Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Peripheral Nervous System Pain Modulation

Author(s): Marcin Karcz* and Christopher Gharibo

Volume 22, Issue 1, 2024

Published on: 04 August, 2023

Page: [65 - 71] Pages: 7

DOI: 10.2174/1570159X21666230803100400

Price: $65

Open Access Journals Promotions 2
Abstract

The percutaneous technique of electrode insertion in the vicinity of the greater occipital nerves to treat occipital neuralgia was first described in the 1990s by Weiner and Reed. This subsequently stimulated awareness of peripheral nerve stimulation (PNS). The more recent advent emergence of a minimally invasive percutaneous approach by way of using ultrasound has further increased the interest in PNS as a viable alternative to more invasive techniques. PNS has become more popular recently and is increasingly used to treat various pain conditions. Its foundation is fundamentally based on the gate control theory, although the precise mechanism underlying its analgesic effect is still indefinite. Studies have demonstrated the peripheral and central analgesic mechanisms of PNS by modulating the inflammatory pathways, the autonomic nervous system, the endogenous pain inhibition pathways, and the involvement of the cortical and subcortical areas. Peripheral nerve stimulation exhibits its neuromodulatory effect both peripherally and centrally. Further understanding of the modulation of PNS mechanisms can help guide stimulation approaches and parameters to optimize the use of PNS. his chapter aims to review the background and mechanisms of PNS modulation. PNS is becoming one of the most diverse therapies in neuromodulation due to rapid evolution and expansion. It is an attractive option for clinicians due to the simplicity and versatility of procedures that can be combined with other neuromodulation treatments or used alone. It has a distinct role in the modulation of functional conditions.

Keywords: Peripheral nerve stimulation, acute pain, chronic pain, modulation, neuromodulation, mechanisms.

Graphical Abstract
[1]
Heinricher, M.M.; Tavares, I.; Leith, J.L.; Lumb, B.M. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res. Brain Res. Rev., 2009, 60(1), 214-225.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.009] [PMID: 19146877]
[2]
Woolf, C.J.; Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science, 2000, 288(5472), 1765-1768.
[http://dx.doi.org/10.1126/science.288.5472.1765] [PMID: 10846153]
[3]
Pierce, P.A.; Xie, G.X.; Levine, J.D.; Peroutka, S.J. 5-hydroxy-tryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: A polymerase chain reaction study. Neuroscience, 1996, 70(2), 553-559.
[http://dx.doi.org/10.1016/0306-4522(95)00329-0] [PMID: 8848158]
[4]
Odem, M.A.; Bavencoffe, A.G.; Cassidy, R.M.; Lopez, E.R.; Tian, J.; Dessauer, C.W.; Walters, E.T. Isolated nociceptors reveal multiple specializations for generating irregular ongoing activity associated with ongoing pain. Pain, 2018, 159(11), 2347-2362.
[http://dx.doi.org/10.1097/j.pain.0000000000001341] [PMID: 30015712]
[5]
Qin, H.; Luo, J.; Qi, S.; Xu, H.; Sung, J.J.Y.; Bian, Z. Visceral hypersensitivity induced by activation of transient receptor potential vanilloid type 1 is mediated through the serotonin pathway in rat colon. Eur. J. Pharmacol., 2010, 647(1-3), 75-83.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.019] [PMID: 20826151]
[6]
Nakajima, K.; Obata, H.; Ito, N.; Goto, F.; Saito, S. The nociceptive mechanism of 5-hydroxytryptamine released into the peripheral tissue in acute inflammatory pain in rats. Eur. J. Pain, 2009, 13(5), 441-447.
[http://dx.doi.org/10.1016/j.ejpain.2008.06.007] [PMID: 18656400]
[7]
Hansen, N.; Üçeyler, N.; Palm, F.; Zelenka, M.; Biko, L.; Lesch, K.P.; Gerlach, M.; Sommer, C. Serotonin transporter deficiency protects mice from mechanical allodynia and heat hyperalgesia in vincristine neuropathy. Neurosci. Lett., 2011, 495(2), 93-97.
[http://dx.doi.org/10.1016/j.neulet.2011.03.035] [PMID: 21419830]
[8]
Ernberg, M.; Hedenberg-Magnusson, B.; Kurita, H.; Kopp, S. Effects of local serotonin administration on pain and microcirculation in the human masseter muscle. J. Orofac. Pain, 2006, 20(3), 241-248.
[PMID: 16913434]
[9]
Ernberg, M.; Lundeberg, T.; Kopp, S. Effect of propranolol and granisetron on experimentally induced pain and allodynia/hyperalgesia by intramuscular injection of serotonin into the human masseter muscle. Pain, 2000, 84(2), 339-346.
[http://dx.doi.org/10.1016/S0304-3959(99)00221-3] [PMID: 10666539]
[10]
Carlton, S.M.; Hargett, G.L.; Coggeshall, R.E. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci. Lett., 1995, 197(1), 25-28.
[http://dx.doi.org/10.1016/0304-3940(95)11889-5] [PMID: 8545047]
[11]
McNearney, T.; Speegle, D.; Lawand, N.; Lisse, J.; Westlund, K.N. Excitatory amino acid profiles of synovial fluid from patients with arthritis. J. Rheumatol., 2000, 27(3), 739-745.
[PMID: 10743819]
[12]
Stein, C.; Clark, J.D.; Oh, U.; Vasko, M.R.; Wilcox, G.L.; Overland, A.C.; Vanderah, T.W.; Spencer, R.H. Peripheral mechanisms of pain and analgesia. Brain Res. Brain Res. Rev., 2009, 60(1), 90-113.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.017] [PMID: 19150465]
[13]
Stein, C. Targeting pain and inflammation by peripherally acting opioids. Front. Pharmacol., 2013, 4, 123.
[http://dx.doi.org/10.3389/fphar.2013.00123] [PMID: 24068999]
[14]
Stein, C.; Millan, M.J.; Shippenberg, T.S.; Peter, K.; Herz, A. Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J. Pharmacol. Exp. Ther., 1989, 248(3), 1269-1275.
[PMID: 2539460]
[15]
Zöllner, C.; Stein, C. Opioids. Handb. Exp. Pharmacol., 2007, (177), 31-63.
[PMID: 17087119]
[16]
Sánchez-Fernández, C.; Montilla-García, Á.; González-Cano, R.; Nieto, F.R.; Romero, L.; Artacho-Cordón, A.; Montes, R.; Fernández-Pastor, B.; Merlos, M.; Baeyens, J.M.; Entrena, J.M.; Cobos, E.J. Modulation of peripheral μ-opioid analgesia by σ1 receptors. J. Pharmacol. Exp. Ther., 2014, 348(1), 32-45.
[http://dx.doi.org/10.1124/jpet.113.208272] [PMID: 24155346]
[17]
Guan, Y.; Johanek, L.M.; Hartke, T.V.; Shim, B.; Tao, Y.X.; Ringkamp, M.; Meyer, R.A.; Raja, S.N. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury. Pain, 2008, 138(2), 318-329.
[http://dx.doi.org/10.1016/j.pain.2008.01.004] [PMID: 18276075]
[18]
Eisenach, J.C.; Carpenter, R.; Curry, R. Analgesia from a peripherally active κ-opioid receptor agonist in patients with chronic pancreatitis. Pain, 2003, 101(1), 89-95.
[http://dx.doi.org/10.1016/S0304-3959(02)00259-2] [PMID: 12507703]
[19]
Mangel, A.W.; Bornstein, J.D.; Hamm, L.R.; Buda, J.; Wang, J.; Irish, W.; Urso, D. Clinical trial: asimadoline in the treatment of patients with irritable bowel syndrome. Aliment. Pharmacol. Ther., 2008, 28(2), 239-249.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03730.x] [PMID: 18466359]
[20]
Wallace, M.S.; Moulin, D.; Clark, A.J.; Wasserman, R.; Neale, A.; Morley-Forster, P.; Castaigne, J.P.; Teichman, S. A Phase II, multicenter, randomized, double-blind, placebo-controlled crossover study of CJC-1008-a long-acting, parenteral opioid analgesic-in the treatment of postherpetic neuralgia. J. Opioid. Manag., 2006, 2(3), 167-173.
[http://dx.doi.org/10.5055/jom.2006.0026] [PMID: 17319450]
[21]
Tegeder, I.; Meier, S.; Burian, M.; Schmidt, H.; Geisslinger, G.; Lötsch, J. Peripheral opioid analgesia in experimental human pain models. Brain, 2003, 126(5), 1092-1102.
[http://dx.doi.org/10.1093/brain/awg115] [PMID: 12690049]
[22]
Hanna, M.H.; Elliott, K.M.; Fung, M. Randomized, double-blind study of the analgesic efficacy of morphine-6-glucuronide versus morphine sulfate for postoperative pain in major surgery. Anesthesiology, 2005, 102(4), 815-821.
[http://dx.doi.org/10.1097/00000542-200504000-00018] [PMID: 15791112]
[23]
Torebjörk, H.E.; Hallin, R.G. Responses in human A and C fibres to repeated electrical intradermal stimulation. J. Neurol. Neurosurg. Psychiatry, 1974, 37(6), 653-664.
[http://dx.doi.org/10.1136/jnnp.37.6.653] [PMID: 4844133]
[24]
Deer, T.; Jain, S.; Hunter, C.; Chakravarthy, K. Neurostimulation for intractable chronic pain. Brain Sci., 2019, 9(2), 23.
[http://dx.doi.org/10.3390/brainsci9020023] [PMID: 30682776]
[25]
Deogaonkar, M. Peripheral neuromodulation for chronic pain. Neurol. India, 2020, 68(8), 224.
[http://dx.doi.org/10.4103/0028-3886.302451] [PMID: 33318355]
[26]
Ilfeld, B.M.; Finneran, J.J., IV Cryoneurolysis and percutaneous peripheral nerve stimulation to treat acute pain. Anesthesiology, 2020, 133(5), 1127-1149.
[http://dx.doi.org/10.1097/ALN.0000000000003532] [PMID: 32898231]
[27]
Ilfeld, B.M.; Plunkett, A.; Vijjeswarapu, A.M.; Hackworth, R.; Dhanjal, S.; Turan, A.; Cohen, S.P.; Eisenach, J.C.; Griffith, S.; Hanling, S.; Sessler, D.I.; Mascha, E.J.; Yang, D.; Boggs, J.W.; Wongsarnpigoon, A.; Gelfand, H. Percutaneous peripheral nerve stimulation (neuromodulation) for postoperative pain: A randomized, sham-controlled pilot study. Anesthesiology, 2021, 135(1), 95-110.
[http://dx.doi.org/10.1097/ALN.0000000000003776] [PMID: 33856424]
[28]
Ilfeld, B.M.; Gilmore, C.A.; Chae, J. Percutaneous peripheral nerve stimulation for the treatment of postoperative pain following total knee arthroplasty. Neuromodulation, 2016, 19, 10562.
[PMID: 30024078]
[29]
Ilfeld, B.M.; Gabriel, R.A.; Said, E.T.; Monahan, A.M.; Sztain, J.F.; Abramson, W.B.; Khatibi, B.; Finneran, J.J., IV; Jaeger, P.T.; Schwartz, A.K.; Ahmed, S.S. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the sciatic nerve for postoperative analgesia following ambulatory foot surgery, a proof-of-concept study. Reg. Anesth. Pain Med., 2018, 43(6), 580-589.
[http://dx.doi.org/10.1097/AAP.0000000000000819] [PMID: 29905630]
[30]
Ilfeld, B.M.; Gilmore, C.A.; Grant, S.A.; Bolognesi, M.P.; Del Gaizo, D.J.; Wongsarnpigoon, A.; Boggs, J.W. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: A prospective feasibility study. J. Orthop. Surg. Res., 2017, 12(1), 4.
[http://dx.doi.org/10.1186/s13018-016-0506-7] [PMID: 28086940]
[31]
Ilfeld, B.M.; Grant, S.A.; Gilmore, C.A.; Chae, J.; Wilson, R.D.; Wongsarnpigoon, A.; Boggs, J.W. Neurostimulation for postsurgical analgesia: A novel system enabling ultrasound-guided percutaneous peripheral nerve stimulation. Pain Pract., 2017, 17(7), 892-901.
[http://dx.doi.org/10.1111/papr.12539] [PMID: 27910257]
[32]
Weiner, R.L.; Reed, K.L. Peripheral neurostimulation for control of intractable occipital neuralgia. Neuromodulation, 1999, 2(3), 217-221.
[http://dx.doi.org/10.1046/j.1525-1403.1999.00217.x] [PMID: 22151211]
[33]
Dodick, D.W.; Silberstein, S.D.; Reed, K.L.; Deer, T.R.; Slavin, K.V.; Huh, B.; Sharan, A.D.; Narouze, S.; Mogilner, A.Y.; Trentman, T.L.; Ordia, J.; Vaisman, J.; Goldstein, J.; Mekhail, N. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: Long-term results from a randomized, multicenter, double-blinded, controlled study. Cephalalgia, 2015, 35(4), 344-358.
[http://dx.doi.org/10.1177/0333102414543331] [PMID: 25078718]
[34]
Deer, T.R.; Gilmore, C.A.; Desai, M.J.; Li, S.; DePalma, M.J.; Hopkins, T.J.; Burgher, A.H.; Spinner, D.A.; Cohen, S.P.; McGee, M.J.; Boggs, J.W. Corrigendum to: Percutaneous PNS of the medial branch nerves for the treatment of chronic axial back pain in patients following radiofrequency ablation. Pain Med., 2021, 22(8), 1890.
[http://dx.doi.org/10.1093/pm/pnab139] [PMID: 33956970]
[35]
Plazier, M.; Vanneste, S.; Dekelver, I.; Thimineur, M.; De Ridder, D. Peripheral nerve stimulation for fibromyalgia. Prog. Neurol. Surg., 2011, 24, 133-146.
[http://dx.doi.org/10.1159/000323046] [PMID: 21422784]
[36]
Yang, F.; Zhang, T.; Tiwari, V.; Shu, B.; Zhang, C.; Wang, Y.; Vera-Portocarrero, L.P.; Raja, S.N.; Guan, Y. Effects of combined electrical stimulation of the dorsal column and dorsal roots on wide-dynamic-range neuronal activity in nerve-injured rats. Neuromodulation, 2015, 18(7), 592-598.
[http://dx.doi.org/10.1111/ner.12341] [PMID: 26307526]
[37]
Jeong, Y.; Baik, E.J.; Nam, T.S.; Paik, K.S. Effects of iontophoretically applied naloxone, picrotoxin and strychnine on dorsal horn neuron activities treated with high frequency conditioning stimulation in cats. Yonsei Med. J., 1995, 36(4), 336-347.
[http://dx.doi.org/10.3349/ymj.1995.36.4.336] [PMID: 7483677]
[38]
Fritz, A.V.; Ferreira-Dos-Santos, G.; Hurdle, M.F.; Clendenen, S. Ultrasound-guided percutaneous peripheral nerve stimulation for the treatment of complex regional pain syndrome type 1 following a crush injury to the fifth digit: A rare case report. Cureus, 2019, 11(12), e6506.
[http://dx.doi.org/10.7759/cureus.6506] [PMID: 32025427]
[39]
Gilmore, C.; Ilfeld, B.; Rosenow, J.; Li, S.; Desai, M.; Hunter, C.; Rauck, R.; Kapural, L.; Nader, A.; Mak, J.; Cohen, S.; Crosby, N.; Boggs, J. Percutaneous peripheral nerve stimulation for the treatment of chronic neuropathic postamputation pain: a multicenter, randomized, placebo-controlled trial. Reg. Anesth. Pain Med., 2019, 44(6), 637-645.
[http://dx.doi.org/10.1136/rapm-2018-100109] [PMID: 30954936]
[40]
Frederico, T.N.; da Silva Freitas, T. Peripheral nerve stimulation of the brachial plexus for chronic refractory CRPS pain of the upper limb: description of a new technique and case series. Pain Med., 2020, 21(1), S18-S26.
[http://dx.doi.org/10.1093/pm/pnaa201] [PMID: 32804227]
[41]
Chakravarthy, K.V.; Xing, F.; Bruno, K.; Kent, A.R.; Raza, A.; Hurlemann, R.; Kinfe, T.M. A review of spinal and peripheral neuromodulation and neuroinflammation: Lessons learned thus far and future prospects of biotype development. Neuromodulation, 2019, 22(3), 235-243.
[http://dx.doi.org/10.1111/ner.12859] [PMID: 30311715]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy