Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

How to Modulate Peripheral and Central Nervous System to Treat Acute Postoperative Pain and Prevent Pain Persistence

Author(s): Sara Cazzaniga, Giovanni Real, Simone Finazzi, Luca F. Lorini, Patrice Forget and Dario Bugada*

Volume 22, Issue 1, 2024

Published on: 15 August, 2023

Page: [23 - 37] Pages: 15

DOI: 10.2174/1570159X21666230810103508

Price: $65

Open Access Journals Promotions 2
Abstract

Chronic postoperative pain (CPSP) is a major issue after surgery, which may impact on patient’s quality of life. Traditionally, CPSP is believed to rely on maladaptive hyperalgesia and risk factors have been identified that predispose to CPSP, including acute postoperative pain. Despite new models of prediction are emerging, acute pain is still a modifiable factor that can be challenged with perioperative analgesic strategies. In this review we present the issue of CPSP, focusing on molecular mechanism underlying the development of acute and chronic hyperalgesia. Also, we focus on how perioperative strategies can impact directly or indirectly (by reducing postoperative pain intensity) on the development of CPSP.

Keywords: Chronic postoperative pain, persistent pain, postoperative pain, hyperalgesia, regional anesthesia, opioid free anesthesia, adjuvants.

[1]
Schug, S.A.; Lavand’homme, P.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D. The IASP classification of chronic pain for ICD-11: Chronic postsurgical or posttraumatic pain. Pain, 2019, 160(1), 45-52.
[http://dx.doi.org/10.1097/j.pain.0000000000001413] [PMID: 30586070]
[2]
Grosu, I.; de Kock, M. New concepts in acute pain management: Strategies to prevent chronic postsurgical pain, opioid-induced hyperalgesia, and outcome measures. Anesthesiol. Clin., 2011, 29(2), 311-327.
[http://dx.doi.org/10.1016/j.anclin.2011.04.001] [PMID: 21620345]
[3]
Perkins, F.M.; Kehlet, H. Chronic pain as an outcome of surgery. A review of predictive factors. Anesthesiology, 2000, 93(4), 1123-1133.
[http://dx.doi.org/10.1097/00000542-200010000-00038] [PMID: 11020770]
[4]
Wall, P.D.; Jones, M. Defeating Pain: The war against a silent epidemic; Springer: New York, 1991.
[http://dx.doi.org/10.1007/978-1-4899-6551-6]
[5]
Fletcher, D.; Stamer, U.M.; Pogatzki-Zahn, E.; Zaslansky, R.; Tanase, N.V.; Perruchoud, C.; Kranke, P.; Komann, M.; Lehman, T.; Meissner, W. Chronic postsurgical pain in Europe. Eur. J. Anaesthesiol., 2015, 32(10), 725-734.
[http://dx.doi.org/10.1097/EJA.0000000000000319] [PMID: 26241763]
[6]
Schug, S.A.; Bruce, J. Risk stratification for the development of chronic postsurgical pain. Schmerz, 2018, 32(6), 471-476.
[http://dx.doi.org/10.1007/s00482-018-0332-4] [PMID: 30324317]
[7]
Voon, P.; Karamouzian, M.; Kerr, T. Chronic pain and opioid misuse: A review of reviews. Subst. Abuse Treat. Prev. Policy, 2017, 12(1), 36.
[http://dx.doi.org/10.1186/s13011-017-0120-7] [PMID: 28810899]
[8]
Correll, D. Chronic postoperative pain: recent findings in understanding and management. F1000 Res., 2017, 6, 1054.
[http://dx.doi.org/10.12688/f1000research.11101.1] [PMID: 28713565]
[9]
Edgley, C.; Hogg, M.; De Silva, A.; Braat, S.; Bucknill, A.; Leslie, K. Severe acute pain and persistent post-surgical pain in orthopaedic trauma patients: A cohort study. Br. J. Anaesth., 2019, 123(3), 350-359.
[http://dx.doi.org/10.1016/j.bja.2019.05.030] [PMID: 31248645]
[10]
Guimarães-Pereira, L.; Reis, P.; Abelha, F.; Azevedo, L.F.; Castro-Lopes, J.M. Persistent postoperative pain after cardiac surgery: A systematic review with meta-analysis regarding incidence and pain intensity. Pain, 2017, 158(10), 1869-1885.
[http://dx.doi.org/10.1097/j.pain.0000000000000997] [PMID: 28767509]
[11]
Sadosky, A.; Parsons, B.; Schaefer, C.; Mann, R.; Daniel, S.; Nalamachu, S.; Stacey, B.R.; Nieshoff, E.; Tuchman, M.; Anschel, A. Economic and humanistic burden of post-trauma and post-surgical neuropathic pain among adults in the United States. J. Pain Res., 2013, 6, 459-469.
[http://dx.doi.org/10.2147/JPR.S44939] [PMID: 23825931]
[12]
Gilron, I.; Vandenkerkhof, E.; Katz, J.; Kehlet, H.; Carley, M. Evaluating the association between acute and chronic pain after surgery. Clin. J. Pain, 2017, 33(7), 588-594.
[http://dx.doi.org/10.1097/AJP.0000000000000443] [PMID: 28145910]
[13]
Zhang, Y.; Zhou, R.; Hou, B.; Tang, S.; Hao, J.; Gu, X.; Ma, Z.; Zhang, J. Incidence and risk factors for chronic postsurgical pain following video-assisted thoracoscopic surgery: A retrospective study. BMC Surg., 2022, 22(1), 76.
[http://dx.doi.org/10.1186/s12893-022-01522-1] [PMID: 35236334]
[14]
Jin, J.; Du, X.; Min, S.; Liu, L. Comparison of chronic postsurgical pain between single-port and multi-port video-assisted thoracoscopic pulmonary resection: A prospective study. Thorac. Cardiovasc. Surg., 2022, 70(5), 430-438.
[http://dx.doi.org/10.1055/s-0042-1744546] [PMID: 35439833]
[15]
Bugada, D.; Lavand’homme, P.; Ambrosoli, A.L.; Klersy, C.; Braschi, A.; Fanelli, G.; Saccani Jotti, G.M.R.; Allegri, M.; Baciarello, M.; Bettinelli, S.; Cobianchi, L.; De Gregori, M.; Di Matteo, M.; Guarisco, S.; Krizova, P.; Marangoni, F.; Minella, C.E.; Niebel, T.; Peloso, A.; Repetti, F. Effect of postoperative analgesia on acute and persistent postherniotomy pain: A randomized study. J. Clin. Anesth., 2015, 27(8), 658-664.
[http://dx.doi.org/10.1016/j.jclinane.2015.06.008] [PMID: 26329661]
[16]
Spivey, T.L.; Gutowski, E.D.; Zinboonyahgoon, N.; King, T.A.; Dominici, L.; Edwards, R.R.; Golshan, M.; Schreiber, K.L. Chronic Pain After Breast Surgery: A Prospective, Observational Study. Ann. Surg. Oncol., 2018, 25(10), 2917-2924.
[http://dx.doi.org/10.1245/s10434-018-6644-x] [PMID: 30014456]
[17]
Katz, J.; Weinrib, A.; Fashler, S.; Katznelson, R.; Shah, B.; Ladak, S.; Jiang, J.; Li, Q.; McMillan, K.; Santa Mina, D.; Wendtlandt, K.; McRae, K.; Tamir, D.; Lyn, S.; de Perrot, M.; Rao, V.; Grant, D.; Roche-Nagle, G.; Cleary, S.; Hofer, S.; Gilbert, R.; Wijeysundera, D.; Ritvo, P.; Janmohamed, T.; O’Leary, G.; Clarke, H. The Toronto General Hospital Transitional Pain Service: Development and implementation of a multidisciplinary program to prevent chronic postsurgical pain. J. Pain Res., 2015, 8, 695-702.
[http://dx.doi.org/10.2147/JPR.S91924] [PMID: 26508886]
[18]
Theunissen, M.; Peters, M.L.; Bruce, J.; Gramke, H.F.; Marcus, M.A. Preoperative anxiety and catastrophizing: A systematic review and meta-analysis of the association with chronic postsurgical pain. Clin. J. Pain, 2012, 28(9), 819-841.
[http://dx.doi.org/10.1097/AJP.0b013e31824549d6] [PMID: 22760489]
[19]
Haroutiunian, S.; Nikolajsen, L.; Finnerup, N.B.; Jensen, T.S. The neuropathic component in persistent postsurgical pain: A systematic literature review. Pain, 2013, 154(1), 95-102.
[http://dx.doi.org/10.1016/j.pain.2012.09.010] [PMID: 23273105]
[20]
Beloeil, H.; Sion, B.; Rousseau, C.; Albaladejo, P.; Raux, M.; Aubrun, F.; Martinez, V. Early postoperative neuropathic pain assessed by the DN4 score predicts an increased risk of persistent postsurgical neuropathic pain. Eur. J. Anaesthesiol., 2017, 34(10), 652-657.
[http://dx.doi.org/10.1097/EJA.0000000000000634] [PMID: 28437260]
[21]
Forstenpointner, J.; Ruscheweyh, R.; Attal, N.; Baron, R.; Bouhassira, D.; Enax-Krumova, E.K.; Finnerup, N.B.; Freynhagen, R.; Gierthmühlen, J.; Hansson, P.; Jensen, T.S.; Maier, C.; Rice, A.S.C.; Segerdahl, M.; Tölle, T.; Treede, R.D.; Vollert, J. No pain, still gain (of function): The relation between sensory profiles and the presence or absence of self-reported pain in a large multicenter cohort of patients with neuropathy. Pain, 2021, 162(3), 718-727.
[http://dx.doi.org/10.1097/j.pain.0000000000002058] [PMID: 32868752]
[22]
Edwards, R.R. Optimizing and accelerating the development of precision pain treatments for chronic pain: IMMPACT review and recommendations. J. Pain, 2023, 24(2), 204-225.
[http://dx.doi.org/10.1016/j.jpain.2022.08.010] [PMID: 36198371]
[23]
Sangesland, A.; Støren, C.; Vaegter, H.B. Are preoperative experimental pain assessments correlated with clinical pain outcomes after surgery? A systematic review. Scand. J. Pain, 2017, 15(1), 44-52.
[http://dx.doi.org/10.1016/j.sjpain.2016.12.002] [PMID: 28850344]
[24]
van Helmond, N.; Aarts, H.M.; Timmerman, H.; Olesen, S.S.; Drewes, A.M.; Wilder-Smith, O.H.; Steegers, M.A.; Vissers, K.C. Is preoperative quantitative sensory testing related to persistent postsurgical pain? A systematic literature review. Anesth. Analg., 2020, 131(4), 1146-1155.
[http://dx.doi.org/10.1213/ANE.0000000000004871] [PMID: 32925335]
[25]
Petersen, K.K.; Vaegter, H.B.; Stubhaug, A.; Wolff, A.; Scammell, B.E.; Arendt-Nielsen, L.; Larsen, D.B. The predictive value of quantitative sensory testing: A systematic review on chronic postoperative pain and the analgesic effect of pharmacological therapies in patients with chronic pain. Pain, 2021, 162(1), 31-44.
[http://dx.doi.org/10.1097/j.pain.0000000000002019] [PMID: 32701654]
[26]
Koulouris, A.E.; Edwards, R.R.; Dorado, K.; Schreiber, K.L.; Lazaridou, A.; Rajan, S.; White, J.; Garcia, J.; Gibbons, C.; Freeman, R. Reliability and validity of the boston bedside quantitative sensory testing battery for neuropathic pain. Pain Med., 2020, 21(10), 2336-2347.
[http://dx.doi.org/10.1093/pm/pnaa192] [PMID: 32895703]
[27]
Lavand’homme, P. The progression from acute to chronic pain. Curr. Opin. Anaesthesiol., 2011, 24(5), 545-550.
[http://dx.doi.org/10.1097/ACO.0b013e32834a4f74] [PMID: 21772141]
[28]
Arendt-Nielsen, L.; Nie, H.; Laursen, M.B.; Laursen, B.S.; Madeleine, P.; Simonsen, O.H.; Graven-Nielsen, T. Sensitization in patients with painful knee osteoarthritis. Pain, 2010, 149(3), 573-581.
[http://dx.doi.org/10.1016/j.pain.2010.04.003] [PMID: 20418016]
[29]
Coluzzi, F.; Bifulco, F.; Cuomo, A.; Dauri, M.; Leonardi, C.; Melotti, R.M.; Natoli, S.; Romualdi, P.; Savoia, G.; Corcione, A. The challenge of perioperative pain management in opioid-tolerant patients. Ther. Clin. Risk Manag., 2017, 13, 1163-1173.
[http://dx.doi.org/10.2147/TCRM.S141332] [PMID: 28919771]
[30]
Gandhi, R.; Santone, D.; Takahashi, M.; Dessouki, O.; Mahomed, N.N. Inflammatory predictors of ongoing pain 2 years following knee replacement surgery. Knee, 2013, 20(5), 316-318.
[http://dx.doi.org/10.1016/j.knee.2012.10.015] [PMID: 23157967]
[31]
Bugada, D.; Allegri, M.; Gemma, M.; Ambrosoli, A.L.; Gazzerro, G.; Chiumiento, F.; Dongu, D.; Nobili, F.; Fanelli, A.; Ferrua, P.; Berruto, M.; Cappelleri, G. Effects of anaesthesia and analgesia on long-term outcome after total knee replacement. Eur. J. Anaesthesiol., 2017, 34(10), 665-672.
[http://dx.doi.org/10.1097/EJA.0000000000000656] [PMID: 28767456]
[32]
Belluzzi, E.; El Hadi, H.; Granzotto, M.; Rossato, M.; Ramonda, R.; Macchi, V.; De Caro, R.; Vettor, R.; Favero, M. Systemic and local adipose tissue in knee osteoarthritis. J. Cell. Physiol., 2017, 232(8), 1971-1978.
[http://dx.doi.org/10.1002/jcp.25716] [PMID: 27925193]
[33]
Daoudia, M.; Decruynaere, C.; Le Polain de Waroux, B.; Thonnard, J.L.; Plaghki, L.; Forget, P. Biological inflammatory markers mediate the effect of preoperative pain-related behaviours on postoperative analgesics requirements. BMC Anesthesiol., 2015, 15(1), 183.
[http://dx.doi.org/10.1186/s12871-015-0167-9] [PMID: 26674471]
[34]
Parisien, M.; Lima, L.V.; Dagostino, C.; El-Hachem, N.; Drury, G.L.; Grant, A.V.; Huising, J.; Verma, V.; Meloto, C.B.; Silva, J.R.; Dutra, G.G.S.; Markova, T.; Dang, H.; Tessier, P.A.; Slade, G.D.; Nackley, A.G.; Ghasemlou, N.; Mogil, J.S.; Allegri, M.; Diatchenko, L. Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Sci. Transl. Med., 2022, 14(644), eabj9954.
[http://dx.doi.org/10.1126/scitranslmed.abj9954] [PMID: 35544595]
[35]
Bartley, E.J.; Fillingim, R.B. Sex differences in pain: A brief review of clinical and experimental findings. Br. J. Anaesth., 2013, 111(1), 52-58.
[http://dx.doi.org/10.1093/bja/aet127] [PMID: 23794645]
[36]
Vollert, J.; Trewartha, N.; Kemkowski, D.; Cremer, A.F.; Zahn, P.K.; Segelcke, D.; Pogatzki-Zahn, E.M. Conditioned pain modulation and offset analgesia: Influence of sex, sex hormone levels and menstrual cycle on the magnitude and retest reliability in healthy participants. Eur. J. Pain, 2022, 26(9), 1938-1949.
[http://dx.doi.org/10.1002/ejp.2014] [PMID: 35856832]
[37]
Horn-Hofmann, C.; Scheel, J.; Dimova, V.; Parthum, A.; Carbon, R.; Griessinger, N.; Sittl, R.; Lautenbacher, S. Prediction of persistent post-operative pain: Pain-specific psychological variables compared with acute post-operative pain and general psychological variables. Eur. J. Pain, 2018, 22(1), 191-202.
[http://dx.doi.org/10.1002/ejp.1115] [PMID: 28940665]
[38]
Hollins, M.; Harper, D.; Gallagher, S.; Owings, E.W.; Lim, P.F.; Miller, V.; Siddiqi, M.Q.; Maixner, W. Perceived intensity and unpleasantness of cutaneous and auditory stimuli: An evaluation of the generalized hypervigilance hypothesis. Pain, 2009, 141(3), 215-221.
[http://dx.doi.org/10.1016/j.pain.2008.10.003] [PMID: 19121558]
[39]
White, K.P.; Carette, S.; Harth, M.; Teasell, R.W. Trauma and fibromyalgia: Is there an association and what does it mean? Semin. Arthritis Rheum., 2000, 29(4), 200-216.
[http://dx.doi.org/10.1016/S0049-0172(00)80009-8] [PMID: 10707989]
[40]
Kalkman, J.C.; Visser, K.; Moen, J.; Bonsel, J.G.; Grobbee, E.D.; Moons, M.K.G. Preoperative prediction of severe postoperative pain. Pain, 2003, 105(3), 415-423.
[http://dx.doi.org/10.1016/S0304-3959(03)00252-5] [PMID: 14527702]
[41]
Janssen, K.J.M.; Kalkman, C.J.; Grobbee, D.E.; Bonsel, G.J.; Moons, K.G.M.; Vergouwe, Y. The risk of severe postoperative pain: modification and validation of a clinical prediction rule. Anesth. Analg., 2008, 107(4), 1330-1339.
[http://dx.doi.org/10.1213/ane.0b013e31818227da] [PMID: 18806049]
[42]
van Reij, R.R.I. The association between genome-wide polymorphisms and chronic postoperative pain: A prospective observational study. Anaesthesia, 2020, 75(Suppl. 1), e111-e120.
[http://dx.doi.org/10.1111/anae.14832]
[43]
Deumens, R.; Steyaert, A.; Forget, P.; Schubert, M.; Lavand’homme, P.; Hermans, E.; De Kock, M. Prevention of chronic postoperative pain: Cellular, molecular, and clinical insights for mechanism-based treatment approaches. Prog. Neurobiol., 2013, 104, 1-37.
[http://dx.doi.org/10.1016/j.pneurobio.2013.01.002] [PMID: 23410739]
[44]
James, S.K. Chronic postsurgical pain: Is there a possible genetic link? Br. J. Pain, 2017, 11(4), 178-185.
[http://dx.doi.org/10.1177/2049463717723222] [PMID: 29123662]
[45]
Bugada, D.; Lorini, L.F.; Fumagalli, R.; Allegri, M. Genetics and opioids: Towards more appropriate prescription in cancer pain. Cancers, 2020, 12(7), 1951.
[http://dx.doi.org/10.3390/cancers12071951] [PMID: 32708424]
[46]
Kehlet, H.; Jensen, T.S.; Woolf, C.J. Persistent postsurgical pain: Risk factors and prevention. Lancet, 2006, 367(9522), 1618-1625.
[http://dx.doi.org/10.1016/S0140-6736(06)68700-X] [PMID: 16698416]
[47]
Jacobs, A.; Lemoine, A.; Joshi, G.P.; Van de Velde, M.; Bonnet, F.; Pogatzki-Zahn, E.; Schug, S.; Kehlet, H.; Rawal, N.; Delbos, A.; Lavand’homme, P.; Beloeil, H.; Raeder, J.; Sauter, A.; Albrecht, E.; Lirk, P.; Freys, S.; Lobo, D. PROSPECT guideline for oncological breast surgery: A systematic review and procedure‐specific postoperative pain management recommendations. Anaesthesia, 2020, 75(5), 664-673.
[http://dx.doi.org/10.1111/anae.14964] [PMID: 31984479]
[48]
Bugada, D.; Lorini, L.F. Lavand’Homme, P. Opioid free anesthesia: Evidence for short and long-term outcome. Minerva Anestesiol., 2021, 87(2), 230-237.
[http://dx.doi.org/10.23736/S0375-9393.20.14515-2] [PMID: 32755088]
[49]
Fletcher, D.; Lavand’homme, P. Towards better predictive models of chronic post-surgical pain: Fitting to the dynamic nature of the pain itself. Br. J. Anaesth., 2022, 129(3), 281-284.
[http://dx.doi.org/10.1016/j.bja.2022.06.010] [PMID: 35835605]
[50]
van Helmond, N.; Olesen, S.S.; Wilder-Smith, O.H.; Drewes, A.M.; Steegers, M.A.; Vissers, K.C. Predicting Persistent Pain After Surgery. Anesth. Analg., 2018, 127(5), 1264-1267.
[http://dx.doi.org/10.1213/ANE.0000000000003318] [PMID: 29505448]
[51]
Chen, J.H.; Asch, S.M. Machine learning and prediction in medicine — Beyond the peak of inflated expectations. N. Engl. J. Med., 2017, 376(26), 2507-2509.
[http://dx.doi.org/10.1056/NEJMp1702071] [PMID: 28657867]
[52]
Bugada, D.; Mariano, E.R. Predictors of chronic postsurgical pain: A step forward towards personalized medicine. Minerva Anestesiol., 2022, 88(10), 764-767.
[http://dx.doi.org/10.23736/S0375-9393.22.16861-6] [PMID: 36254696]
[53]
Tighe, P.J.; Harle, C.A.; Hurley, R.W.; Aytug, H.; Boezaart, A.P.; Fillingim, R.B. Teaching a machine to feel postoperative pain: combining high-dimensional clinical data with machine learning algorithms to forecast acute postoperative pain. Pain Med., 2015, 16(7), 1386-1401.
[http://dx.doi.org/10.1111/pme.12713] [PMID: 26031220]
[54]
van Driel, M.E.C.; van Dijk, J.F.M.; Baart, S.J.; Meissner, W.; Huygen, F.J.P.M.; Rijsdijk, M. Development and validation of a multivariable prediction model for early prediction of chronic postsurgical pain in adults: A prospective cohort study. Br. J. Anaesth., 2022, 129(3), 407-415.
[http://dx.doi.org/10.1016/j.bja.2022.04.030] [PMID: 35732539]
[55]
Primary and Secondary Hyperalgesia; Encycl. Pain, 2013, p. 3174-3174.
[http://dx.doi.org/10.1007/978-3-642-28753-4_201764]
[56]
Armstrong, S.A.; Herr, M. J. Physiology, Nociception; StatPearls: Treasure Island, FL, 2022.
[57]
Devor, M. Ectopic discharge in Aβ afferents as a source of neuropathic pain. Exp. Brain Res., 2009, 196(1), 115-128.
[http://dx.doi.org/10.1007/s00221-009-1724-6] [PMID: 19242687]
[58]
Weinbroum, A.A. Postoperative hyperalgesia-A clinically applicable narrative review. Pharmacol. Res., 2017, 120, 188-205.
[http://dx.doi.org/10.1016/j.phrs.2017.02.012] [PMID: 28365208]
[59]
Pacharinsak, C.; Khasabov, S.G.; Beitz, A.J.; Simone, D.A. NK-1 receptors in the rostral ventromedial medulla contribute to hyperalgesia produced by intraplantar injection of capsaicin. Pain, 2008, 139(1), 34-46.
[http://dx.doi.org/10.1016/j.pain.2008.02.032] [PMID: 18407414]
[60]
Pertovaara, A. A neuronal correlate of secondary hyperalgesia in the rat spinal dorsal horn is submodality selective and facilitated by supraspinal influence. Exp. Neurol., 1998, 149(1), 193-202.
[http://dx.doi.org/10.1006/exnr.1997.6688] [PMID: 9454628]
[61]
Kovelowski, C.J.; Ossipov, M.H.; Sun, H.; Lai, J.; Malan, T.P., Jr; Porreca, F. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain, 2000, 87(3), 265-273.
[http://dx.doi.org/10.1016/S0304-3959(00)00290-6] [PMID: 10963906]
[62]
Burgess, S.E.; Gardell, L.R.; Ossipov, M.H.; Malan, T.P., Jr; Vanderah, T.W.; Lai, J.; Porreca, F. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J. Neurosci., 2002, 22(12), 5129-5136.
[http://dx.doi.org/10.1523/JNEUROSCI.22-12-05129.2002] [PMID: 12077208]
[63]
Porreca, F.; Burgess, S.E.; Gardell, L.R.; Vanderah, T.W.; Malan, T.P., Jr; Ossipov, M.H.; Lappi, D.A.; Lai, J. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. J. Neurosci., 2001, 21(14), 5281-5288.
[http://dx.doi.org/10.1523/JNEUROSCI.21-14-05281.2001] [PMID: 11438603]
[64]
Zhang, W. Neuropathic pain is maintained by brainstem neurons co-expressing opioid and cholecystokinin receptors. Brain, 2009, 132(Pt 3), 778-787.
[http://dx.doi.org/10.1093/brain/awn330]
[65]
Géranton, S.M.; Tochiki, K.K.; Chiu, W.W.Y.; Stuart, S.A.; Hunt, S.P. Injury induced activation of extracellular signal-regulated kinase (ERK) in the rat rostral ventromedial medulla (RVM) is age dependant and requires the lamina I projection pathway. Mol. Pain, 2010, 6, 1744-8069-6-54.
[http://dx.doi.org/10.1186/1744-8069-6-54] [PMID: 20840753]
[66]
Suzuki, R.; Rahman, W.; Rygh, L.J.; Webber, M.; Hunt, S.P.; Dickenson, A.H. Spinal-supraspinal serotonergic circuits regulating neuropathic pain and its treatment with gabapentin. Pain, 2005, 117(3), 292-303.
[http://dx.doi.org/10.1016/j.pain.2005.06.015] [PMID: 16150546]
[67]
Costa-Pereira, J.T.; Serrão, P.; Martins, I.; Tavares, I. Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy‐induced neuropathy: The role of spinal 5‐HT3 receptors. Eur. J. Neurosci., 2020, 51(8), 1756-1769.
[http://dx.doi.org/10.1111/ejn.14614] [PMID: 31691396]
[68]
Wang, W.; Zhong, X.; Li, Y.; Guo, R.; Du, S.; Wen, L.; Ying, Y.; Yang, T.; Wei, X.H. Rostral ventromedial medulla‐mediated descending facilitation following P2X7 receptor activation is involved in the development of chronic post‐operative pain. J. Neurochem., 2019, 149(6), 760-780.
[http://dx.doi.org/10.1111/jnc.14650] [PMID: 30570747]
[69]
Li, J.; Wei, Y.; Zhou, J.; Zou, H.; Ma, L.; Liu, C.; Xiao, Z.; Liu, X.; Tan, X.; Yu, T.; Cao, S. Activation of locus coeruleus-spinal cord noradrenergic neurons alleviates neuropathic pain in mice via reducing neuroinflammation from astrocytes and microglia in spinal dorsal horn. J. Neuroinflammation, 2022, 19(1), 123.
[http://dx.doi.org/10.1186/s12974-022-02489-9] [PMID: 35624514]
[70]
Cao, S.; Fisher, D.W.; Rodriguez, G.; Yu, T.; Dong, H. Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus-norepinephrine system in APP/PS1 and aging mice. J. Neuroinflammation, 2021, 18(1), 10.
[http://dx.doi.org/10.1186/s12974-020-02054-2] [PMID: 33407625]
[71]
Suárez-Pereira, I.; Llorca-Torralba, M.; Bravo, L.; Camarena-Delgado, C.; Soriano-Mas, C.; Berrocoso, E. The role of the locus coeruleus in pain and associated stress-related disorders. Biol. Psychiatry, 2022, 91(9), 786-797.
[http://dx.doi.org/10.1016/j.biopsych.2021.11.023] [PMID: 35164940]
[72]
Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci., 1999, 22(5), 208-215.
[http://dx.doi.org/10.1016/S0166-2236(98)01349-6] [PMID: 10322493]
[73]
Wang, H.; Guo, W.; Yang, K.; Wei, F.; Dubner, R.; Ren, K. Contribution of primary afferent input to trigeminal astroglial hyperactivity, cytokine induction and NMDA receptor phosphorylation. Open Pain J., 2010, 3(1), 144-152.
[http://dx.doi.org/10.2174/1876386301003010144] [PMID: 21170295]
[74]
Chen, Y.; Ju, P.; Xia, Q.; Cheng, P.; Gao, J.; Zhang, L.; Gao, H.; Cheng, X.; Yu, T.; Yan, J.; Wang, Q.; Zhu, C.; Zhang, X. Potential role of pain catastrophic thinking in comorbidity patients of depression and chronic pain. Front. Psychiatry, 2022, 13, 839173.
[http://dx.doi.org/10.3389/fpsyt.2022.839173] [PMID: 35898637]
[75]
Dublin, P.; Hanani, M. Satellite glial cells in sensory ganglia: Their possible contribution to inflammatory pain. Brain Behav. Immun., 2007, 21(5), 592-598.
[http://dx.doi.org/10.1016/j.bbi.2006.11.011] [PMID: 17222529]
[76]
Hanani, M.; Huang, T.Y.; Cherkas, P.S.; Ledda, M.; Pannese, E. Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience, 2002, 114(2), 279-283.
[http://dx.doi.org/10.1016/S0306-4522(02)00279-8] [PMID: 12204197]
[77]
Jasmin, L.; Vit, J.P.; Bhargava, A.; Ohara, P.T. Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol., 2010, 6(1), 63-71.
[http://dx.doi.org/10.1017/S1740925X10000098] [PMID: 20566001]
[78]
Liu, F.Y.; Sun, Y.N.; Wang, F.T.; Li, Q.; Su, L.; Zhao, Z.F.; Meng, X.L.; Zhao, H.; Wu, X.; Sun, Q.; Xing, G.G.; Wan, Y. Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res., 2012, 1427, 65-77.
[http://dx.doi.org/10.1016/j.brainres.2011.10.016] [PMID: 22050959]
[79]
Zhang, H.; Mei, X.; Zhang, P.; Ma, C.; White, F.A.; Donnelly, D.F.; Lamotte, R.H. Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia, 2009, 57(15), 1588-1599.
[http://dx.doi.org/10.1002/glia.20872] [PMID: 19330845]
[80]
Ji, R.R.; Berta, T.; Nedergaard, M. Glia and pain: Is chronic pain a gliopathy? Pain, 2013, 154(1), S10.
[http://dx.doi.org/10.1016/j.pain.2013.06.022]
[81]
Kehlet, H.; Wilmore, D.W. Multimodal strategies to improve surgical outcome. Am. J. Surg., 2002, 183(6), 630-641.
[http://dx.doi.org/10.1016/S0002-9610(02)00866-8] [PMID: 12095591]
[82]
Gritsenko, K.; Khelemsky, Y.; Kaye, A.D.; Vadivelu, N.; Urman, R.D. Multimodal therapy in perioperative analgesia. Baillieres. Best Pract. Res. Clin. Anaesthesiol., 2014, 28(1), 59-79.
[http://dx.doi.org/10.1016/j.bpa.2014.03.001] [PMID: 24815967]
[83]
Stasiowska, M.K.; Ng, S.C.; Gubbay, A.N.; Cregg, R. Postoperative pain management. Br. J. Hosp. Med., 2015, 76(10), 570-575.
[http://dx.doi.org/10.12968/hmed.2015.76.10.570] [PMID: 26457937]
[84]
Gupta, A.; Bah, M. NSAIDs in the treatment of postoperative pain. Curr. Pain Headache Rep., 2016, 20(11), 62.
[http://dx.doi.org/10.1007/s11916-016-0591-7] [PMID: 27841015]
[85]
Cashman, J.N. The mechanisms of action of NSAIDs in analgesia. Drugs, 1996, 52(Suppl. 5), 13-23.
[http://dx.doi.org/10.2165/00003495-199600525-00004]
[86]
Burian, M.; Geisslinger, G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol. Ther., 2005, 107(2), 139-154.
[http://dx.doi.org/10.1016/j.pharmthera.2005.02.004] [PMID: 15993252]
[87]
Malmberg, A.B.; Yaksh, T.L. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J. Pharmacol. Exp. Ther., 1992, 263(1), 136-146. https://pubmed.ncbi.nlm.nih.gov/1403779/
[88]
Seybold, V.S.; Jia, Y.P.; Abrahams, L.G. Cyclo-oxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain, 2003, 105(1), 47-55.
[http://dx.doi.org/10.1016/S0304-3959(03)00254-9] [PMID: 14499419]
[89]
Chou, R.; Gordon, D.B.; de Leon-Casasola, O.A.; Rosenberg, J.M.; Bickler, S.; Brennan, T.; Carter, T.; Cassidy, C.L.; Chittenden, E.H.; Degenhardt, E.; Griffith, S.; Manworren, R.; McCarberg, B.; Montgomery, R.; Murphy, J.; Perkal, M.F.; Suresh, S.; Sluka, K.; Strassels, S.; Thirlby, R.; Viscusi, E.; Walco, G.A.; Warner, L.; Weisman, S.J.; Wu, C.L. Management of postoperative pain: A Clinical practice guideline from the american pain society, the american society of regional anesthesia and pain medicine, and the american society of anesthesiologists’ committee on regional anesthesia, executive committee, and administrative council. J. Pain, 2016, 17(2), 131-157.
[http://dx.doi.org/10.1016/j.jpain.2015.12.008] [PMID: 26827847]
[90]
Doleman, B.; Leonardi-Bee, J.; Heinink, T.P.; Boyd-Carson, H.; Carrick, L.; Mandalia, R.; Lund, J.N.; Williams, J.P. Pre-emptive and preventive NSAIDs for postoperative pain in adults undergoing all types of surgery. Cochrane Libr., 2021, 2021(6), CD012978.
[http://dx.doi.org/10.1002/14651858.CD012978.pub2] [PMID: 34125958]
[91]
Chang, R.W.; Tompkins, D.M.; Cohn, S.M. Are NSAIDs Safe? assessing the risk-benefit profile of nonsteroidal anti-inflammatory drug use in postoperative pain management. Am. Surg., 2021, 87(6), 872-879.
[http://dx.doi.org/10.1177/0003134820952834] [PMID: 33238721]
[92]
Sugita, R.; Kuwabara, H.; Kubota, K.; Sugimoto, K.; Kiho, T.; Tengeiji, A.; Kawakami, K.; Shimada, K. Simultaneous inhibition of PGE2 and PGI2 signals is necessary to suppress hyperalgesia in rat inflammatory pain models. Mediators Inflamm., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/9847840] [PMID: 27478311]
[93]
van Helmond, N.; Steegers, M.A.; Filippini-de Moor, G.P.; Vissers, K.C.; Wilder-Smith, O.H. Hyperalgesia and persistent pain after breast cancer surgery: a prospective randomized controlled trial with perioperative cox-2 inhibition. PLoS One, 2016, 11(12), e0166601.
[http://dx.doi.org/10.1371/journal.pone.0166601] [PMID: 27935990]
[94]
Pak, D.J.; Yong, R.J.; Kaye, A.D.; Urman, R.D. Chronification of pain: mechanisms, current understanding, and clinical implications. Curr. Pain Headache Rep., 2018, 22(2), 9.
[http://dx.doi.org/10.1007/s11916-018-0666-8] [PMID: 29404791]
[95]
Schmid, R.L.; Sandler, A.N.; Katz, J. Use and efficacy of low-dose ketamine in the management of acute postoperative pain: A review of current techniques and outcomes. Pain, 1999, 82(2), 111-125.
[http://dx.doi.org/10.1016/S0304-3959(99)00044-5] [PMID: 10467917]
[96]
Orser, B.A.; Pennefather, P.S.; MacDonald, J.F. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology, 1997, 86(4), 903-917.
[http://dx.doi.org/10.1097/00000542-199704000-00021] [PMID: 9105235]
[97]
Mion, G.; Villevieille, T. Ketamine pharmacology: An update (pharmacodynamics and molecular aspects, recent findings). CNS Neurosci. Ther., 2013, 19(6), 370-380.
[http://dx.doi.org/10.1111/cns.12099] [PMID: 23575437]
[98]
Mikkelsen, S.; Ilkjaer, S.; Brennum, J.; Borgbjerg, F.M.; Dahl, J.B. The effect of naloxone on ketamine-induced effects on hyperalgesia and ketamine-induced side effects in humans. Anesthesiology, 1999, 90(6), 1539-1545.
[http://dx.doi.org/10.1097/00000542-199906000-00007] [PMID: 10360849]
[99]
Kreutzwiser, D.; Tawfic, Q.A. Expanding role of NMDA receptor antagonists in the management of pain. CNS Drugs, 2019, 33(4), 347-374.
[http://dx.doi.org/10.1007/s40263-019-00618-2] [PMID: 30826987]
[100]
Sinner, B.; Graf, B.M. Ketamine. Handb. Exp. Pharmacol., 2008, 182(182), 313-333.
[http://dx.doi.org/10.1007/978-3-540-74806-9_15] [PMID: 18175098]
[101]
Taniguchi, T.; Shibata, K.; Yamamoto, K. Ketamine inhibits endotoxin-induced shock in rats. Anesthesiology, 2001, 95(4), 928-932.
[http://dx.doi.org/10.1097/00000542-200110000-00022] [PMID: 11605934]
[102]
Dale, O.; Somogyi, A.A.; Li, Y.; Sullivan, T.; Shavit, Y. Does intraoperative ketamine attenuate inflammatory reactivity following surgery? A systematic review and meta-analysis. Anesth. Analg., 2012, 115(4), 934-943.
[http://dx.doi.org/10.1213/ANE.0b013e3182662e30] [PMID: 22826531]
[103]
Inaba, H.; Kochi, A.; Yorozu, S. Suppression by methylprednisolone of augmented plasma endotoxin-like activity and interleukin-6 during cardiopulmonary bypass. Br. J. Anaesth., 1994, 72(3), 348-350.
[http://dx.doi.org/10.1093/bja/72.3.348] [PMID: 8130057]
[104]
Gao, M.; Jin, W.; Qian, Y.; Ji, L.; Feng, G.; Sun, J. Effect of N-methyl-D-aspartate receptor antagonist on T helper cell differentiation induced by phorbol-myristate-acetate and ionomycin. Cytokine, 2011, 56(2), 458-465.
[http://dx.doi.org/10.1016/j.cyto.2011.06.022] [PMID: 21795061]
[105]
Gao, M.; Sun, J.; Jin, W.; Qian, Y. Morphine, but not ketamine, decreases the ratio of Th1/Th2 in CD4-positive cells through T-bet and GATA3. Inflammation, 2012, 35(3), 1069-1077.
[http://dx.doi.org/10.1007/s10753-011-9413-6] [PMID: 22160839]
[106]
De Kock, M.; Loix, S.; Lavand’homme, P. Ketamine and peripheral inflammation. CNS Neurosci. Ther., 2013, 19(6), 403-410.
[http://dx.doi.org/10.1111/cns.12104] [PMID: 23574634]
[107]
Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Acute Pain Management From the American Society of Regional Anesthesia and Pain Medicine. the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med., 2018, 43(5), 455-466. https://pubmed.ncbi.nlm.nih.gov/29870457/
[108]
Urman, R.D.; Vadivelu, N.; Schermer, E.; Kodumudi, V.; Belani, K.; Kaye, A. Role of ketamine for analgesia in adults and children. J. Anaesthesiol. Clin. Pharmacol., 2016, 32(3), 298-306.
[http://dx.doi.org/10.4103/0970-9185.168149] [PMID: 27625475]
[109]
Nielsen, R.V.; Fomsgaard, J.S.; Nikolajsen, L.; Dahl, J.B.; Mathiesen, O. Intraoperative S-ketamine for the reduction of opioid consumption and pain one year after spine surgery: A randomized clinical trial of opioid-dependent patients. Eur. J. Pain, 2019, 23(3), 455-460.
[http://dx.doi.org/10.1002/ejp.1317] [PMID: 30246357]
[110]
Nguyen, L.; Thomas, K.L.; Lucke-Wold, B.P.; Cavendish, J.Z.; Crowe, M.S.; Matsumoto, R.R. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders. Pharmacol. Ther., 2016, 159, 1-22.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.016] [PMID: 26826604]
[111]
Taylor, C.P.; Traynelis, S.F.; Siffert, J.; Pope, L.E.; Matsumoto, R.R. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol. Ther., 2016, 164, 170-182.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.010] [PMID: 27139517]
[112]
King, M.R.; Ladha, K.S.; Gelineau, A.M.; Anderson, T.A. Perioperative dextromethorphan as an adjunct for postoperative pain. Anesthesiology, 2016, 124(3), 696-705.
[http://dx.doi.org/10.1097/ALN.0000000000000950] [PMID: 26587683]
[113]
Prostran, M.; Vujovic, K.; Kosutic, J.; Milovanovic, A.; Vuckovic, S.; Srebro, D. Magnesium in pain research: State of the Art. Curr. Med. Chem., 2017, 24(4), 424-434.
[http://dx.doi.org/10.2174/0929867323666161213101744] [PMID: 27978803]
[114]
Morel, V.; Pickering, M.E.; Goubayon, J.; Djobo, M.; Macian, N.; Pickering, G. Magnesium for pain treatment in 2021? State of the art. Nutrients, 2021, 13(5), 1397.
[http://dx.doi.org/10.3390/nu13051397] [PMID: 33919346]
[115]
Helander, E.M.; Menard, B.L.; Harmon, C.M.; Homra, B.K.; Allain, A.V.; Bordelon, G.J.; Wyche, M.Q.; Padnos, I.W.; Lavrova, A.; Kaye, A.D. Multimodal analgesia, current concepts, and acute pain considerations. Curr. Pain Headache Rep., 2017, 21(1), 3.
[http://dx.doi.org/10.1007/s11916-017-0607-y] [PMID: 28132136]
[116]
Sanchez, M.M.C.; De Kock, M.; Forget, P. What is the place of clonidine in anesthesia? Systematic review and meta-analyses of randomized controlled trials. J. Clin. Anesth., 2017, 38, 140-153.
[http://dx.doi.org/10.1016/j.jclinane.2017.02.003] [PMID: 28372656]
[117]
Wang, X.; Liu, N.; Chen, J.; Xu, Z.; Wang, F.; Ding, C. Effect of intravenous dexmedetomidine during general anesthesia on acute postoperative pain in adults. Clin. J. Pain, 2018, 34(12), 1180-1191.
[http://dx.doi.org/10.1097/AJP.0000000000000630] [PMID: 29771731]
[118]
Blaudszun, G.; Lysakowski, C.; Elia, N.; Tramèr, M.R. Effect of perioperative systemic α2 agonists on postoperative morphine consumption and pain intensity: Systematic review and meta-analysis of randomized controlled trials. Anesthesiology, 2012, 116(6), 1312-1322.
[http://dx.doi.org/10.1097/ALN.0b013e31825681cb] [PMID: 22546966]
[119]
Peng, K.; Zhang, J.; Meng, X.; Liu, H.Y.; Ji, F.H. Optimization of postoperative intravenous patient-controlled analgesia with opioid-dexmedetomidine combinations: An updated meta-analysis with trial sequential analysis of randomized controlled trials. Pain Physician, 2017, 20(7), 569-595.
[http://dx.doi.org/10.36076/ppj/2017.7.569]
[120]
Feng, M.; Chen, X.; Liu, T.; Zhang, C.; Wan, L.; Yao, W. Dexmedetomidine and sufentanil combination versus sufentanil alone for postoperative intravenous patient-controlled analgesia: A systematic review and meta-analysis of randomized controlled trials. BMC Anesthesiol., 2019, 19(1), 81.
[http://dx.doi.org/10.1186/s12871-019-0756-0] [PMID: 31103031]
[121]
Lavand’homme, P.M.; Roelants, F.; Waterloos, H.; Collet, V.; De Kock, M.F. An evaluation of the postoperative antihyperalgesic and analgesic effects of intrathecal clonidine administered during elective cesarean delivery. Anesth. Analg., 2008, 107(3), 948-955.
[http://dx.doi.org/10.1213/ane.0b013e31817f1595] [PMID: 18713912]
[122]
Wu, C.T.; Jao, S.W.; Borel, C.O.; Yeh, C.C.; Li, C.Y.; Lu, C.H.; Wong, C.S. The effect of epidural clonidine on perioperative cytokine response, postoperative pain, and bowel function in patients undergoing colorectal surgery. Anesth. Analg., 2004, 99(2), 502-509.
[http://dx.doi.org/10.1213/01.ANE.0000117146.46373.51] [PMID: 15271731]
[123]
Nafziger, A.N.; Barkin, R.L. Opioid therapy in acute and chronic pain. J. Clin. Pharmacol., 2018, 58(9), 1111-1122.
[http://dx.doi.org/10.1002/jcph.1276] [PMID: 29985526]
[124]
Frauenknecht, J.; Kirkham, K.R.; Jacot-Guillarmod, A.; Albrecht, E. Analgesic impact of intra‐operative opioids vs. opioid‐free anaesthesia: A systematic review and meta‐analysis. Anaesthesia, 2019, 74(5), 651-662.
[http://dx.doi.org/10.1111/anae.14582] [PMID: 30802933]
[125]
Toleska, M.; Dimitrovski, A. Is opioid-free general anesthesia more superior for postoperative pain versus opioid general anesthesia in laparoscopic cholecystectomy? Prilozi (Makedon. Akad. Nauk. Umet. Odd. Med. Nauki), 2019, 40(2), 81-87.
[http://dx.doi.org/10.2478/prilozi-2019-0018] [PMID: 31605587]
[126]
Simpson, J.; Bao, X.; Agarwala, A. Pain Management in Enhanced Recovery after Surgery (ERAS) Protocols. Clin. Colon Rectal Surg., 2019, 32(2), 121-128.
[http://dx.doi.org/10.1055/s-0038-1676477] [PMID: 30833861]
[127]
Van de Velde, F.P.; Pogatzki-Zahn, E. Opioid-Free Anaesthesia: Should we all adopt it? An overview of current evidence. Eur. J. Anaesthesiol., 2022, 40(8), 539-541.
[128]
Mathieson, S.; Lin, C.W.C.; Underwood, M.; Eldabe, S. Pregabalin and gabapentin for pain. BMJ, 2020, 369, m1315.
[http://dx.doi.org/10.1136/bmj.m1315] [PMID: 32345589]
[129]
Rai, A.S.; Khan, J.S.; Dhaliwal, J.; Busse, J.W.; Choi, S.; Devereaux, P.J.; Clarke, H. Preoperative pregabalin or gabapentin for acute and chronic postoperative pain among patients undergoing breast cancer surgery: A systematic review and meta-analysis of randomized controlled trials. J. Plast. Reconstr. Aesthet. Surg., 2017, 70(10), 1317-1328.
[http://dx.doi.org/10.1016/j.bjps.2017.05.054] [PMID: 28751024]
[130]
Seib, R.K.; Paul, J.E. Preoperative gabapentin for postoperative analgesia: A meta-analysis. Can. J. Anaesth., 2006, 53(5), 461-469.
[http://dx.doi.org/10.1007/BF03022618] [PMID: 16636030]
[131]
Rai, A.S.; Khan, J.S.; Dhaliwal, J.; Busse, J.W.; Choi, S.; Devereaux, P.J.; Clarke, H. Preoperative pregabalin or gabapentin for acute and chronic postoperative pain among patients undergoing breast cancer surgery: A systematic review and meta-analysis of randomized controlled trials. J. Plast. Reconstr. Aesthet. Surg., 2017, 70(10), 1317-1328.
[http://dx.doi.org/10.1016/j.bjps.2017.05.054] [PMID: 28751024]
[132]
Becker, D.E.; Reed, K.L. Local anesthetics: review of pharmacological considerations. Anesth. Prog., 2012, 59(2), 90-102.
[http://dx.doi.org/10.2344/0003-3006-59.2.90] [PMID: 22822998]
[133]
Cassuto, J.; Sinclair, R.; Bonderovic, M. Anti-inflammatory properties of local anesthetics and their present and potential clinical implications. Acta Anaesthesiol. Scand., 2006, 50(3), 265-282.
[http://dx.doi.org/10.1111/j.1399-6576.2006.00936.x] [PMID: 16480459]
[134]
MacGregor, R.R.; Thorner, R.E.; Wright, D.M. Lidocaine inhibits granulocyte adherence and prevents granulocyte delivery to inflammatory sites. Blood, 1980, 56(2), 203-209.
[http://dx.doi.org/10.1182/blood.V56.2.203.203] [PMID: 7397378]
[135]
Cullen, B.F.; Haschke, R.H. Local anesthetic inhibition of phagocytosis and metabolism of human leukocytes. Anesthesiology, 1974, 40(2), 142-145.
[http://dx.doi.org/10.1097/00000542-197402000-00009] [PMID: 4812712]
[136]
Mikawa, K.; Akamatsu, H.; Nishina, K.; Shiga, M.; Obara, H.; Niwa, Y. Effects of ropivacaine on human neutrophil function: Comparison with bupivacaine and lidocaine. Eur. J. Anaesthesiol., 2003, 20(2), 104-110.
[http://dx.doi.org/10.1097/00003643-200302000-00004] [PMID: 12622492]
[137]
Sasagawa, S. Inhibitory effects of local anesthetics on migration, extracellular release of lysosomal enzyme, and superoxide anion production in human polymorphonuclear leukocytes. Immunopharmacol. Immunotoxicol., 1991, 13(4), 607-622.
[http://dx.doi.org/10.3109/08923979109019726] [PMID: 1663527]
[138]
Hammer, R.; Dahlgren, C.; Stendahl, O. Inhibition of human leukocyte metabolism and random mobility by local anaesthesia. Acta Anaesthesiol. Scand., 1985, 29(5), 520-523.
[http://dx.doi.org/10.1111/j.1399-6576.1985.tb02246.x] [PMID: 2994345]
[139]
Takao, Y.; Mikawa, K.; Nishina, K.; Maekawa, N.; Obara, H. Lidocaine attenuates hyperoxic lung injury in rabbits. Acta Anaesthesiol. Scand., 1996, 40(3), 318-325.
[http://dx.doi.org/10.1111/j.1399-6576.1996.tb04439.x] [PMID: 8721462]
[140]
Allegri, M.; Bugada, D.; De Gregori, M.; Avanzini, M.A.; De Silvestri, A.; Petroni, A.; Sala, A.; Filisetti, C.; Icaro, C.A.; Cobianchi, L. Continuous wound infusion with chloroprocaine in a pig model of surgical lesion: Drug absorption and effects on inflammatory response. J. Pain Res., 2017, 10, 2515-2524.
[http://dx.doi.org/10.2147/JPR.S139856] [PMID: 29184436]
[141]
Niraj, G.; Kelkar, A.; Kaushik, V.; Tang, Y.; Fleet, D.; Tait, F.; Mcmillan, T.; Rathinam, S. Audit of postoperative pain management after open thoracotomy and the incidence of chronic postthoracotomy pain in more than 500 patients at a tertiary center. J. Clin. Anesth., 2017, 36, 174-177.
[http://dx.doi.org/10.1016/j.jclinane.2016.10.011] [PMID: 28183561]
[142]
Lavand’homme, P. From preemptive to preventive analgesia: Time to reconsider the role of perioperative peripheral nerve blocks? Reg. Anesth. Pain Med., 2011, 36(1), 4-6.
[http://dx.doi.org/10.1097/AAP.0b013e31820305b8] [PMID: 21455081]
[143]
Andreae, M.H.; Andreae, D.A. Local anaesthetics and regional anaesthesia for preventing chronic pain after surgery. Cochrane Libr., 2012, 10(10), CD007105.
[http://dx.doi.org/10.1002/14651858.CD007105.pub2] [PMID: 23076930]
[144]
Lim, J.; Chen, D.; McNicol, E.; Sharma, L.; Varaday, G.; Sharma, A.; Wilson, E.; Wright-Yatsko, T.; Yaeger, L.; Gilron, I.; Finnerup, N.B.; Haroutounian, S. Risk factors for persistent pain after breast and thoracic surgeries: A systematic literature review and meta-analysis. Pain, 2022, 163(1), 3-20.
[http://dx.doi.org/10.1097/j.pain.0000000000002301] [PMID: 34001769]
[145]
Zinboonyahgoon, N.; Patton, M.E.; Chen, Y.Y.K.; Edwards, R.R.; Schreiber, K.L. Persistent post-mastectomy pain: The impact of regional anesthesia among patients with high vs. low baseline catastrophizing. Pain Med., 2021, 22(8), 1767-1775.
[http://dx.doi.org/10.1093/pm/pnab039] [PMID: 33560352]
[146]
Harkouk, H.; Fletcher, D.; Martinez, V. Paravertebral block for the prevention of chronic postsurgical pain after breast cancer surgery. Reg. Anesth. Pain Med., 2021, 46(3), 251-257.
[http://dx.doi.org/10.1136/rapm-2020-102040] [PMID: 33414157]
[147]
Beswick, A.D.; Dennis, J.; Gooberman-Hill, R.; Blom, A.W.; Wylde, V. Are perioperative interventions effective in preventing chronic pain after primary total knee replacement? A systematic review. BMJ Open, 2019, 9(9), e028093.
[http://dx.doi.org/10.1136/bmjopen-2018-028093] [PMID: 31494601]
[148]
Geradon, P.; Lavand’homme, P. Use of regional analgesia to prevent the conversion from acute to chronic pain. Curr. Opin. Anaesthesiol., 2022, 35(5), 641-646.
[http://dx.doi.org/10.1097/ACO.0000000000001175] [PMID: 35942702]
[149]
WHO. ICD-11: International classification of diseases. 11th revision, 2019. Available From: https://icd.who.int/en (accessed Oct. 24, 2022).
[150]
Levy, N.; Mills, P.; Mythen, M. Is the pursuit of DREAMing (drinking, eating and mobilising) the ultimate goal of anaesthesia? Anaesthesia, 2016, 71(9), 1008-1012.
[http://dx.doi.org/10.1111/anae.13495] [PMID: 27079158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy