Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

ACE2 Receptor: A Potential Pharmacological Target in COVID-19

Author(s): Yaping Zhu, Shungeng Zhang, Zeguang Wang, Zhi Wang and Shiheng Zhu*

Volume 24, Issue 9, 2023

Published on: 21 September, 2023

Page: [701 - 710] Pages: 10

DOI: 10.2174/1389203724666230816092518

Price: $65

Open Access Journals Promotions 2
Abstract

Studies have shown that injection of recombinant angiotensin-converting enzyme 2 (ACE2) significantly increased circulatory levels of ACE2 activity, reduced cardiac hypertrophy and fibrosis, and effectively lowered blood pressure. In addition, recombinant ACE2 ameliorated albuminuria and might contribute to renal protection. Meanwhile, potential pharmacological treatments based on ACE2 are attracting increasing attention from scientists following a growing understanding of the role of the ACE2 receptor in the pathogenesis of coronavirus disease 2019 (COVID-19). In this article, we comprehensively summarized the literature on the structure, distribution, and function of ACE2. More importantly, we draw a conclusion that ACE2 decoys such as sACE2, hrsACE2 and ACE2-derived peptides, drugs down-regulating the ACE2 or TMPRSS2 gene expression, and the application of epigenetic modifiers and Traditional Chinese Medicine might represent promising approaches for the future of COVID-19 treatment.

Keywords: ACE2 therapy, SARS-CoV-2, COVID-19, rACE2, ACE2-derived peptides, TMPRSS2.

Next »
Graphical Abstract
[1]
Stawiski, E.W.; Diwanji, D.; Suryamohan, K.; Gupta, R.; Fellouse, F.A.; Sathirapongsasuti, J.F. Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. bioRxiv, 2020, 2020.04.07.024752.
[http://dx.doi.org/10.1101/2020.04.07.024752]
[2]
WHO Coronavirus (COVID-19) Dashboard. 2023.https://covid19.who.int/
[3]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[4]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[5]
Evans, C.E.; Miners, J.S.; Piva, G.; Willis, C.L.; Heard, D.M.; Kidd, E.J.; Good, M.A.; Kehoe, P.G. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol., 2020, 139(3), 485-502.
[http://dx.doi.org/10.1007/s00401-019-02098-6] [PMID: 31982938]
[6]
Zhang, J.; Dong, J.; Martin, M.; He, M.; Gongol, B.; Marin, T.L.; Chen, L.; Shi, X.; Yin, Y.; Shang, F.; Wu, Y.; Huang, H.Y.; Zhang, J.; Zhang, Y.; Kang, J.; Moya, E.A.; Huang, H.D.; Powell, F.L.; Chen, Z.; Thistlethwaite, P.A.; Yuan, Z.Y.; Shyy, J.Y.J. AMP-activated protein kinase phosphorylation of angiotensin-converting enzyme 2 in endothelium mitigates pulmonary hypertension. Am. J. Respir. Crit. Care Med., 2018, 198(4), 509-520.
[http://dx.doi.org/10.1164/rccm.201712-2570OC] [PMID: 29570986]
[7]
Chen, I.C.; Lin, J.Y.; Liu, Y.C.; Chai, C.Y.; Yeh, J.L.; Hsu, J.H.; Wu, B.N.; Dai, Z.K. The beneficial effects of angiotensin-converting enzyme II (ACE2) activator in pulmonary hypertension secondary to left ventricular dysfunction. Int. J. Med. Sci., 2020, 17(16), 2594-2602.
[http://dx.doi.org/10.7150/ijms.48096] [PMID: 33029102]
[8]
Minato, T.; Nirasawa, S.; Sato, T.; Yamaguchi, T.; Hoshizaki, M.; Inagaki, T.; Nakahara, K.; Yoshihashi, T.; Ozawa, R.; Yokota, S.; Natsui, M.; Koyota, S.; Yoshiya, T.; Yoshizawa-Kumagaye, K.; Motoyama, S.; Gotoh, T.; Nakaoka, Y.; Penninger, J.M.; Watanabe, H.; Imai, Y.; Takahashi, S.; Kuba, K. B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction. Nat. Commun., 2020, 11(1), 1058.
[http://dx.doi.org/10.1038/s41467-020-14867-z] [PMID: 32103002]
[9]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[10]
Alenina, N.; Bader, M. ACE2 in brain physiology and pathophysiology: Evidence from transgenic animal models. Neurochem. Res., 2019, 44(6), 1323-1329.
[http://dx.doi.org/10.1007/s11064-018-2679-4] [PMID: 30443713]
[11]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[12]
Lippi, G.; Lavie, C.J.; Henry, B.M.; Sanchis-Gomar, F. Do genetic polymorphisms in angiotensin converting enzyme 2 ( ACE2 ) gene play a role in coronavirus disease 2019 (COVID-19)? Clin. Chem. Lab. Med., 2020, 58(9), 1415-1422.
[http://dx.doi.org/10.1515/cclm-2020-0727] [PMID: 32598305]
[13]
Bakhshandeh, B.; Sorboni, S.G.; Javanmard, A.R.; Mottaghi, S.S.; Mehrabi, M.; Sorouri, F.; Abbasi, A.; Jahanafrooz, Z. Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infect. Genet. Evol., 2021, 90, 104773.
[http://dx.doi.org/10.1016/j.meegid.2021.104773] [PMID: 33607284]
[14]
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004, 279(17), 17996-18007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[15]
Roca-Ho, H.; Riera, M.; Palau, V.; Pascual, J.; Soler, M. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse. Int. J. Mol. Sci., 2017, 18(3), 563.
[http://dx.doi.org/10.3390/ijms18030563] [PMID: 28273875]
[16]
Liu, F.; Long, X.; Zhang, B.; Zhang, W.; Chen, X.; Zhang, Z. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin. Gastroenterol. Hepatol., 2020, 18(9), 2128-2130.e2.
[http://dx.doi.org/10.1016/j.cgh.2020.04.040] [PMID: 32334082]
[17]
Albini, A.; Di Guardo, G.; Noonan, D.M.; Lombardo, M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: Implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies. Intern. Emerg. Med., 2020, 15(5), 759-766.
[http://dx.doi.org/10.1007/s11739-020-02364-6] [PMID: 32430651]
[18]
Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; Worlock, K.B.; Yoshida, M.; Barnes, J.L. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med., 2020, 26(5), 681-687.
[http://dx.doi.org/10.1038/s41591-020-0868-6] [PMID: 32327758]
[19]
Doobay, M.F.; Talman, L.S.; Obr, T.D.; Tian, X.; Davisson, R.L.; Lazartigues, E. Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(1), R373-R381.
[http://dx.doi.org/10.1152/ajpregu.00292.2006] [PMID: 16946085]
[20]
Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol., 2020, 16(7), e9610.
[http://dx.doi.org/10.15252/msb.20209610] [PMID: 32715618]
[21]
Jing, Y.; Run-Qian, L.; Hao-Ran, W.; Hao-Ran, C.; Ya-Bin, L.; Yang, G.; Fei, C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod., 2020, 26(6), 367-373.
[http://dx.doi.org/10.1093/molehr/gaaa030] [PMID: 32365180]
[22]
Singh, M.; Bansal, V.; Feschotte, C. A single-cell RNA expression map of human coronavirus entry factors. Cell Rep., 2020, 32(12), 108175.
[http://dx.doi.org/10.1016/j.celrep.2020.108175] [PMID: 32946807]
[23]
Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[24]
Lau, S.T.; Leung, P.S. Role of the RAS in pancreatic cancer. Curr. Cancer Drug Targets, 2011, 11(4), 412-420.
[http://dx.doi.org/10.2174/156800911795538110] [PMID: 21395550]
[25]
Wu, J.; Liao, W.; Udenigwe, C.C. Revisiting the mechanisms of ACE inhibitory peptides from food proteins. Trends Food Sci. Tech., 2017, 69(1), 214-219.
[http://dx.doi.org/10.1016/j.tifs.2017.07.011]
[26]
Gaddam, R.; Chambers, S.; Bhatia, M. ACE and ACE2 in inflammation: A tale of two enzymes. Inflamm. Allergy Drug Targets, 2014, 13(4), 224-234.
[http://dx.doi.org/10.2174/1871528113666140713164506] [PMID: 25019157]
[27]
Turner, A.J.; Hiscox, J.A.; Hooper, N.M. ACE2: From vasopeptidase to SARS virus receptor. Trends Pharmacol. Sci., 2004, 25(6), 291-294.
[http://dx.doi.org/10.1016/j.tips.2004.04.001] [PMID: 15165741]
[28]
Lavoie, J.L.; Sigmund, C.D. Minireview: Overview of the renin-angiotensin system-an endocrine and paracrine system. Endocrinology, 2003, 144(6), 2179-2183.
[http://dx.doi.org/10.1210/en.2003-0150] [PMID: 12746271]
[29]
Chaudhary, M. COVID-19 susceptibility: Potential of ACE2 polymorphisms. Egypt. J. Med. Hum. Genet., 2020, 21(1), 54.
[http://dx.doi.org/10.1186/s43042-020-00099-9]
[30]
Dinh, D.T.; Frauman, A.G.; Johnston, C.I.; Fabiani, M.E. Angiotensin receptors: Distribution, signalling and function. Clin. Sci. (Lond.), 2001, 100(5), 481-492.
[http://dx.doi.org/10.1042/cs1000481]
[31]
Nickenig, G. Central role of the AT1-receptor in atherosclerosis. J. Hum. Hypertens., 2002, 16(S3)(Suppl. 3), S26-S33.
[http://dx.doi.org/10.1038/sj.jhh.1001436] [PMID: 12140725]
[32]
Beyerstedt, S; Casaro, EB; Rangel, EB COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis., 2021, 40(5), 905-919.
[33]
Kaschina, E.; Unger, T. Angiotensin AT1/AT2 receptors: Regulation, signalling and function. Blood Press., 2003, 12(2), 70-88.
[http://dx.doi.org/10.1080/08037050310001057] [PMID: 12797627]
[34]
South, AM; Shaltout, H.A.; Washburn, L.K.; Hendricks, A.S.; Diz, D.I.; Chappell, M.C. Fetal programming and the angiotensin-(1-7) axis: A review of the experimental and clinical data. Clin. Sci. (Lond.), 2019, 133(1), 55-74.
[35]
Tikellis, C.; Bernardi, S.; Burns, W.C. Angiotensin-converting enzyme 2 is a key modulator of the renin–angiotensin system in cardiovascular and renal disease. Curr. Opin. Nephrol. Hypertens., 2011, 20(1), 62-68.
[http://dx.doi.org/10.1097/MNH.0b013e328341164a] [PMID: 21099686]
[36]
Rodrigues, P.T.R.; Rocha, N.P.; Miranda, A.S.; Teixeira, A.L.; Simoes-E-Silva, A.C. The anti-inflammatory potential of ACE2/angiotensin-(1-7)/mas receptor axis: Evidence from basic and clinical research. Curr. Drug Targets, 2017, 18(11), 1301-1313.
[PMID: 27469342]
[37]
Keidar, S.; Kaplan, M.; Gamliellazarovich, A. ACE2 of the heart: From angiotensin I to angiotensin (1–7). Cardiovasc. Res., 2007, 73(3), 463-469.
[http://dx.doi.org/10.1016/j.cardiores.2006.09.006] [PMID: 17049503]
[38]
Mehrabadi, M.E.; Hemmati, R.; Tashakor, A.; Homaei, A.; Yousefzadeh, M.; Hemmati, K. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed Pharmacother., 2021, 137, 111363.
[http://dx.doi.org/10.1016/j.biopha.2021.111363]
[39]
Seltzer, S. Linking ACE2 and angiotensin II to pulmonary immunovascular dysregulation in SARS-CoV-2 infection. Int. J. Infect. Dis., 2020, 101(3), 42-45.
[40]
Triana, S.; Metz-Zumaran, C.; Ramirez, C.; Kee, C.; Doldan, P.; Shahraz, M. Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut. Mol. Syst. Biol., 2021, 17(4), e1023.
[http://dx.doi.org/10.15252/msb.202110232]
[41]
Hammoud, S.H.; Wehbe, Z.; Abdelhady, S.; Kobeissy, F.; Eid, A.H.; El-Yazbi, A.F.J.M.P. Dysregulation of angiotensin converting enzyme 2 expression and function in comorbid disease conditions possibly contributes to coronavirus infectious disease 2019 complication severity. Mol Pharmacol., 2021, 99(1), 17-28.
[42]
Dettlaff-Pokora, A.; Swierczynski, J. Dysregulation of angiotensin converting enzyme 2 expression and function in comorbid disease conditions possibly contributes to coronavirus infectious disease 2019 complication severity. Int. J. Mol. Sci., 2021, 22(9), 4503-28.
[43]
Kuba, K.; Imai, Y.; Ohto-Nakanishi, T.; Penninger, J.M. Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther., 2010, 128(1), 119-128.
[http://dx.doi.org/10.1016/j.pharmthera.2010.06.003] [PMID: 20599443]
[44]
Zhang, H.; Wada, J.; Hida, K.; Tsuchiyama, Y.; Hiragushi, K.; Shikata, K.; Wang, H.; Lin, S.; Kanwar, Y.S.; Makino, H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem., 2001, 276(20), 17132-17139.
[http://dx.doi.org/10.1074/jbc.M006723200] [PMID: 11278314]
[45]
Danilczyk, U.; Sarao, R.; Remy, C.; Benabbas, C.; Stange, G.; Richter, A.; Arya, S.; Pospisilik, J.A.; Singer, D.; Camargo, S.M.R.; Makrides, V.; Ramadan, T.; Verrey, F.; Wagner, C.A.; Penninger, J.M. Essential role for collectrin in renal amino acid transport. Nature, 2006, 444(7122), 1088-1091.
[http://dx.doi.org/10.1038/nature05475] [PMID: 17167413]
[46]
Camargo, S.M.R.; Singer, D.; Makrides, V.; Huggel, K.; Pos, K.M.; Wagner, C.A.; Kuba, K.; Danilczyk, U.; Skovby, F.; Kleta, R.; Penninger, J.M.; Verrey, F. Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology, 2009, 136(3), 872-882.e3.
[http://dx.doi.org/10.1053/j.gastro.2008.10.055] [PMID: 19185582]
[47]
Choudhary, S.; Sreenivasulu, K.; Mitra, P.; Misra, S.; Sharma, P. Role of genetic variants and gene expression in the susceptibility and severity of COVID-19. Ann. Lab. Med., 2021, 41(2), 129-138.
[http://dx.doi.org/10.3343/alm.2021.41.2.129] [PMID: 33063674]
[48]
Jando, J.; Camargo, S.M.R.; Herzog, B.; Verrey, F. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine. PLoS One, 2017, 12(9), e0184845.
[http://dx.doi.org/10.1371/journal.pone.0184845] [PMID: 28915252]
[49]
Hashimoto, T.; Perlot, T.; Rehman, A.; Trichereau, J.; Ishiguro, H.; Paolino, M.; Sigl, V.; Hanada, T.; Hanada, R.; Lipinski, S.; Wild, B.; Camargo, S.M.R.; Singer, D.; Richter, A.; Kuba, K.; Fukamizu, A.; Schreiber, S.; Clevers, H.; Verrey, F.; Rosenstiel, P.; Penninger, J.M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 2012, 487(7408), 477-481.
[http://dx.doi.org/10.1038/nature11228] [PMID: 22837003]
[50]
Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.M.E.; Voort, P.H.J.; Mulder, D.J.; Goor, H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol., 2020, 251(3), 228-248.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[51]
Yao, H.; Song, Y.; Chen, Y.; Wu, N.; Xu, J.; Sun, C.; Zhang, J.; Weng, T.; Zhang, Z.; Wu, Z.; Cheng, L.; Shi, D.; Lu, X.; Lei, J.; Crispin, M.; Shi, Y.; Li, L.; Li, S. Molecular Architecture of the SARS-CoV-2 Virus. Cell, 2020, 183(3), 730-738.e13.
[http://dx.doi.org/10.1016/j.cell.2020.09.018] [PMID: 32979942]
[52]
Lu, J.; Sun, P.D. High affinity binding of SARS-CoV-2 spike protein enhances ACE2 carboxypeptidase activity. J. Biol. Chem., 2020, 295(52), 18579-18588.
[http://dx.doi.org/10.1074/jbc.RA120.015303] [PMID: 33122196]
[53]
Tai, W.; He, L.; Zhang, X.; Pu, J.; Voronin, D.; Jiang, S.; Zhou, Y.; Du, L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: Implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell. Mol. Immunol., 2020, 17(6), 613-620.
[http://dx.doi.org/10.1038/s41423-020-0400-4] [PMID: 32203189]
[54]
Mercurio, I.; Tragni, V.; Busto, F.; De Grassi, A.; Pierri, C.L. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: From conformational changes to novel neutralizing antibodies. Cell. Mol. Life Sci., 2021, 78(4), 1501-1522.
[http://dx.doi.org/10.1007/s00018-020-03580-1] [PMID: 32623480]
[55]
Pierri, C.L. SARS-CoV-2 spike protein: Flexibility as a new target for fighting infection. Signal Transduct. Target. Ther., 2020, 5(1), 254.
[http://dx.doi.org/10.1038/s41392-020-00369-3] [PMID: 33127889]
[56]
Turoňová, B.; Sikora, M.; Schürmann, C.; Hagen, W.J.H.; Welsch, S.; Blanc, F.E.C.; von Bülow, S.; Gecht, M.; Bagola, K.; Hörner, C.; van Zandbergen, G.; Landry, J.; de Azevedo, N.T.D.; Mosalaganti, S.; Schwarz, A.; Covino, R.; Mühlebach, M.D.; Hummer, G.; Krijnse Locker, J.; Beck, M. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science, 2020, 370(6513), 203-208.
[http://dx.doi.org/10.1126/science.abd5223] [PMID: 32817270]
[57]
Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[58]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[59]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[60]
Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[61]
Bayati, A.; Kumar, R.; Francis, V.; McPherson, P.S. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem., 2021, 296, 100306.
[http://dx.doi.org/10.1016/j.jbc.2021.100306] [PMID: 33476648]
[62]
Zhang, Q.; Xiang, R.; Huo, S.; Zhou, Y.; Jiang, S.; Wang, Q.; Yu, F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct. Target. Ther., 2021, 6(1), 233.
[http://dx.doi.org/10.1038/s41392-021-00653-w] [PMID: 34117216]
[63]
Menezes dos Reis, L.; Berçot, M.R.; Castelucci, B.G.; Martins, A.J.E.; Castro, G.; Moraes-Vieira, P.M. Immunometabolic signature during respiratory viral infection: A potential target for host-directed therapies. Viruses, 2023, 15(2), 525.
[http://dx.doi.org/10.3390/v15020525] [PMID: 36851739]
[64]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[65]
Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; Crackower, M.A.; Fukamizu, A.; Hui, C.C.; Hein, L.; Uhlig, S.; Slutsky, A.S.; Jiang, C.; Penninger, J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005, 436(7047), 112-116.
[http://dx.doi.org/10.1038/nature03712] [PMID: 16001071]
[66]
Alhenc-Gelas, F.; Drueke, T.B. Blockade of SARS-CoV-2 infection by recombinant soluble ACE2. Kidney Int., 2020, 97(6), 1091-1093.
[http://dx.doi.org/10.1016/j.kint.2020.04.009] [PMID: 32354636]
[67]
Wissing, S.I.; Obeid, R.; Rädle-Hurst, T.; Rohrer, T.; Herr, C.; Schöpe, J.; Geisel, J.; Bals, R.; Abdul-Khaliq, H. Concentrations of Soluble Angiotensin Converting Enzyme 2 (sACE2) in Children and Adults with and without COVID-19. J. Clin. Med., 2022, 11(22), 6799.
[http://dx.doi.org/10.3390/jcm11226799] [PMID: 36431276]
[68]
Daniell, H.; Nair, S.K.; Shi, Y.; Wang, P.; Montone, K.T.; Shaw, P.A.; Choi, G.H.; Ghani, D.; Weaver, J.; Rader, D.J.; Margulies, K.B.; Collman, R.G.; Laudanski, K.; Bar, K.J. Decrease in Angiotensin-Converting Enzyme activity but not concentration in plasma/lungs in COVID-19 patients offers clues for diagnosis/treatment. Mol. Ther. Methods Clin. Dev., 2022, 26, 266-278.
[http://dx.doi.org/10.1016/j.omtm.2022.07.003] [PMID: 35818571]
[69]
Zhang, L.; Narayanan, K.K.; Cooper, L.; Chan, K.K.; Skeeters, S.S.; Devlin, C.A.; Aguhob, A.; Shirley, K.; Rong, L.; Rehman, J.; Malik, A.B.; Procko, E. An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS-CoV-2. EMBO Mol. Med., 2022, 14(11), e16109.
[http://dx.doi.org/10.15252/emmm.202216109] [PMID: 36094679]
[70]
Kayabolen, A.; Akcan, U.; Özturan, D.; Ulbegi-Polat, H.; Sahin, G.N.; Pinarbasi-Degirmenci, N.; Bayraktar, C.; Soyler, G.; Sarayloo, E.; Nurtop, E.; Ozer, B.; Guney-Esken, G.; Barlas, T.; Yildirim, I.S.; Dogan, O.; Karahuseyinoglu, S.; Lack, N.A.; Kaya, M.; Albayrak, C.; Can, F.; Solaroglu, I.; Bagci-Onder, T. Protein scaffold-based multimerization of soluble ACE2 efficiently blocks SARS-CoV-2 infection In Vitro and In Vivo. Adv. Sci. (Weinh.), 2022, 9(27), 2201294.
[http://dx.doi.org/10.1002/advs.202201294] [PMID: 35896894]
[71]
Abd El-Aziz, T.M.; Al-Sabi, A.; Stockand, J.D. Human recombinant soluble ACE2 (hrsACE2) shows promise for treating severe COVID­19. Signal Transduct. Target. Ther., 2020, 5(1), 258.
[http://dx.doi.org/10.1038/s41392-020-00374-6] [PMID: 33144565]
[72]
Monteil, V.; Kwon, H.; Prado, P.; Hagelkrüys, A.; Wimmer, R.A.; Stahl, M.; Leopoldi, A.; Garreta, E.; Hurtado del Pozo, C.; Prosper, F.; Romero, J.P.; Wirnsberger, G.; Zhang, H.; Slutsky, A.S.; Conder, R.; Montserrat, N.; Mirazimi, A.; Penninger, J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[73]
Zoufaly, A.; Poglitsch, M.; Aberle, J.H.; Hoepler, W.; Seitz, T.; Traugott, M.; Grieb, A.; Pawelka, E.; Laferl, H.; Wenisch, C.; Neuhold, S.; Haider, D.; Stiasny, K.; Bergthaler, A.; Puchhammer-Stoeckl, E.; Mirazimi, A.; Montserrat, N.; Zhang, H.; Slutsky, A.S.; Penninger, J.M. Human recombinant soluble ACE2 in severe COVID-19. Lancet Respir. Med., 2020, 8(11), 1154-1158.
[http://dx.doi.org/10.1016/S2213-2600(20)30418-5] [PMID: 33131609]
[74]
Li, M.; Chen, J.; Liu, Y.; Zhao, J.; Li, Y.; Hu, Y.; Chen, Y.; Sun, L.; Shu, Y.; Feng, F.; Sun, C. Rational design of AAVrh10-vectored ACE2 functional domain to broadly block the cell entry of SARS-CoV-2 variants. Antiviral Res., 2022, 205, 105383.
[http://dx.doi.org/10.1016/j.antiviral.2022.105383] [PMID: 35917969]
[75]
Sarto, C.; Florez-Rueda, S.; Arrar, M.; Hackenberger, C.P.R.; Lauster, D.; Di Lella, S. Atomistic insight into the essential binding event of ACE2-derived peptides to the SARS-CoV-2 spike protein. Biol. Chem., 2022, 403(5-6), 615-624.
[http://dx.doi.org/10.1515/hsz-2021-0426] [PMID: 35357791]
[76]
Engelhardt, P.M.; Florez-Rueda, S.; Drexelius, M.; Neudörfl, J.M.; Lauster, D.; Hackenberger, C.P.R.; Kühne, R.; Neundorf, I.; Schmalz, H.G. Synthetic α-Helical Peptides as Potential Inhibitors of the ACE2 SARS-CoV-2 Interaction. ChemBioChem, 2022, 23(17), e202200372.
[http://dx.doi.org/10.1002/cbic.202200372] [PMID: 35785462]
[77]
Calugi, L.; Sautariello, G.; Lenci, E.; Mattei, M.L.; Coppa, C.; Cini, N.; Contini, A.; Trabocchi, A. Identification of a short ACE2-derived stapled peptide targeting the SARS-CoV-2 spike protein. Eur. J. Med. Chem., 2023, 249, 115118.
[http://dx.doi.org/10.1016/j.ejmech.2023.115118] [PMID: 36682293]
[78]
Brevini, T.; Maes, M.; Webb, G.J.; John, B.V.; Fuchs, C.D.; Buescher, G. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature, 2022, 615(7950), 134-142.
[PMID: 36470304]
[79]
Biagioli, M.; Marchianò, S.; Roselli, R.; Di Giorgio, C.; Bellini, R.; Bordoni, M.; Gidari, A.; Sabbatini, S.; Francisci, D.; Fiorillo, B.; Catalanotti, B.; Distrutti, E.; Carino, A.; Zampella, A.; Costantino, G.; Fiorucci, S. Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochem. Pharmacol., 2021, 188, 114564.
[http://dx.doi.org/10.1016/j.bcp.2021.114564] [PMID: 33872570]
[80]
Jezova, D.; Karailiev, P.; Karailievova, L.; Puhova, A.; Murck, H. Food enrichment with Glycyrrhiza glabra extract suppresses ACE2 mRNA and protein expression in rats-possible implications for COVID-19. Nutrients, 2021, 13(7), 2321.
[http://dx.doi.org/10.3390/nu13072321] [PMID: 34371831]
[81]
Xiu, H.; Gong, J.; Huang, T.; Peng, Y.; Bai, S.; Xiong, G.; Zhang, S.; Huang, H.; Cai, Z.; Zhang, G. Fludarabine inhibits type I interferon-induced expression of the SARS-CoV-2 receptor angiotensin-converting enzyme 2. Cell. Mol. Immunol., 2021, 18(7), 1829-1831.
[http://dx.doi.org/10.1038/s41423-021-00698-5] [PMID: 34059790]
[82]
Endo, Y.; Hickerson, B.T.; Ilyushina, N.A.; Mohan, N.; Peng, H.; Takeda, K.; Donnelly, R.P.; Wu, W.J. Identification of a pharmacological approach to reduce ACE2 expression and development of an in vitro COVID-19 viral entry model. J. Virus Erad., 2022, 8(4), 100307.
[http://dx.doi.org/10.1016/j.jve.2022.100307] [PMID: 36514715]
[83]
Chlamydas, S.; Papavassiliou, A.G.; Piperi, C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics, 2021, 16(3), 263-270.
[http://dx.doi.org/10.1080/15592294.2020.1796896] [PMID: 32686577]
[84]
Pruimboom, L. Methylation pathways and SARS-CoV-2 lung infiltration and cell membrane-virus fusion are both subject to epigenetics. Front. Cell. Infect. Microbiol., 2020, 10, 290.
[http://dx.doi.org/10.3389/fcimb.2020.00290] [PMID: 32574283]
[85]
Singh, S.; Banavath, H.N.; Godara, P.; Naik, B.; Srivastava, V.; Prusty, D. Identification of antiviral peptide inhibitors for receptor binding domain of SARS-CoV-2 omicron and its sub-variants: An in-silico approach. 3 Biotech., 2022, 12(9), 198.
[86]
Essa, R.Z.; Wu, Y.; Batumalaie, K.; Sekar, M.; Poh, C. Antiviral peptides against SARS-CoV-2: Therapeutic targets, mechanistic antiviral activity, and efficient delivery. Pharmacol. Rep., 2022, 74(6), 1166-1181.
[http://dx.doi.org/10.1007/s43440-022-00432-6] [PMID: 36401119]
[87]
Shu, Q.; Qu, F.; Gill, H.S. Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J. Pediatr. Gastroenterol. Nutr., 2001, 33(2), 171-177.
[http://dx.doi.org/10.1097/00005176-200108000-00014] [PMID: 11568519]
[88]
Izumo, T.; Maekawa, T.; Ida, M.; Noguchi, A.; Kitagawa, Y.; Shibata, H.; Yasui, H.; Kiso, Y. Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. Int. Immunopharmacol., 2010, 10(9), 1101-1106.
[http://dx.doi.org/10.1016/j.intimp.2010.06.012] [PMID: 20601181]
[89]
Nguyen, Q.V.; Chong, L.C.; Hor, Y.Y.; Lew, L.C.; Rather, I.A.; Choi, S.B. Role of probiotics in the management of COVID-19: A computational perspective. Nutrients, 2022, 14(2), 274.
[http://dx.doi.org/10.3390/nu14020274] [PMID: 35057455]
[90]
Wan, L.Y.M.; Chen, Z.J.; Shah, N.P.; El-Nezami, H. Modulation of intestinal epithelial defense responses by probiotic bacteria. Crit. Rev. Food Sci. Nutr., 2016, 56(16), 2628-2641.
[http://dx.doi.org/10.1080/10408398.2014.905450] [PMID: 25629818]
[91]
Erol, I.; Kotil, S.E.; Ortakci, F.; Durdagi, S. Exploring the binding capacity of lactic acid bacteria derived bacteriocins against RBD of SARS-CoV-2 Omicron variant by molecular simulations. J. Biomol. Struct. Dyn., 2023, 1-11.
[http://dx.doi.org/10.1080/07391102.2022.2158934] [PMID: 36591650]
[92]
Erol, I.; Kotil, S.E.; Fidan, O.; Yetiman, A.E.; Durdagi, S.; Ortakci, F. In silico analysis of bacteriocins from lactic acid bacteria against SARS-CoV-2. Probiotics Antimicrob. Proteins, 2023, 15(1), 17-29.
[http://dx.doi.org/10.1007/s12602-021-09879-0] [PMID: 34837166]
[93]
Ragia, G.; Manolopoulos, V.G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: A promising approach for uncovering early COVID-19 drug therapies. Eur. J. Clin. Pharmacol., 2020, 76(12), 1623-1630.
[http://dx.doi.org/10.1007/s00228-020-02963-4] [PMID: 32696234]
[94]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[95]
Hoffmann, M.; Schroeder, S.; Kleine-Weber, H.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrob. Agents Chemother., 2020, 64(6), e00754-20.
[http://dx.doi.org/10.1128/AAC.00754-20] [PMID: 32312781]
[96]
Wettstein, L.; Immenschuh, P.; Weil, T.; Conzelmann, C.; Almeida-Hernández, Y.; Hoffmann, M.; Kempf, A.; Nehlmeier, I.; Lotke, R.; Petersen, M.; Stenger, S.; Kirchhoff, F.; Sauter, D.; Pöhlmann, S.; Sanchez-Garcia, E.; Münch, J. Native and activated antithrombin inhibits TMPRSS2 activity and SARS-CoV-2 infection. J. Med. Virol., 2023, 95(1), e28124.
[http://dx.doi.org/10.1002/jmv.28124] [PMID: 36056630]
[97]
Singh, S.; O’Reilly, S.; Gewaid, H.; Bowie, A.G.; Gautier, V.; Worrall, D.M. Reactive centre loop mutagenesis of serpinB3 to target TMPRSS2 and furin: Inhibition of SARS-CoV-2 cell entry and replication. Int. J. Mol. Sci., 2022, 23(20), 12522.
[http://dx.doi.org/10.3390/ijms232012522] [PMID: 36293378]
[98]
Lin, B.; Ferguson, C.; White, J.T.; Wang, S.; Vessella, R.; True, L.D.; Hood, L.; Nelson, P.S. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res., 1999, 59(17), 4180-4184.
[PMID: 10485450]
[99]
Anti-Androgen Treatment for COVID-19. 2021.https://clinicaltrials.gov/ct2/show/NCT04446429
[100]
Youn, J.Y.; Wang, J.; Li, Q.; Huang, K.; Cai, H. Robust therapeutic effects on COVID-19 of novel small molecules: Alleviation of SARS-CoV-2 S protein induction of ACE2/TMPRSS2, NOX2/ROS, and MCP-1. Front. Cardiovasc. Med., 2022, 9, 957340.
[http://dx.doi.org/10.3389/fcvm.2022.957340] [PMID: 36187008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy