Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Spatiomolecular Characterization of Dopamine D2 Receptors Cells in the Mouse External Globus Pallidus

Author(s): Julie Espallergues, Jihane Boubaker-Vitre, Audrey Mignon, Maelle Avrillon, Morgane Le Bon-Jego, Jerome Baufreton and Emmanuel Valjent*

Volume 22, Issue 9, 2024

Published on: 31 July, 2023

Page: [1528 - 1539] Pages: 12

DOI: 10.2174/1570159X21666230720121027

Price: $65

conference banner
Abstract

The external globus pallidus (GPe) is part of the basal ganglia circuit and plays a key role in controlling the actions. Although, many evidence indicate that dopamine through its activation of dopamine D2 receptors (D2Rs) modulates the GPe neuronal activity, the precise spatiomolecular characterization of cell populations expressing D2Rs in the mouse GPe is still lacking. By combining single molecule in situ hybridization, cell type-specific imaging analyses, and electrophysiology slice recordings, we found that GPe D2R cells are neurons preferentially localized in the caudal portion of GPe. These neurons comprising pallido-striatal, pallido-nigral, and pallido-cortical neurons segregate into two distinct populations displaying molecular and electrophysiological features of GPe GABAergic PV/NKX2.1 and cholinergic neurons respectively. By clarifying the spatial molecular identity of GPe D2R neurons in the mouse, this work provides the basis for future studies aiming at disentangling the action of dopamine within the GPe.

Keywords: Dopamine, pallidostriatal, globus pallidus, cholinergic neurons, mouse, D2Rs.

Graphical Abstract
[1]
Hegeman, D.J.; Hong, E.S.; Hernández, V.M.; Chan, C.S. The external globus pallidus: Progress and perspectives. Eur. J. Neurosci., 2016, 43(10), 1239-1265.
[http://dx.doi.org/10.1111/ejn.13196] [PMID: 26841063]
[2]
Dong, J.; Hawes, S.; Wu, J.; Le, W.; Cai, H. Connectivity and functionality of the globus pallidus externa under normal conditions and parkinson’s disease. Front. Neural Circuits, 2021, 15, 645287.
[http://dx.doi.org/10.3389/fncir.2021.645287] [PMID: 33737869]
[3]
Dodson, P.D.; Larvin, J.T.; Duffell, J.M.; Garas, F.N.; Doig, N.M.; Kessaris, N.; Duguid, I.C.; Bogacz, R.; Butt, S.J.B.; Magill, P.J. Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus. Neuron, 2015, 86(2), 501-513.
[http://dx.doi.org/10.1016/j.neuron.2015.03.007] [PMID: 25843402]
[4]
Abdi, A.; Mallet, N.; Mohamed, F.Y.; Sharott, A.; Dodson, P.D.; Nakamura, K.C.; Suri, S.; Avery, S.V.; Larvin, J.T.; Garas, F.N.; Garas, S.N.; Vinciati, F.; Morin, S.; Bezard, E.; Baufreton, J.; Magill, P.J. Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci., 2015, 35(17), 6667-6688.
[http://dx.doi.org/10.1523/JNEUROSCI.4662-14.2015] [PMID: 25926446]
[5]
Aristieta, A.; Barresi, M.; Azizpour, L.S.; Barrière, G.; Courtand, G.; de la Crompe, B.; Guilhemsang, L.; Gauthier, S.; Fioramonti, S.; Baufreton, J.; Mallet, N.P. A disynaptic circuit in the globus pallidus controls locomotion inhibition. Curr. Biol., 2021, 31(4), 707-721.e7.
[http://dx.doi.org/10.1016/j.cub.2020.11.019] [PMID: 33306949]
[6]
Sadek, A.R.; Magill, P.J.; Bolam, J.P. A single-cell analysis of intrinsic connectivity in the rat globus pallidus. J. Neurosci., 2007, 27(24), 6352-6362.
[http://dx.doi.org/10.1523/JNEUROSCI.0953-07.2007] [PMID: 17567796]
[7]
Miguelez, C.; Morin, S.; Martinez, A.; Goillandeau, M.; Bezard, E.; Bioulac, B.; Baufreton, J. Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. J. Physiol., 2012, 590(22), 5861-5875.
[http://dx.doi.org/10.1113/jphysiol.2012.241331] [PMID: 22890706]
[8]
Rommelfanger, K.S.; Wichmann, T. Extrastriatal dopaminergic circuits of the basal ganglia. Front. Neuroanat., 2010, 4, 139.
[http://dx.doi.org/10.3389/fnana.2010.00139] [PMID: 21103009]
[9]
Mamad, O.; Delaville, C.; Benjelloun, W.; Benazzouz, A. Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons. PLoS One, 2015, 10(3), e0119152.
[http://dx.doi.org/10.1371/journal.pone.0119152] [PMID: 25742005]
[10]
Meszaros, J.; Cheung, T.; Erler, M.M.; Kang, U.J.; Sames, D.; Kellendonk, C.; Sulzer, D. Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus. eLife, 2018, 7, e42383.
[http://dx.doi.org/10.7554/eLife.42383] [PMID: 30566076]
[11]
Lindvall, O.; Björklund, A. Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway. Brain Res., 1979, 172(1), 169-173.
[http://dx.doi.org/10.1016/0006-8993(79)90907-7] [PMID: 466461]
[12]
Gauthier, J.; Parent, M.; Lévesque, M.; Parent, A. The axonal arborization of single nigrostriatal neurons in rats. Brain Res., 1999, 834(1-2), 228-232.
[http://dx.doi.org/10.1016/S0006-8993(99)01573-5] [PMID: 10407122]
[13]
Aransay, A.; Rodríguez-López, C.; García-Amado, M.; Clascá, F.; Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: A single-cell axon tracing analysis. Front. Neuroanat., 2015, 9, 59.
[http://dx.doi.org/10.3389/fnana.2015.00059] [PMID: 26042000]
[14]
Hauber, W.; Fuchs, H. Dopamine release in the rat globus pallidus characterised by in vivo microdialysis. Behav. Brain Res., 2000, 111(1-2), 39-44.
[http://dx.doi.org/10.1016/S0166-4328(99)00197-7] [PMID: 10840130]
[15]
Napier, T.C.; Simson, P.E.; Givens, B.S. Dopamine electrophysiology of ventral pallidal/substantia innominata neurons: comparison with the dorsal globus pallidus. J. Pharmacol. Exp. Ther., 1991, 258(1), 249-262.
[PMID: 1677041]
[16]
Querejeta, E.; Delgado, A.; Valdiosera, R.; Erlij, D.; Aceves, J. Intrapallidal D2 dopamine receptors control globus pallidus neuron activity in the rat. Neurosci. Lett., 2001, 300(2), 79-82.
[http://dx.doi.org/10.1016/S0304-3940(01)01550-6] [PMID: 11207379]
[17]
Hooper, K.C.; Banks, D.A.; Stordahl, L.J.; White, I.M.; Rebec, G.V. Quinpirole inhibits striatal and excites pallidal neurons in freely moving rats. Neurosci. Lett., 1997, 237(2-3), 69-72.
[http://dx.doi.org/10.1016/S0304-3940(97)00812-4] [PMID: 9453217]
[18]
Levey, A.I.; Hersch, S.M.; Rye, D.B.; Sunahara, R.K.; Niznik, H.B.; Kitt, C.A.; Price, D.L.; Maggio, R.; Brann, M.R.; Ciliax, B.J. Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. USA, 1993, 90(19), 8861-8865.
[http://dx.doi.org/10.1073/pnas.90.19.8861] [PMID: 8415621]
[19]
Yung, K.K.L.; Bolam, J.P.; Smith, A.D.; Hersch, S.M.; Ciliax, B.J.; Levey, A.I. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: Light and electron microscopy. Neuroscience, 1995, 65(3), 709-730.
[http://dx.doi.org/10.1016/0306-4522(94)00536-E] [PMID: 7609871]
[20]
Khan, Z.U.; Gutiérrez, A.; Martín, R.; Peñafiel, A.; Rivera, A.; De La Calle, A. Differential regional and cellular distribution of dopamine D2-like receptors: An immunocytochemical study of subtype-specific antibodies in rat and human brain. J. Comp. Neurol., 1998, 402(3), 353-371.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19981221)402:3<353:AID-CNE5>3.0.CO;2-4] [PMID: 9853904]
[21]
Hoover, B.R.; Marshall, J.F. Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA-containing neurons. Synapse, 2004, 52(2), 100-113.
[http://dx.doi.org/10.1002/syn.20007] [PMID: 15034916]
[22]
Bouali-Benazzouz, R.; Tai, C.H.; Chetrit, J.; Benazzouz, A. Intrapallidal injection of 6-hydroxydopamine induced changes in dopamine innervation and neuronal activity of globus pallidus. Neuroscience, 2009, 164(2), 588-596.
[http://dx.doi.org/10.1016/j.neuroscience.2009.07.034] [PMID: 19628021]
[23]
Raz, A.; Vaadia, E.; Bergman, H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J. Neurosci., 2000, 20(22), 8559-8571.
[http://dx.doi.org/10.1523/JNEUROSCI.20-22-08559.2000] [PMID: 11069964]
[24]
Nini, A.; Feingold, A.; Slovin, H.; Bergman, H. Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J. Neurophysiol., 1995, 74(4), 1800-1805.
[http://dx.doi.org/10.1152/jn.1995.74.4.1800] [PMID: 8989416]
[25]
Filion, M.; Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res., 1991, 547(1), 140-144.
[http://dx.doi.org/10.1016/0006-8993(91)90585-J] [PMID: 1677607]
[26]
Puighermanal, E.; Castell, L.; Esteve-Codina, A.; Melser, S.; Kaganovsky, K.; Zussy, C.; Boubaker-Vitre, J.; Gut, M.; Rialle, S.; Kellendonk, C.; Sanz, E.; Quintana, A.; Marsicano, G.; Martin, M.; Rubinstein, M.; Girault, J.A.; Ding, J.B.; Valjent, E. Functional and molecular heterogeneity of D2R neurons along dorsal ventral axis in the striatum. Nat. Commun., 2020, 11(1), 1957.
[http://dx.doi.org/10.1038/s41467-020-15716-9] [PMID: 32327644]
[27]
Gangarossa, G.; Perroy, J.; Valjent, E. Combinatorial topography and cell-type specific regulation of the ERK pathway by dopaminergic agonists in the mouse striatum. Brain Struct. Funct., 2013, 218(2), 405-419.
[http://dx.doi.org/10.1007/s00429-012-0405-6] [PMID: 22453353]
[28]
Bertran-Gonzalez, J.; Håkansson, K.; Borgkvist, A.; Irinopoulou, T.; Brami-Cherrier, K.; Usiello, A.; Greengard, P.; Hervé, D.; Girault, J.A.; Valjent, E.; Fisone, G. Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons. Neuropsychopharmacology, 2009, 34(7), 1710-1720.
[http://dx.doi.org/10.1038/npp.2008.228] [PMID: 19158668]
[29]
Puighermanal, E.; Biever, A.; Espallergues, J.; Gangarossa, G.; De Bundel, D.; Valjent, E. drd2-cre:ribotag mouse line unravels the possible diversity of dopamine d2 receptor-expressing cells of the dorsal mouse hippocampus. Hippocampus, 2015, 25(7), 858-875.
[http://dx.doi.org/10.1002/hipo.22408] [PMID: 25545461]
[30]
Biever, A.; Puighermanal, E.; Nishi, A.; David, A.; Panciatici, C.; Longueville, S.; Xirodimas, D.; Gangarossa, G.; Meyuhas, O.; Hervé, D.; Girault, J.A.; Valjent, E. PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons. J. Neurosci., 2015, 35(10), 4113-4130.
[http://dx.doi.org/10.1523/JNEUROSCI.3288-14.2015] [PMID: 25762659]
[31]
Franklin, K.B.J.; Paxinos, G. The mouse brain in stereotaxic coordinates Compact 3; Elsevier Academic Press, 2008.
[32]
Cutando, L.; Puighermanal, E.; Castell, L.; Tarot, P.; Bertaso, F.; Bonnavion, P.; de Kerchove d’Exaerde, A.; Isingrini, E.; Galante, M.; Dallerac, G.; Pascoli, V.; Lüscher, C.; Giros, B.; Valjent, E. regulation of GluA1 phosphorylation by d‐amphetamine and methylphenidate in the cerebellum. Addict. Biol., 2021, 26(4), e12995.
[http://dx.doi.org/10.1111/adb.12995] [PMID: 33368923]
[33]
Cousineau, J.; Lescouzères, L.; Taupignon, A.; Delgado-Zabalza, L.; Valjent, E.; Baufreton, J.; Le Bon-Jégo, M. Dopamine D2-like receptors modulate intrinsic properties and synaptic transmission of parvalbumin interneurons in the mouse primary motor cortex. eNeuro, 2020, 7(3), ENEURO.0081-20.2020.
[http://dx.doi.org/10.1523/ENEURO.0081-20.2020]
[34]
Marshall, J.F.; Henry, B.L.; Billings, L.M.; Hoover, B.R. The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression. Neuroscience, 2001, 105(2), 365-378.
[http://dx.doi.org/10.1016/S0306-4522(01)00180-4] [PMID: 11672604]
[35]
Bertran-Gonzalez, J.; Bosch, C.; Maroteaux, M.; Matamales, M.; Hervé, D.; Valjent, E.; Girault, J.A. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J. Neurosci., 2008, 28(22), 5671-5685.
[http://dx.doi.org/10.1523/JNEUROSCI.1039-08.2008] [PMID: 18509028]
[36]
Matamales, M.; Bertran-Gonzalez, J.; Salomon, L.; Degos, B.; Deniau, J.M.; Valjent, E.; Hervé, D.; Girault, J.A. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One, 2009, 4(3), e4770.
[http://dx.doi.org/10.1371/journal.pone.0004770] [PMID: 19274089]
[37]
Sanz, E.; Yang, L.; Su, T.; Morris, D.R.; McKnight, G.S.; Amieux, P.S. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 13939-13944.
[http://dx.doi.org/10.1073/pnas.0907143106] [PMID: 19666516]
[38]
Saunders, A.; Oldenburg, I.A.; Berezovskii, V.K.; Johnson, C.A.; Kingery, N.D.; Elliott, H.L.; Xie, T.; Gerfen, C.R.; Sabatini, B.L. A direct GABAergic output from the basal ganglia to frontal cortex. Nature, 2015, 521(7550), 85-89.
[http://dx.doi.org/10.1038/nature14179] [PMID: 25739505]
[39]
Rajakumar, N.; Elisevich, K.; Flumerfelt, B.A. Parvalbumin-containing GABAergic neurons in the basal ganglia output system of the rat. J. Comp. Neurol., 1994, 350(2), 324-336.
[http://dx.doi.org/10.1002/cne.903500214] [PMID: 7884046]
[40]
Moriizumi, T.; Hattori, T. Separate neuronal populations of the rat globus pallidus projecting to the subthalamic nucleus, auditory cortex and pedunculopontine tegmental area. Neuroscience, 1992, 46(3), 701-710.
[http://dx.doi.org/10.1016/0306-4522(92)90156-V] [PMID: 1372116]
[41]
Nóbrega-Pereira, S.; Gelman, D.; Bartolini, G.; Pla, R.; Pierani, A.; Marín, O. Origin and molecular specification of globus pallidus neurons. J. Neurosci., 2010, 30(8), 2824-2834.
[http://dx.doi.org/10.1523/JNEUROSCI.4023-09.2010] [PMID: 20181580]
[42]
Gangarossa, G.; Castell, L.; Castro, L.; Tarot, P.; Veyrunes, F.; Vincent, P.; Bertaso, F.; Valjent, E. Contrasting patterns of ERK activation in the tail of the striatum in response to aversive and rewarding signals. J. Neurochem., 2019, 151(2), 204-226.
[http://dx.doi.org/10.1111/jnc.14804] [PMID: 31245856]
[43]
Rocchetti, J.; Isingrini, E.; Dal Bo, G.; Sagheby, S.; Menegaux, A.; Tronche, F.; Levesque, D.; Moquin, L.; Gratton, A.; Wong, T.P.; Rubinstein, M.; Giros, B. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus. Biol. Psychiatry, 2015, 77(6), 513-525.
[http://dx.doi.org/10.1016/j.biopsych.2014.03.013] [PMID: 24742619]
[44]
Wei, X.; Ma, T.; Cheng, Y.; Huang, C.C.Y.; Wang, X.; Lu, J.; Wang, J. Dopamine D1 or D2 receptor-expressing neurons in the central nervous system. Addict. Biol., 2018, 23(2), 569-584.
[http://dx.doi.org/10.1111/adb.12512] [PMID: 28436559]
[45]
Khlghatyan, J.; Quintana, C.; Parent, M.; Beaulieu, J-M. High sensitivity mapping of cortical dopamine D2 receptor expressing neurons. Cereb. Cortex, 2019, 29(9), 3813-3827.
[http://dx.doi.org/10.1093/cercor/bhy261]
[46]
Cutando, L.; Puighermanal, E.; Castell, L.; Tarot, P.; Belle, M.; Bertaso, F.; Arango-Lievano, M.; Ango, F.; Rubinstein, M.; Quintana, A.; Chédotal, A.; Mameli, M.; Valjent, E. Cerebellar dopamine D2 receptors regulate social behaviors. Nat. Neurosci., 2022, 25(7), 900-911.
[http://dx.doi.org/10.1038/s41593-022-01092-8] [PMID: 35710984]
[47]
Bouthenet, M.L.; Martres, M.P.; Sales, N.; Schwartz, J.C. A detailed mapping of dopamine D-2 receptors in rat central nervous system by autoradiography with [125I]iodosulpride. Neuroscience, 1987, 20(1), 117-155.
[http://dx.doi.org/10.1016/0306-4522(87)90008-X] [PMID: 2882443]
[48]
Bouthenet, M.L.; Souil, E.; Martres, M.P.; Sokoloff, P.; Giros, B.; Schwartz, J.C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: Comparison with dopamine D2 receptor mRNA. Brain Res., 1991, 564(2), 203-219.
[http://dx.doi.org/10.1016/0006-8993(91)91456-B] [PMID: 1839781]
[49]
Meador-Woodruff, J.H.; Mansour, A.; Bunzow, J.R.; Van Tol, H.H.; Watson, S.J., Jr; Civelli, O. Distribution of D2 dopamine receptor mRNA in rat brain. Proc. Natl. Acad. Sci. USA, 1989, 86(19), 7625-7628.
[http://dx.doi.org/10.1073/pnas.86.19.7625] [PMID: 2529545]
[50]
Shammah-Lagnado, S.J.; Alheid, G.F.; Heimer, L. Efferent connections of the caudal part of the globus pallidus in the rat. J. Comp. Neurol., 1996, 376(3), 489-507.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19961216)376:3<489:AID-CNE10>3.0.CO;2-H] [PMID: 8956113]
[51]
Valjent, E.; Gangarossa, G. The tail of the striatum: From anatomy to connectivity and function. Trends Neurosci., 2021, 44(3), 203-214.
[http://dx.doi.org/10.1016/j.tins.2020.10.016] [PMID: 33243489]
[52]
Mastro, K.J.; Bouchard, R.S.; Holt, H.A.K.; Gittis, A.H. Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J. Neurosci., 2014, 34(6), 2087-2099.
[http://dx.doi.org/10.1523/JNEUROSCI.4646-13.2014] [PMID: 24501350]
[53]
Hernández, V.M.; Hegeman, D.J.; Cui, Q.; Kelver, D.A.; Fiske, M.P.; Glajch, K.E.; Pitt, J.E.; Huang, T.Y.; Justice, N.J.; Chan, C.S. Parvalbumin+ neurons and npas1+ neurons are distinct neuron classes in the mouse external globus pallidus. J. Neurosci., 2015, 35(34), 11830-11847.
[http://dx.doi.org/10.1523/JNEUROSCI.4672-14.2015] [PMID: 26311767]
[54]
Abrahao, K.P.; Lovinger, D.M. Classification of GABAergic neuron subtypes from the globus pallidus using wild-type and transgenic mice. J. Physiol., 2018, 596(17), 4219-4235.
[http://dx.doi.org/10.1113/JP276079] [PMID: 29917235]
[55]
Pamukcu, A.; Cui, Q.; Xenias, H.S.; Berceau, B.L.; Augustine, E.C.; Fan, I.; Chalasani, S.; Hantman, A.W.; Lerner, T.N.; Boca, S.M.; Chan, C.S. Parvalbumin + and Npas1 + Pallidal Neurons Have Distinct Circuit Topology and Function. J. Neurosci., 2020, 40(41), 7855-7876.
[http://dx.doi.org/10.1523/JNEUROSCI.0361-20.2020] [PMID: 32868462]
[56]
Ruskin, D.N.; Marshall, J.F. Differing influences of dopamine agonists and antagonists on fos expression in identified populations of globus pallidus neurons. Neuroscience, 1997, 81(1), 79-92.
[http://dx.doi.org/10.1016/S0306-4522(97)00113-9] [PMID: 9300403]
[57]
Billings, L.M.; Marshall, J.F. D2 antagonist-induced c-fos in an identified subpopulation of globus pallidus neurons by a direct intrapallidal action. Brain Res., 2003, 964(2), 237-243.
[http://dx.doi.org/10.1016/S0006-8993(02)04060-X] [PMID: 12576184]
[58]
Eilam, D.; Szechtman, H. Biphasic effect of D-2 agonist quinpirole on locomotion and movements. Eur. J. Pharmacol., 1989, 161(2-3), 151-157.
[http://dx.doi.org/10.1016/0014-2999(89)90837-6] [PMID: 2566488]
[59]
Thorn, L.; Ashmeade, T.E.; Storey, V.J.; Routledge, C.; Reavill, C. Evidence to suggest that agonist modulation of hyperlocomotion is via post-synaptic dopamine D2 or D3 receptors. Neuropharmacology, 1997, 36(6), 787-792.
[http://dx.doi.org/10.1016/S0028-3908(97)00033-6] [PMID: 9225306]
[60]
Rodrigo, J.; Fernández, P.; Bentura, M.L.; de Velasco, J.M.; Serrano, J.; Uttenthal, O.; Martínez-Murillo, R. Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J. Chem. Neuroanat., 1998, 15(1), 1-20.
[http://dx.doi.org/10.1016/S0891-0618(98)00016-7] [PMID: 9710145]
[61]
Cui, Q.; Pitt, J.E.; Pamukcu, A.; Poulin, J.F.; Mabrouk, O.S.; Fiske, M.P.; Fan, I.B.; Augustine, E.C.; Young, K.A.; Kennedy, R.T.; Awatramani, R.; Chan, C.S. Blunted mGluR activation disinhibits striatopallidal transmission in parkinsonian mice. Cell Rep., 2016, 17(9), 2431-2444.
[http://dx.doi.org/10.1016/j.celrep.2016.10.087] [PMID: 27880915]
[62]
Chazalon, M.; Paredes-Rodriguez, E.; Morin, S.; Martinez, A.; Cristóvão-Ferreira, S.; Vaz, S.; Sebastiao, A.; Panatier, A.; Boué-Grabot, E.; Miguelez, C.; Baufreton, J. GAT-3 dysfunction generates tonic inhibition in external globus pallidus neurons in parkinsonian rodents. Cell Rep., 2018, 23(6), 1678-1690.
[http://dx.doi.org/10.1016/j.celrep.2018.04.014] [PMID: 29742425]
[63]
Mastrogiacomo, R.; Trigilio, G.; Dautan, D.; Devroye, C.; Ferretti, V.; Vitali, E.; Orso, G.; Marotta, R.; Maltese, F.; Piras, G. 2021.Astrocytic regulation of basal ganglia dopamine/D2-dependent behaviors (neuroscience). bioRxiv,
[http://dx.doi.org/10.1101/2021.05.11.443394]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy