Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Applications of Flow Chemistry in Total Synthesis of Natural Products

Author(s): Sasadhar Majhi*

Volume 27, Issue 12, 2023

Published on: 31 August, 2023

Page: [1072 - 1089] Pages: 18

DOI: 10.2174/1385272827666230809094232

Abstract

A vital driving force for chemists to discover novel synthetic protocols is the improvement of more effective synthetic technologies and sustainable methodologies. This is associated with the development of innovative research that stimulates the creative reevaluating of known conceptions. Currently, these robust methodologies, as well as green synthetic procedures, have been designed for the total synthesis of secondary metabolites. Flow chemistry and flow photochemistry have emerged as powerful tools to promote valuable transformations in the total synthesis of natural products as key step(s). Flow chemistry development offers many merits over a traditional batch format, namely a round-bottom flask. The advantages of this green tool comprise waste minimization, simple scale-up, reduction of reaction time, safety betterment as, well as energy and cost efficiency. Flow chemistry comprises a fascinating prospect for the synthesis of promising organic molecules and bioactive complex natural products as it represents a suitable modern synthetic technology for the improvement of sustainable chemistry. Continuous flow chemistry is an assembly of chemical processes carried out in continuous flowing streams. Compared to conventional organic synthesis, it is a process that strengthens technology and is superior in enhancing and scaling up synthesis, accurately controlling reaction rate, and providing the desired products with maximum yields. In the past and likely in the future natural products and their analogue will continue to deliver the stimulation for drug discovery and development programs. Total synthesis of natural products is very useful to synthesize natural products in the laboratory as many secondary metabolites are available in low quantities from their sources of origin. So, this review wishes to cover the brilliant applications of flow chemistry in the total synthesis of natural products in the field of novel technological advances.

Keywords: Flow chemistry, total synthesis, natural products, drug discovery, sustainable methodologies, modern technologies.

Graphical Abstract

REFERENCES

[1]
Plutschack, M.B.; Pieber, B.; Gilmore, K.; Seeberger, P.H. The hitchhiker’s guide to flow chemistry. Chem. Rev., 2017, 117(18), 11796-11893.
[http://dx.doi.org/10.1021/acs.chemrev.7b00183] [PMID: 28570059]
[2]
Pastre, J.C.; Browne, D.L.; Ley, S.V. Flow chemistry syntheses of natural products. Chem. Soc. Rev., 2013, 42(23), 8849-8869.
[http://dx.doi.org/10.1039/c3cs60246j] [PMID: 23999700]
[3]
Wan, L.; Kong, G.; Liu, M.; Jiang, M.; Cheng, D.; Chen, F. Flow chemistry in the multi-step synthesis of natural products. Green Synth. Catal., 2022, 3(3), 243-258.
[http://dx.doi.org/10.1016/j.gresc.2022.07.007]
[4]
Hartman, R.L. Flow chemistry remains an opportunity for chemists and chemical engineers. Curr. Opin. Chem. Eng., 2020, 29, 42-50.
[http://dx.doi.org/10.1016/j.coche.2020.05.002]
[5]
Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev., 2016, 20(1), 2-25.
[http://dx.doi.org/10.1021/acs.oprd.5b00325]
[6]
Hessel, V.; Kralisch, D.; Kockmann, N.; Noël, T.; Wang, Q. Novel process windows for enabling, accelerating, and uplifting flow chemistry. ChemSusChem, 2013, 6(5), 746-789.
[http://dx.doi.org/10.1002/cssc.201200766] [PMID: 23606410]
[7]
Adamo, A.; Beingessner, R.L.; Behnam, M.; Chen, J.; Jamison, T.F.; Jensen, K.F.; Monbaliu, J.C.M.; Myerson, A.S.; Revalor, E.M.; Snead, D.R.; Stelzer, T.; Weeranoppanant, N.; Wong, S.Y.; Zhang, P. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science, 2016, 352(6281), 61-67.
[http://dx.doi.org/10.1126/science.aaf1337] [PMID: 27034366]
[8]
Majhi, S.; Mandal, B. Modern Sustainable Techniques in Total Synthesis of Bioactive Natural Products; World Scientific Publisher: Singapore, 2023.
[http://dx.doi.org/10.1142/13210]
[9]
Wegner, J.; Ceylan, S.; Kirschning, A. Ten key issues in modern flow chemistry. Chem. Commun., 2011, 47(16), 4583-4592.
[http://dx.doi.org/10.1039/c0cc05060a] [PMID: 21409184]
[10]
Wu, W.; Lesher, M.G.; Hu, C.; Shvedova, K.; Takizawa, B.; O’Connor, T.F.; Yang, X.; Ramanujam, S.; Mascia, S. Development of an automated continuous clarification bypass system to remove suspended particulate matter. Org. Process Res. Dev., 2018, 22(9), 1214-1221.
[http://dx.doi.org/10.1021/acs.oprd.8b00195]
[11]
Burange, A.S.; Osman, S.M.; Luque, R. Understanding flow chemistry for the production of active pharmaceutical ingredients. iScience, 2022, 25(3)103892
[http://dx.doi.org/10.1016/j.isci.2022.103892] [PMID: 35243250]
[12]
Tamborini, L.; Fernandes, P.; Paradisi, F.; Molinari, F. Flow bioreactors as complementary tools for biocatalytic process intensification. Trends Biotechnol., 2018, 36(1), 73-88.
[http://dx.doi.org/10.1016/j.tibtech.2017.09.005] [PMID: 29054312]
[13]
Souza, J.M.D.; Galaverna, R.; Souza, A.A.N.D.; Brocksom, T.J.; Pastre, J.C.; Souza, R.O.M.A.D.; Oliveira, K.T.D. Impact of continuous flow chemistry in the synthesis of natural products and active pharmaceutical ingredients. An. Acad. Bras. Cienc., 2018, 90(1)(Suppl. 2), 1131-1174.
[http://dx.doi.org/10.1590/0001-3765201820170778] [PMID: 29873673]
[14]
De Risi, C.; Bortolini, O.; Brandolese, A.; Di Carmine, G. Recent advances in continuous-flow organocatalysis for process intensification. React. Chem. Eng., 2020, 5, 1017-1052.
[http://dx.doi.org/10.1039/D0RE00076K]
[15]
Rehm, T.H. Flow photochemistry as a tool in organic synthesis. Chemistry, 2020, 26(71), 16952-16974.
[http://dx.doi.org/10.1002/chem.202000381] [PMID: 32427387]
[16]
Ball, P. Chemistry: Why synthesize? Nature, 2015, 528(7582), 327-329.
[http://dx.doi.org/10.1038/528327a] [PMID: 26672538]
[17]
Bucar, F.; Wube, A.; Schmid, M. Natural product isolation - How to get from biological material to pure compounds. Nat. Prod. Rep., 2013, 30(4), 525-545.
[http://dx.doi.org/10.1039/c3np20106f] [PMID: 23396532]
[18]
Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron, 2021, 78131801
[http://dx.doi.org/10.1016/j.tet.2020.131801]
[19]
Hoffmann, R.W. Natural product synthesis: Changes over time. Angew. Chem. Int. Ed., 2013, 52(1), 123-130.
[http://dx.doi.org/10.1002/anie.201203319] [PMID: 23203402]
[20]
Zaid, H.; Raiyn, J.; Nasser, A.; Saad, B.; Rayan, A. Physicochemical properties of natural based products versus synthetic chemicals. Open Nutraceuticals J., 2010, 3(1), 194-202.
[http://dx.doi.org/10.2174/18763960010030100194]
[21]
Nicolaou, K.C.; Rigol, S. Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine. Nat. Prod. Rep., 2020, 37(11), 1404-1435.
[http://dx.doi.org/10.1039/D0NP00003E] [PMID: 32319494]
[22]
Majhi, S. The art of total synthesis of bioactive natural products via microwaves. Curr. Org. Chem., 2021, 25(9), 1047-1069.
[http://dx.doi.org/10.2174/1385272825666210303112302]
[23]
Majhi, S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason. Sonochem., 2021, 77105665
[http://dx.doi.org/10.1016/j.ultsonch.2021.105665] [PMID: 34298310]
[24]
Khashkhashi-Moghadam, S.; Ezazi-Toroghi, S.; Kamkar-Vatanparast, M.; Jouyaeian, P.; Mokaberi, P.; Yazdyani, H.; Amiri-Tehranizadeh, Z.; Reza Saberi, M.; Chamani, J. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J. Mol. Liq., 2022, 356119042
[http://dx.doi.org/10.1016/j.molliq.2022.119042]
[25]
Marjani, N.; Dareini, M.; Asadzade-Lotfabad, M.; Pejhan, M.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: Spectroscopic, calorimetric, and molecular dynamics approaches. Luminescence, 2022, 37(2), 310-322.
[http://dx.doi.org/10.1002/bio.4173] [PMID: 34862709]
[26]
Taheri, R.; Hamzkanlu, N.; Rezvani, Y.; Niroumand, S.; Samandar, F.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq., 2022, 368120826
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[27]
Majhi, S. Applications of Norrish type I and II reactions in the total synthesis of natural products: A review. Photochem. Photobiol. Sci., 2021, 20(10), 1357-1378.
[http://dx.doi.org/10.1007/s43630-021-00100-3] [PMID: 34537894]
[28]
Li, L.; Chen, Z.; Zhang, X.; Jia, Y. Divergent strategy in natural product total synthesis. Chem. Rev., 2018, 118(7), 3752-3832.
[http://dx.doi.org/10.1021/acs.chemrev.7b00653] [PMID: 29516724]
[29]
Akwi, F.M.; Watts, P. Continuous flow chemistry: Where are we now? Recent applications, challenges and limitations. Chem. Commun., 2018, 54(99), 13894-13928.
[http://dx.doi.org/10.1039/C8CC07427E] [PMID: 30483683]
[30]
Al-Tawfiq, J.A.; Momattin, H.; Al-Ali, A.Y.; Eljaaly, K.; Tirupathi, R.; Haradwala, M.B.; Areti, S.; Alhumaid, S.; Rabaan, A.A.; Al Mutair, A.; Schlagenhauf, P. Antibiotics in the pipeline: A literature review (2017–2020). Infection, 2022, 50(3), 553-564.
[http://dx.doi.org/10.1007/s15010-021-01709-3] [PMID: 34606056]
[31]
Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol., 2019, 51, 72-80.
[http://dx.doi.org/10.1016/j.mib.2019.10.008] [PMID: 31733401]
[32]
Doull, J.; Ahmed, Z.; Stuttard, C.; Vining, L.C. Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J. Gen. Microbiol., 1985, 131(1), 97-104.
[PMID: 3989509]
[33]
Sood, S.; Kapil, A.; Das, B.; Jain, Y.; Kabra, S.K. Re-emergence of chloramphenicolsensitive salmonella typhi. Lancet, 1999, 353(9160), 1241-1242.
[http://dx.doi.org/10.1016/S0140-6736(99)00637-6] [PMID: 10217089]
[34]
Rebstock, M.C.; Crooks, H.M.; Controulis, J.; Bartz, Q.R. Chloramphenicol (Chloromycetin).1IV.1a chemical studies. J. Am. Chem. Soc., 1949, 71(7), 2458-2462.
[http://dx.doi.org/10.1021/ja01175a065]
[35]
Madhavan, H.N.; Bagyalakshmi, R. Farewell, chloramphenicol? Is this true?: A review. Res. Rev. J. Microbiol. Biotechnol., 2014, 3, 13-26.
[36]
Hartmann, C.; Peter, C.; Hermann, E.; Ure, B.; Sedlacek, L.; Hansen, G.; Bohnhorst, B. Successful treatment of vancomycin-resistant Enterococcus faecium ventriculitis with combined intravenous and intraventricular chloramphenicol in a newborn. J. Med. Microbiol., 2010, 59(11), 1371-1374.
[http://dx.doi.org/10.1099/jmm.0.022921-0] [PMID: 20634329]
[37]
Du, Z.; Wang, M.; Cui, G.; Zu, X.; Zhao, Z.; Xue, Y. The prevalence of amphenicol resistance in Escherichia coli isolated from pigs in mainland China from 2000 to 2018: A systematic review and meta-analysis. PLoS One, 2020, 15(2)e0228388
[http://dx.doi.org/10.1371/journal.pone.0228388] [PMID: 32045422]
[38]
Xia, Y.; Jiang, M.; Liu, M.; Zhang, Y.; Qu, H.; Xiong, T.; Huang, H.; Cheng, D.; Chen, F. Catalytic syn-selective nitroaldol approach to amphenicol antibiotics: evolution of a unified asymmetric synthesis of (-)-chloramphenicol, (-)-azidamphenicol, (+)-thiamphenicol, and (+)-florfenicol. J. Org. Chem., 2021, 86(17), 11557-11570.
[http://dx.doi.org/10.1021/acs.joc.1c01124] [PMID: 34387504]
[39]
Irfan, M.; Glasnov, T.N.; Kappe, C.O. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. ChemSusChem, 2011, 4(3), 300-316.
[http://dx.doi.org/10.1002/cssc.201000354] [PMID: 21337528]
[40]
Piwowarska, N.A.; Banala, S.; Overkleeft, H.S.; Süssmuth, R.D. Arg-Thz is a minimal substrate for the NαNα-arginyl methyltransferase involved in the biosynthesis of plantazolicin. Chem. Commun., 2013, 49(91), 10703-10705.
[http://dx.doi.org/10.1039/c3cc45898a] [PMID: 24100616]
[41]
Kalyon, B.; Helaly, S.E.; Scholz, R.; Nachtigall, J.; Vater, J.; Borriss, R.; Süssmuth, R.D. Plantazolicin A and B: Structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org. Lett., 2011, 13(12), 2996-2999.
[http://dx.doi.org/10.1021/ol200809m] [PMID: 21568297]
[42]
Scholz, R.; Molohon, K.J.; Nachtigall, J.; Vater, J.; Markley, A.L.; Süssmuth, R.D.; Mitchell, D.A.; Borriss, R. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J. Bacteriol., 2011, 193(1), 215-224.
[http://dx.doi.org/10.1128/JB.00784-10] [PMID: 20971906]
[43]
Molohon, K.J.; Saint-Vincent, P.M.B.; Park, S.; Doroghazi, J.R.; Maxson, T.; Hershfield, J.R.; Flatt, K.M.; Schroeder, N.E.; Ha, T.; Mitchell, D.A. Plantazolicin is an ultra-narrow spectrum antibiotic that targets the Bacillus anthracis membrane. ACS Infect. Dis., 2016, 2(3), 207-220.
[http://dx.doi.org/10.1021/acsinfecdis.5b00115] [PMID: 27152321]
[44]
Molohon, K.J.; Melby, J.O.; Lee, J.; Evans, B.S.; Dunbar, K.L.; Bumpus, S.B.; Kelleher, N.L.; Mitchell, D.A. Structure determination and interception of biosynthetic intermediates for the plantazolicin class of highly discriminating antibiotics. ACS Chem. Biol., 2011, 6(12), 1307-1313.
[http://dx.doi.org/10.1021/cb200339d] [PMID: 21950656]
[45]
Payne, D. J. Microbiology. Desperately seeking new antibiotics. Science, 2008, 321(5896), 1644-1645.
[http://dx.doi.org/10.1126/science.1164586] [PMID: 18801989]
[46]
Fenner, S.; Wilson, Z.E.; Ley, S.V. The total synthesis of the bioactive natural product plantazolicin A and its biosynthetic precursor plantazolicin B. Chemistry, 2016, 22(44), 15902-15912.
[http://dx.doi.org/10.1002/chem.201603157] [PMID: 27619732]
[47]
Glöckner, S.; Tran, D.N.; Ingham, R.J.; Fenner, S.; Wilson, Z.E.; Battilocchio, C.; Ley, S.V. The rapid synthesis of oxazolines and their heterogeneous oxidation to oxazoles under flow conditions. Org. Biomol. Chem., 2015, 13(1), 207-214.
[http://dx.doi.org/10.1039/C4OB02105C] [PMID: 25370905]
[48]
Wilson, Z.E.; Fenner, S.; Ley, S.V. Total syntheses of linear polythiazole/oxazole plantazolicin A and its biosynthetic precursor plantazolicin B. Angew. Chem. Int. Ed., 2015, 54(4), 1284-1288.
[http://dx.doi.org/10.1002/anie.201410063] [PMID: 25424526]
[49]
Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72.
[http://dx.doi.org/10.1016/j.mtchem.2018.05.001]
[50]
Kohnen-Johannsen, K.; Kayser, O. Tropane alkaloids: Chemistry, pharmacology, biosynthesis and production. Molecules, 2019, 24(4), 796.
[http://dx.doi.org/10.3390/molecules24040796] [PMID: 30813289]
[51]
Ain, Q.U.; Khan, H.; Mubarak, M.S.; Pervaiz, A. Plant alkaloids as antiplatelet agent: Drugs of the future in the light of recent developments. Front. Pharmacol., 2016, 7, 292.
[http://dx.doi.org/10.3389/fphar.2016.00292] [PMID: 27713699]
[52]
Baumann, M.; Moody, T.S.; Smyth, M.; Wharry, S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org. Process Res. Dev., 2020, 24(10), 1802-1813.
[http://dx.doi.org/10.1021/acs.oprd.9b00524]
[53]
Armstrong, C.T.; Pritchard, C.Q.; Cook, D.W.; Ibrahim, M.; Desai, B.K.; Whitham, P.J.; Marquardt, B.J.; Chen, Y.; Zoueu, J.T.; Bortner, M.J.; Roper, T.D. Continuous flow synthesis of a pharmaceutical intermediate: A computational fluid dynamics approach. React. Chem. Eng., 2019, 4(3), 634-642.
[http://dx.doi.org/10.1039/C8RE00252E] [PMID: 33456973]
[54]
Li, W.; Jiang, M.; Liu, M.; Ling, X.; Xia, Y.; Wan, L.; Chen, F. Development of a fully continuous-flow approach towards asymmetric total synthesis of tetrahydroprotoberberine natural alkaloids. Chemistry, 2022, 28(33)e202200700
[http://dx.doi.org/10.1002/chem.202200700] [PMID: 35357730]
[55]
Roddan, R.; Subrizi, F.; Broomfield, J.; Ward, J.M.; Keep, N.H.; Hailes, H.C. Chemoenzymatic cascades toward methylated tetrahydroprotoberberine and protoberberine alkaloids. Org. Lett., 2021, 23(16), 6342-6347.
[http://dx.doi.org/10.1021/acs.orglett.1c02110] [PMID: 34355910]
[56]
Leitao da-Cunha, E.V.; Fechine, I.M.; Guedes, D.N.; Barbosa-Filho, J.M.; Sobral da Silva, M. Protoberberine alkaloids. Alkaloids Chem. Biol., 2005, 62, 1-75.
[http://dx.doi.org/10.1016/S1099-4831(05)62001-9] [PMID: 16265921]
[57]
Gadhiya, S.; Madapa, S.; Kurtzman, T.; Alberts, I.L.; Ramsey, S.; Pillarsetty, N.K.; Kalidindi, T.; Harding, W.W. Tetrahydroprotoberberine alkaloids with dopamine and σ receptor affinity. Bioorg. Med. Chem., 2016, 24(9), 2060-2071.
[http://dx.doi.org/10.1016/j.bmc.2016.03.037] [PMID: 27032890]
[58]
Yu, J.; Zhang, Z.; Zhou, S.; Zhang, W.; Tong, R. Evolution of two routes for asymmetric total synthesis of tetrahydroprotoberberine alkaloids. Org. Chem. Front., 2018, 5(2), 242-246.
[http://dx.doi.org/10.1039/C7QO00776K]
[59]
Sun, H.; Zhu, L.; Yang, H.; Qian, W.; Guo, L.; Zhou, S.; Gao, B.; Li, Z.; Zhou, Y.; Jiang, H.; Chen, K.; Zhen, X.; Liu, H. Asymmetric total synthesis and identification of tetrahydroprotoberberine derivatives as new antipsychotic agents possessing a dopamine D1, D2 and serotonin 5-HT1A multi-action profile. Bioorg. Med. Chem., 2013, 21(4), 856-868.
[http://dx.doi.org/10.1016/j.bmc.2012.12.016] [PMID: 23332346]
[60]
Angoli, M.; Barilli, A.; Lesma, G.; Passarella, D.; Riva, S.; Silvani, A.; Danieli, B. Remote stereocenter discrimination in the enzymatic resolution of piperidine-2-ethanol. Short enantioselective synthesis of sedamine and allosedamine. J. Org. Chem., 2003, 68(24), 9525-9527.
[http://dx.doi.org/10.1021/jo035215g] [PMID: 14629188]
[61]
Riva, E.; Rencurosi, A.; Gagliardi, S.; Passarella, D.; Martinelli, M. Synthesis of (+)-dumetorine and congeners by using flow chemistry technologies. Chemistry, 2011, 17(22), 6221-6226.
[http://dx.doi.org/10.1002/chem.201100300] [PMID: 21506188]
[62]
Corley, D.G.; Tempesta, M.S.; Iwu, M.M. Convulsant alkaloids from. Tetrahedron Lett., 1985, 26(13), 1615-1618.
[http://dx.doi.org/10.1016/S0040-4039(00)98566-6]
[63]
Davies, S.G.; Fletcher, A.M.; Roberts, P.M.; Smith, A.D. Asymmetric synthesis of Sedum alkaloids via lithium amide conjugate addition. Tetrahedron, 2009, 65(49), 10192-10213.
[http://dx.doi.org/10.1016/j.tet.2009.09.104]
[64]
Terry, A.V., Jr; Williamson, R.; Gattu, M.; Beach, J.W.; McCurdy, C.R.; Sparks, J.A.; Pauly, J.R. Lobeline and structurally simplified analogs exhibit differential agonist activity and sensitivity to antagonist blockade when compared to nicotine. Neuropharmacology, 1998, 37(1), 93-102.
[http://dx.doi.org/10.1016/S0028-3908(97)00142-1] [PMID: 9680262]
[65]
Yao, Q. A soluble polymer-bound ruthenium carbene complex: A robust and reusable catalyst for ring-closing olefin metathesis. Angew. Chem. Int. Ed., 2000, 39(21), 3896-3898.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3896:AID-ANIE-3896>3.0.CO;2-8] [PMID: 29711712]
[66]
Hanson, J.R. Diterpenoids. Nat. Prod. Rep., 2009, 26(9), 1156-1171.
[http://dx.doi.org/10.1039/b807311m] [PMID: 19693413]
[67]
Hu, Z.; Liu, X.; Tian, M.; Ma, Y.; Jin, B.; Gao, W.; Cui, G.; Guo, J.; Huang, L. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Med. Res. Rev., 2021, 41(6), 2971-2997.
[http://dx.doi.org/10.1002/med.21816] [PMID: 33938025]
[68]
Roncero, A.M.; Tobal, I.E.; Moro, R.F.; Díez, D.; Marcos, I.S. Halimane diterpenoids: Sources, structures, nomenclature and biological activities. Nat. Prod. Rep., 2018, 35(9), 955-991.
[http://dx.doi.org/10.1039/C8NP00016F] [PMID: 29701206]
[69]
Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm., 2002, 235(1-2), 179-192.
[http://dx.doi.org/10.1016/S0378-5173(01)00986-3] [PMID: 11879753]
[70]
Sahu, N.P.; Koike, K.; Banerjee, S.; Achari, B.; Jia, Z.; Nikaido, T. A novel diterpene glycoside from the seeds of Acacia farnesiana. Tetrahedron Lett., 1997, 38(48), 8405-8408.
[http://dx.doi.org/10.1016/S0040-4039(97)10233-7]
[71]
Chada, Y.R. Ed.; The Wealth of India, Raw materials (Revised edition 1985); CSIR: New Delhi, 1985, IA, p. 31.
[72]
Corey, E.J.; Liu, K. Enantioselective total synthesis of the potent Anti-HIV agent neotripterifordin. Reassignment of stereochemistry at C(16). J. Am. Chem. Soc., 1997, 119(41), 9929-9930.
[http://dx.doi.org/10.1021/ja972549c]
[73]
Cherney, E.C.; Green, J.C.; Baran, P.S. Synthesis of ent-kaurane and beyerane diterpenoids by controlled fragmentations of overbred intermediates. Angew. Chem. Int. Ed., 2013, 52(34), 9019-9022.
[http://dx.doi.org/10.1002/anie.201304609] [PMID: 23861294]
[74]
He, C.; Hu, J.; Wu, Y.; Ding, H. Total syntheses of highly oxidized ent -kaurenoids pharicin A, pharicinin B, 7-O-acetylpseurata C, and pseurata C: A [5+2] cascade approach. J. Am. Chem. Soc., 2017, 139(17), 6098-6101.
[http://dx.doi.org/10.1021/jacs.7b02746] [PMID: 28426216]
[75]
Su, F.; Lu, Y.; Kong, L.; Liu, J.; Luo, T. Total synthesis of maoecrystal P: Application of a strained bicyclic synthon. Angew. Chem. Int. Ed., 2018, 57(3), 760-764.
[http://dx.doi.org/10.1002/anie.201711084] [PMID: 29205726]
[76]
Wu, J.; Kadonaga, Y.; Hong, B.; Wang, J.; Lei, X. Enantioselective total synthesis of (+)-jungermatrobrunin A. Angew. Chem. Int. Ed., 2019, 58(32), 10879-10883.
[http://dx.doi.org/10.1002/anie.201903682] [PMID: 31056826]
[77]
Turlik, A.; Chen, Y.; Scruse, A.C.; Newhouse, T.R. Convergent total synthesis of principinol D, a rearranged kaurane diterpenoid. J. Am. Chem. Soc., 2019, 141(20), 8088-8092.
[http://dx.doi.org/10.1021/jacs.9b03751] [PMID: 31042866]
[78]
Lazarski, K.E.; Moritz, B.J.; Thomson, R.J. The total synthesis of Isodon diterpenes. Angew. Chem. Int. Ed., 2014, 53(40), 10588-10599.
[http://dx.doi.org/10.1002/anie.201404482] [PMID: 25159338]
[79]
Riehl, P.S.; DePorre, Y.C.; Armaly, A.M.; Groso, E.J.; Schindler, C.S. New avenues for the synthesis of ent-kaurene diterpenoids. Tetrahedron, 2015, 71(38), 6629-6650.
[http://dx.doi.org/10.1016/j.tet.2015.04.116]
[80]
Xu, S.; Yao, H.; Luo, S.; Zhang, Y.K.; Yang, D.H.; Li, D.; Wang, G.; Hu, M.; Qiu, Y.; Wu, X.; Yao, H.; Xie, W.; Chen, Z.S.; Xu, J. A novel potent anticancer compound optimized from a natural oridonin scaffold induces apoptosis and cell cycle arrest through the mitochondrial pathway. J. Med. Chem., 2017, 60(4), 1449-1468.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01652] [PMID: 28165738]
[81]
Liu, X.; Xu, J.; Zhou, J.; Shen, Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis., 2021, 8(4), 448-462.
[http://dx.doi.org/10.1016/j.gendis.2020.06.010] [PMID: 34179309]
[82]
Que, Y.; Shao, H.; He, H.; Gao, S. Total synthesis of farnesin through an excited-state nazarov reaction. Angew. Chem. Int. Ed., 2020, 59(19), 7444-7449.
[http://dx.doi.org/10.1002/anie.202001350] [PMID: 32052528]
[83]
Shimada, N.; Stewart, C.; Tius, M.A. Asymmetric nazarov cyclizations. Tetrahedron, 2011, 67(33), 5851-5870.
[http://dx.doi.org/10.1016/j.tet.2011.05.062] [PMID: 21857751]
[84]
Zhong, J.; Chen, K.; Qiu, Y.; He, H.; Gao, S. A unified strategy to construct the tetracyclic ring of calyciphylline A alkaloids: Total synthesis of himalensine A. Org. Lett., 2019, 21(10), 3741-3745.
[http://dx.doi.org/10.1021/acs.orglett.9b01184] [PMID: 31038972]
[85]
Cai, S.; Xiao, Z.; Shi, Y.; Gao, S. The photo-Nazarov reaction: Scope and application. Chemistry, 2014, 20(28), 8677-8681.
[http://dx.doi.org/10.1002/chem.201402993] [PMID: 24920398]
[86]
Luong, P.; Ghosh, A.; Moulton, K.D.; Kulkarni, S.S.; Dube, D.H. Synthesis and application of rare deoxy amino L-sugar analogues to probe glycans in pathogenic bacteria. ACS Infect. Dis., 2022, 8(4), 889-900.
[http://dx.doi.org/10.1021/acsinfecdis.2c00060] [PMID: 35302355]
[87]
Zhang, Q.; Yang, Z.; Wang, Q.; Liu, S.; Zhou, T.; Zhao, Y.; Zhang, M. Asymmetric total synthesis of Hetidine-type C20-diterpenoid alkaloids: (+)-Talassimidine and (+)-Talassamine. J. Am. Chem. Soc., 2021, 143(18), 7088-7095.
[http://dx.doi.org/10.1021/jacs.1c01865] [PMID: 33938219]
[88]
Inuki, S.; Sato, K.; Fukuyama, T.; Ryu, I.; Fujimoto, Y. Formal total synthesis of L-Ossamine via decarboxylative functionalization using visible-light-mediated photoredox catalysis in a flow system. J. Org. Chem., 2017, 82(2), 1248-1253.
[http://dx.doi.org/10.1021/acs.joc.6b02531] [PMID: 27997795]
[89]
Flatt, P.M.; Mahmud, T. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat. Prod. Rep., 2007, 24(2), 358-392.
[http://dx.doi.org/10.1039/B603816F] [PMID: 17390001]
[90]
Emmadi, M.; Kulkarni, S.S. Recent advances in synthesis of bacterial rare sugar building blocks and their applications. Nat. Prod. Rep., 2014, 31(7), 870-879.
[http://dx.doi.org/10.1039/C4NP00003J] [PMID: 24700208]
[91]
Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev., 2016, 116(17), 10276-10341.
[http://dx.doi.org/10.1021/acs.chemrev.5b00707] [PMID: 26935706]
[92]
Stevens, C.L.; Gutowski, G.E.; Bryant, C.P.; Glinski, R.P.; Edwards, O.E.; Sharma, G.M. The isolation and synthesis of ossamine, the aminosugar fragment from the fungal metabolite ossamycin. Tetrahedron Lett., 1969, 10(15), 1181-1184.
[http://dx.doi.org/10.1016/S0040-4039(01)87837-0] [PMID: 5794430]
[93]
Kirst, H.A.; Mynderse, J.S.; Martin, J.W.; Baker, P.J.; Paschal, J.W.; Rios Steiner, J.L.; Lobkovsky, E.; Clardy, J. Applications of flow chemistry in total synthesis of natural products. J. Antibiot., 1996, 49, 162-167.
[94]
Galanis, M.; Mattoon, J.R.; Nagley, P. Amino acid substitutions in mitochondrial ATP synthase subunit 9 of Saccharomyces cerevisiae leading to venturicidin or ossamycin resistance. FEBS Lett., 1989, 249(2), 333-336.
[http://dx.doi.org/10.1016/0014-5793(89)80653-2] [PMID: 2661266]
[95]
Bagley, M.; Merritt, E. Convergent synthesis of the central heterocyclic domain of micrococcin P1. Synlett, 2007, 2007(6), 0954-0958.
[http://dx.doi.org/10.1055/s-2007-973870]
[96]
Malik, A.; Afza, N.; Voelter, W. Stereospecific syntheses of D-Ossamine and D-Tolyposamine. Liebigs Ann. Chem., 1984, 1984(4), 636-640.
[http://dx.doi.org/10.1002/jlac.198419840403]
[97]
de Fatima, A.; Modolo, L.; Conegero, L.; Pilli, R.; Ferreira, C.; Kohn, L.; de Carvalho, J. Styryl lactones and their derivatives: Biological activities, mechanisms of action and potential leads for drug design. Curr. Med. Chem., 2006, 13(28), 3371-3384.
[http://dx.doi.org/10.2174/092986706779010298]
[98]
Meirelles, M.A.; Braga, C.B.; Ornelas, C.; Pilli, R.A. Synthesis of nitrogen-containing goniothalamin analogues with higher cytotoxic activity and selectivity against cancer cells. ChemMedChem, 2019, 14(15), 1403-1417.
[http://dx.doi.org/10.1002/cmdc.201900281] [PMID: 31260170]
[99]
Pilli, R.A.; de Toledo, I.; Meirelles, M.A.; Grigolo, T.A. Goniothalamin-related styryl lactones: Isolation, synthesis, biological activity and mode of action. Curr. Med. Chem., 2020, 26(41), 7372-7451.
[http://dx.doi.org/10.2174/0929867325666181009161439] [PMID: 30306856]
[100]
Jewers, K.; Davis, J.B.; Dougan, J.; Manchanda, A.H.; Blunden, G.; Kyi, A.; Wetchapinan, S. Goniothalamin and its distribution in four Goniothalamus species. Phytochemistry, 1972, 11(6), 2025-2030.
[http://dx.doi.org/10.1016/S0031-9422(00)90168-7]
[101]
Braga, C.B.; Kido, L.A.; Lima, E.N.; Lamas, C.A.; Cagnon, V.H.A.; Ornelas, C.; Pilli, R.A. Enhancing the anticancer activity and selectivity of goniothalamin using pH-sensitive acetalated dextran (Ac-Dex) nanoparticles: A promising platform for delivery of natural compounds. ACS Biomater. Sci. Eng., 2020, 6(5), 2929-2942.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00057] [PMID: 33463303]
[102]
Vendramini-Costa, D.B.; Alcaide, A.; Pelizzaro-Rocha, K.J.; Talero, E.; Ávila-Román, J.; Garcia-Mauriño, S.; Pilli, R.A.; de Carvalho, J.E.; Motilva, V. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line. Toxicol. Appl. Pharmacol., 2016, 300, 1-12.
[http://dx.doi.org/10.1016/j.taap.2016.03.009] [PMID: 27016270]
[103]
Kido, L.A.; Montico, F.; Sauce, R.; Macedo, A.B.; Minatel, E.; Costa, D.B.V.; de Carvalho, J.E.; Pilli, R.A.; Cagnon, V.H.A. Anti-inflammatory therapies in TRAMP mice: Delay in PCa progression. Endocr. Relat. Cancer, 2016, 23(4), 235-250.
[http://dx.doi.org/10.1530/ERC-15-0540] [PMID: 26772819]
[104]
Pastre, J.C.; Murray, P.R.D.; Browne, D.L.; Brancaglion, G.A.; Galaverna, R.S.; Pilli, R.A.; Ley, S.V. Integrated batch and continuous flow process for the synthesis of goniothalamin. ACS Omega, 2020, 5(29), 18472-18483.
[http://dx.doi.org/10.1021/acsomega.0c02390] [PMID: 32743225]
[105]
Chiu, C.C.; Liu, P.L.; Huang, K.J.; Wang, H.M.; Chang, K.F.; Chou, C.K.; Chang, F.R.; Chong, I.W.; Fang, K.; Chen, J.S.; Chang, H.W.; Wu, Y.C. Goniothalamin inhibits growth of human lung cancer cells through DNA damage, apoptosis, and reduced migration ability. J. Agric. Food Chem., 2011, 59(8), 4288-4293.
[http://dx.doi.org/10.1021/jf200566a] [PMID: 21391609]
[106]
Vendramini-Costa, D.B.; Castro, I.B.D.; Ruiz, A.L.T.G.; Marquissolo, C.; Pilli, R.A.; Carvalho, J.E. Effect of goniothalamin on the development of Ehrlich solid tumor in mice. Bioorg. Med. Chem., 2010, 18(18), 6742-6747.
[http://dx.doi.org/10.1016/j.bmc.2010.07.053] [PMID: 20729093]
[107]
de Fátima, Â.; Kohn, L.K.; Antônio, M.A.; de Carvalho, J.E.; Pilli, R.A. (R)-Goniothalamin: Total syntheses and cytotoxic activity against cancer cell lines. Bioorg. Med. Chem., 2005, 13(8), 2927-2933.
[http://dx.doi.org/10.1016/j.bmc.2005.02.007] [PMID: 15781402]
[108]
Zhang, J.; Chen, J.; Liang, Z.; Zhao, C. New lignans and their biological activities. Chem. Biodivers., 2014, 11(1), 1-54.
[http://dx.doi.org/10.1002/cbdv.201100433] [PMID: 24443425]
[109]
Pan, J.Y.; Chen, S.L.; Yang, M.H.; Wu, J.; Sinkkonen, J.; Zou, K. An update on lignans: Natural products and synthesis. Nat. Prod. Rep., 2009, 26(10), 1251-1292.
[http://dx.doi.org/10.1039/b910940d] [PMID: 19779640]
[110]
Qian, Liu Y.; Yang, L.; Tian, X. Podophyllotoxin: Current perspectives. Curr. Bioact. Compd., 2007, 3(1), 37-66.
[http://dx.doi.org/10.2174/157340707780126499]
[111]
Gupta, R.S. Podophyllotoxin-resistant mutants of Chinese hamster ovary cells: Cross-resistance studies with various microtubule inhibitors and podophyllotoxin analogues. Cancer Res., 1983, 43(2), 505-512.
[PMID: 6848174]
[112]
Hughes, G.K.; Ritchie, E. The chemical constituents of Himantandra species. I. The Lignins of Himantandra baccata Bail. and H. belgraveana F. Muell. Aust. J. Chem., 1954, 7(1), 104-112.
[http://dx.doi.org/10.1071/CH9540104]
[113]
Liu, J.S.; Huang, M.F.; Gao, Y.L.; Findlay, J.A. The structure of chicanine, a new lignan from Schisandra sp. Can. J. Chem., 1981, 59(11), 1680-1684.
[http://dx.doi.org/10.1139/v81-250]
[114]
Nemethy, E.K.; Lago, R.; Hawkins, D.; Calvin, M. Lignans of Myristica otoba. Phytochemistry, 1986, 25(4), 959-960.
[http://dx.doi.org/10.1016/0031-9422(86)80038-3]
[115]
Lisiecki, K.; Czarnocki, Z. Flow photochemistry as a tool for the total synthesis of (+)-Epigalcatin. Org. Lett., 2018, 20(3), 605-607.
[http://dx.doi.org/10.1021/acs.orglett.7b03974] [PMID: 29345466]
[116]
Elliott, L.D.; Knowles, J.P.; Koovits, P.J.; Maskill, K.G.; Ralph, M.J.; Lejeune, G.; Edwards, L.J.; Robinson, R.I.; Clemens, I.R.; Cox, B.; Pascoe, D.D.; Koch, G.; Eberle, M.; Berry, M.B.; Booker-Milburn, K.I. Batch versus flow photochemistry: A revealing comparison of yield and productivity. Chemistry, 2014, 20(46), 15226-15232.
[http://dx.doi.org/10.1002/chem.201404347] [PMID: 25263341]
[117]
Lisiecki, K.; Krawczyk, K.K.; Roszkowski, P.; Maurin, J.K.; Czarnocki, Z. Formal synthesis of (-)-podophyllotoxin through the photocyclization of an axially chiral 3,4-bisbenzylidene succinate amide ester - A flow photochemistry approach. Org. Biomol. Chem., 2016, 14(2), 460-469.
[http://dx.doi.org/10.1039/C5OB01844G] [PMID: 26537290]
[118]
Datta, P.K.; Yau, C.; Hooper, T.S.; Yvon, B.L.; Charlton, J.L. Acid-catalyzed cyclization of 2,3-dibenzylidenesuccinates: Synthesis of lignans (+/-)-cagayanin and (+/-)-galbulin. J. Org. Chem., 2001, 66(25), 8606-8611.
[http://dx.doi.org/10.1021/jo0161025] [PMID: 11735544]
[119]
Cortés-Borda, D.; Wimmer, E.; Gouilleux, B.; Barré, E.; Oger, N.; Goulamaly, L.; Peault, L.; Charrier, B.; Truchet, C.; Giraudeau, P.; Rodriguez-Zubiri, M.; Le Grognec, E.; Felpin, F.X. An autonomous self-optimizing flow reactor for the synthesis of natural product carpanone. J. Org. Chem., 2018, 83(23), 14286-14299.
[http://dx.doi.org/10.1021/acs.joc.8b01821] [PMID: 30212208]
[120]
Gutmann, B.; Cantillo, D.; Kappe, C.O. Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed., 2015, 54(23), 6688-6728.
[http://dx.doi.org/10.1002/anie.201409318] [PMID: 25989203]
[121]
Movsisyan, M.; Delbeke, E.I.P.; Berton, J.K.E.T.; Battilocchio, C.; Ley, S.V.; Stevens, C.V. Taming hazardous chemistry by continuous flow technology. Chem. Soc. Rev., 2016, 45(18), 4892-4928.
[http://dx.doi.org/10.1039/C5CS00902B] [PMID: 27453961]
[122]
Brophy, G.C.; Mohandas, J.; Slaytor, M.; Sternhell, S.; Watson, T.R.; Wilson, L.A. Novel lignans from a sp. from bougainville. Tetrahedron Lett., 1969, 10(59), 5159-5162.
[http://dx.doi.org/10.1016/S0040-4039(01)88911-5] [PMID: 5369459]
[123]
Constantin, M.A.; Conrad, J. Merişor, E.; Koschorreck, K.; Urlacher, V.B.; Beifuss, U. Oxidative dimerization of (E)- and (Z)-2-propenylsesamol with O2 in the presence and absence of laccases and other catalysts: Selective formation of carpanones and benzopyrans under different reaction conditions. J. Org. Chem., 2012, 77(10), 4528-4543.
[http://dx.doi.org/10.1021/jo300263k] [PMID: 22458664]
[124]
Han, X.; Armstrong, D.W. Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions. Org. Lett., 2005, 7(19), 4205-4208.
[http://dx.doi.org/10.1021/ol051637w] [PMID: 16146388]
[125]
Daniels, R.N.; Fadeyi, O.O.; Lindsley, C.W. A new catalytic Cu(II)/sparteine oxidant system for ββ-phenolic couplings of styrenyl phenols: Synthesis of carpanone and unnatural analogs. Org. Lett., 2008, 10(18), 4097-4100.
[http://dx.doi.org/10.1021/ol801643t] [PMID: 18729467]
[126]
Arsic, B. Barber, J.; Čikoš, A.; Mladenovic, M.; Stankovic, N.; Novak, P. 16-membered macrolide antibiotics: A review. Int. J. Antimicrob. Agents, 2018, 51(3), 283-298.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.05.020] [PMID: 28668674]
[127]
Zhanel, G.G.; Dueck, M.; Hoban, D.J.; Vercaigne, L.M.; Embil, J.M.; Gin, A.S.; Karlowsky, J.A. Review of macrolides and ketolides: Focus on respiratory tract infections. Drugs, 2001, 61(4), 443-498.
[http://dx.doi.org/10.2165/00003495-200161040-00003] [PMID: 11324679]
[128]
Xie, J.; Bogliotti, N. Synthesis and applications of carbohydrate-derived macrocyclic compounds. Chem. Rev., 2014, 114(15), 7678-7739.
[http://dx.doi.org/10.1021/cr400035j] [PMID: 25007213]
[129]
Zhang, B.; Wang, Y.; Yang, S.P.; Zhou, Y.; Wu, W.B.; Tang, W.; Zuo, J.P.; Li, Y.; Yue, J.M. Ivorenolide A, an unprecedented immunosuppressive macrolide from Khaya ivorensis: Structural elucidation and bioinspired total synthesis. J. Am. Chem. Soc., 2012, 134(51), 20605-20608.
[http://dx.doi.org/10.1021/ja310482z] [PMID: 23214963]
[130]
Wang, Y.; Liu, Q.F.; Xue, J.J.; Zhou, Y.; Yu, H.C.; Yang, S.P.; Zhang, B.; Zuo, J.P.; Li, Y.; Yue, J.M. Ivorenolide B, an immunosuppressive 17-membered macrolide from Khaya ivorensis: Structural determination and total synthesis. Org. Lett., 2014, 16(7), 2062-2065.
[http://dx.doi.org/10.1021/ol500667d] [PMID: 24666217]
[131]
de Léséleuc, M.; Godin, É.; Parisien-Collette, S.; Lévesque, A.; Collins, S.K. Catalytic macrocyclization strategies using continuous flow: Formal total synthesis of ivorenolide A. J. Org. Chem., 2016, 81(15), 6750-6756.
[http://dx.doi.org/10.1021/acs.joc.6b01500] [PMID: 27404899]
[132]
Mohapatra, D.K.; Umamaheshwar, G.; Rao, R.N.; Rao, T.S. R, S.K.; Yadav, J.S. Total synthesis of Ivorenolide A following a base-induced elimination protocol. Org. Lett., 2015, 17(4), 979-981.
[http://dx.doi.org/10.1021/acs.orglett.5b00138] [PMID: 25629815]
[133]
Martí-Centelles, V.; Pandey, M.D.; Burguete, M.I.; Luis, S.V. Macrocyclization reactions: The importance of conformational, configurational, and template-induced preorganization. Chem. Rev., 2015, 115(16), 8736-8834.
[http://dx.doi.org/10.1021/acs.chemrev.5b00056] [PMID: 26248133]
[134]
Shu, C.; Zeng, X.; Hao, M.H.; Wei, X.; Yee, N.K.; Busacca, C.A.; Han, Z.; Farina, V.; Senanayake, C.H. RCM macrocyclization made practical: An efficient synthesis of HCV protease inhibitor BILN 2061. Org. Lett., 2008, 10(6), 1303-1306.
[http://dx.doi.org/10.1021/ol800183x] [PMID: 18293994]
[135]
Collins, J.C.; Farley, K.A.; Limberakis, C.; Liras, S.; Price, D.; James, K. Macrocyclizations for medicinal chemistry: Synthesis of druglike macrocycles by high-concentration Ullmann coupling. J. Org. Chem., 2012, 77(24), 11079-11090.
[http://dx.doi.org/10.1021/jo302089f] [PMID: 23167628]
[136]
Mohamad Said, K.A.; Ismail, A.F.; Abdul Karim, Z.; Abdullah, M.S.; Hafeez, A. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater. Process Saf. Environ. Prot., 2021, 151, 257-289.
[http://dx.doi.org/10.1016/j.psep.2021.05.015]
[137]
Kumar, A.; Mishra, A.K. Biological importance of phenol derivatives as potent bioactive compound: A review. Lett. Org. Chem., 2018, 15(4), 251-264.
[http://dx.doi.org/10.2174/1570178614666171130155539]
[138]
Asakawa, Y.; Toyota, M.; Takemoto, T. Seven new bibenzyls and a dihydrochalcone from Radula variabilis. Phytochemistry, 1978, 17(11), 2005-2010.
[http://dx.doi.org/10.1016/S0031-9422(00)88752-X]
[139]
Asakawa, Y. Biologically active compounds from bryophytes. Pure Appl. Chem., 2007, 79(4), 557-580.
[http://dx.doi.org/10.1351/pac200779040557]
[140]
Asakawa, Y.; Hashimoto, T.; Takikawa, K.; Tori, M.; Ogawa, S. Prenyl bibenzyls from the liverworts radula perrottetii and radula complanata. Phytochemistry, 1991, 30(1), 235-251.
[http://dx.doi.org/10.1016/0031-9422(91)84130-K]
[141]
Nandy, S.; Dey, A. Bibenzyls and bisbybenzyls of bryophytic origin as promising source of novel therapeutics: Pharmacology, synthesis and structure-activity. Daru, 2020, 28(2), 701-734.
[http://dx.doi.org/10.1007/s40199-020-00341-0] [PMID: 32803687]
[142]
Schwartner, C.; Bors, W.; Michel, C.; Franck, U.; Müller-Jakic, B.; Nenninger, A.; Asakawa, Y.; Wagner, H. Effect of marchantins and related compounds on 5-lipoxygenase and cyclooxygenase and their antioxidant properties: A structure activity relationship study. Phytomedicine, 1995, 2(2), 113-117.
[http://dx.doi.org/10.1016/S0944-7113(11)80055-3] [PMID: 23196152]
[143]
Lockett-Walters, B.; Thuillier, S.; Baudouin, E.; Nay, B. Total synthesis of phytotoxic radulanin A facilitated by the photochemical ring expansion of a 2,2-dimethylchromene in flow. Org. Lett., 2022, 24(22), 4029-4033.
[http://dx.doi.org/10.1021/acs.orglett.2c01462] [PMID: 35652559]
[144]
Yoshida, M.; Nakatani, K.; Shishido, K. Total synthesis of radulanin H and proposed structure of radulanin E. Tetrahedron, 2009, 65(29-30), 5702-5708.
[http://dx.doi.org/10.1016/j.tet.2009.05.027]
[145]
Yamaguchi, S.; Furihata, K.; Miyazawa, M.; Yokoyama, H.; Hirai, Y. A new preparation of 2,5-dihydro-1-benzoxepins using Mitsunobu cyclization, and the synthesis of natural radulanins. Tetrahedron Lett., 2000, 41(24), 4787-4790.
[http://dx.doi.org/10.1016/S0040-4039(00)00676-6]
[146]
Asakawa, Y.; Kondo, K.; Takikawa, N.K.; Tori, M.; Hashimoto, T.; Ogawa, S. Prenyl bibenzyls from the liverwort Radula kojana. Phytochemistry, 1991, 30(1), 219-234.
[http://dx.doi.org/10.1016/0031-9422(91)84129-G]
[147]
Zhang, W.; Baudouin, E.; Cordier, M.; Frison, G.; Nay, B. One-pot synthesis of metastable 2,5-dihydrooxepines through retro-claisen rearrangements: Method and applications. Chemistry, 2019, 25(36), 8643-8648.
[http://dx.doi.org/10.1002/chem.201901675] [PMID: 31033060]

© 2024 Bentham Science Publishers | Privacy Policy