.; Banerjee, S.; Suzuki, M.; Cleland, M.M.; Arnoult, D.; Wang, C.; Neutzner, A.; Tjandra, N.; Youle, R.J. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell, 2011, 145(1), 104-116.
[http://dx.doi.org/10.1016/j.cell.2011.02.034] [PMID: 21458670]
[199]
Bradbury, A.; Hall, S.; Curtin, N.; Drew, Y. Targeting ATR as cancer therapy: A new era for synthetic lethality and synergistic combinations? Pharmacol. Ther., 2020, 207, 107450.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107450] [PMID: 31836456]
[200]
Cimprich, K.A.; Shin, T.B.; Keith, C.T.; Schreiber, S.L. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc. Natl. Acad. Sci., 1996, 93(7), 2850-2855.
[http://dx.doi.org/10.1073/pnas.93.7.2850] [PMID: 8610130]
[201]
Bentley, N.J.; Holtzman, D.A.; Flaggs, G.; Keegan, K.S.; DeMaggio, A.; Ford, J.C.; Hoekstra, M.; Carr, A.M. The schizosaccharomyces pombe rad3 checkpoint gene. EMBO J., 1996, 15(23), 6641-6651.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb01054.x] [PMID: 8978690]
[202]
Sancar, A.; Lindsey-Boltz, L.A.; Ünsal-Kaçmaz, K.; Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem., 2004, 73(1), 39-85.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723] [PMID: 15189136]
[203]
Zou, L.; Elledge, S.J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 2003, 300(5625), 1542-1548.
[http://dx.doi.org/10.1126/science.1083430] [PMID: 12791985]
[204]
Srilaxmi, D.; Sreenivasulu, R.; Mak, K.K.; Pichika, M.R.; Jadav, S.S.; Ahsan, M.J.; Rao, M.V.B. Design, synthesis, anticancer evaluation and molecular docking studies of chalcone linked pyrido[4,3-b]pyrazin-5(6H)-one derivatives. J. Mol. Struct., 2021, 1229, 129851.
[http://dx.doi.org/10.1016/j.molstruc.2020.129851]
[205]
Luo, Y.; Wu, W.; Zha, D.; Zhou, W.; Wang, C.; Huang, J.; Chen, S.; Yu, L.; Li, Y.; Huang, Q.; Zhang, J.; Zhang, C. Synthesis and biological evaluation of novel ligustrazine-chalcone derivatives as potential anti-triple negative breast cancer agents. Bioorg. Med. Chem. Lett., 2021, 47, 128230.
[http://dx.doi.org/10.1016/j.bmcl.2021.128230] [PMID: 34186178]
[206]
Bera, P.; Aher, A.; Brandao, P.; Manna, S.K.; Mondal, G.; Jana, A.; Santra, A.; Jana, H.; Bera, P. Induced apoptosis against U937 cancer cells by Fe(II), Co(III) and Ni(II) complexes with a pyrazine-thiazole ligand: Synthesis, structure and biological evaluation. Polyhedron, 2020, 182, 114503.
[http://dx.doi.org/10.1016/j.poly.2020.114503]
[207]
Wang, S.; Yuan, X.; Qian, H.; Li, N.; Wang, J. Design, synthesis, and biological evaluation of two series of novel a-ring fused steroidal pyrazines as potential anticancer agents. Int. J. Mol. Sci., 2020, 21(5), 1665.
[http://dx.doi.org/10.3390/ijms21051665] [PMID: 32121303]
[208]
Fang, K.; Zhang, X.H.; Han, Y.T.; Wu, G.R.; Cai, D.S.; Xue, N.N.; Guo, W.B.; Yang, Y.Q.; Chen, M.; Zhang, X.Y.; Wang, H.; Ma, T.; Wang, P.L.; Lei, H.M. Design, synthesis, and cytotoxic analysis of novel hederagenin-pyrazine derivatives based on partial least squares discriminant analysis. Int. J. Mol. Sci., 2018, 19(10), 2994.
[http://dx.doi.org/10.3390/ijms19102994] [PMID: 30274380]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy