Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Diverse Heterocyclic Molecules Targeting Oxidative Stress as Therapeutic Effects Against Various Neurological Diseases

Author(s): Saad Alghamdi, Ahmed Kabrah, Elshiekh Babiker Khidir, Issa Saad Al-Moraya and Mohammad Asif*

Volume 22, Issue 2, 2025

Published on: 10 October, 2023

Page: [136 - 150] Pages: 15

DOI: 10.2174/1570193X20666230711170721

Price: $65

TIMBC 2025
Abstract

Heterocyclic compounds are the most common and diverse group of organic substances. Heterocyclic compounds are rapidly increasing in number as a result of intensive synthetic research as well as their value in other synthetic procedures. More than 90% of medications contain heterocyclic rings, and a wide range of medicinal chemistry applications make use of these substances. There are always unique characteristics of an efficient approach for creating newly discovered heterocyclic compounds and their moieties. Due to their biological effects, including those that are anti-cancer, anti-inflammatory, anti-fungal, anti-allergic, antibacterial, antiviral, and anticonvulsant, heterocyclic compounds are crucial to medicinal chemistry. Today's world population is generally suffering from various neurodegenerative diseases. Out of that, the most prevailing disease is Alzheimer's. There are many causes of Alzheimer's disease-like acetylcholinesterase enzyme, tau protein, amyloid aggregation, oxidative stress, phosphodiesterase, and others. In these cases, oxidative stress plays a very important role in the progression of this disease. To combat this oxidative stress various antioxidantderived drugs have been used but the problem is that Alzheimer's progression cannot be targeted with a single target drug because of the other factors that are involved in its progression. So to overcome that, a drug targeting multiple targets has been synthesized by using the antioxidant in previous reports. These drugs are more potent and efficacious than single-target drugs. This review focused on various multi-target ligands to target oxidative stress.

Keywords: Alzheimer disease, antioxidants, oxidative stress, multi-target ligands, heterocyclic compounds, biological activities.

Graphical Abstract
[1]
Jeelani, I.; Itaya, K.; Abe, H. Total synthesis of hyalodendriol C. Heterocycles, 2021, 102(8), 1570.
[http://dx.doi.org/10.3987/COM-21-14480]
[2]
Ahmed, K.; Jeelani, I. Synthesis and in vitro antimicrobial screening of 3-acetyl-4-hydroxycoumarin hydrazones. Int. J. Pharm. Biol. Sci., 2019, 9, 1000-1005.
[3]
Itaya, K.; Jeelani, I.; Abe, H. Total synthesis of urolithin C 3-glucuronide. Heterocycles, 2021, 103(2)
[http://dx.doi.org/10.3987/COM-20-S(K)51]
[4]
Khan, A.; Jasinski, J.P.; Smolenski, V.A.; Hotchkiss, E.P.; Kelley, P.T.; Shalit, Z.A.; Kaur, M.; Paul, K.; Sharma, R. Enhancement in anti-tubercular activity of indole based thiosemicarbazones on complexation with copper(I) and silver(I) halides: Structure elucidation, evaluation and molecular modelling. Bioorg. Chem., 2018, 80, 303-318.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.027] [PMID: 29986180]
[5]
Qadir, T.; Amin, A.; Sarkar, D.; Sharma, P.K. A review on recent advances in the synthesis of aziridines and their applications in organic synthesis. Curr. Org. Chem., 2021, 25(16), 1868-1893.
[http://dx.doi.org/10.2174/1385272825666210728100022]
[6]
Jeelani, I.; Abe, H.; Nawaz, A.; Bhosale, M.; Ahmad, S.; Jamadar, A.; Ahmed, K.; Qadir, T.; Amin, A.; Kumar Sharma, P.; Abidi, S. Anti-cancer potential of natural products containing (6H-dibenzo[b,d]pyran-6-one) framework using docking tools. Pak. J. Pharm. Sci., 2021, 34(5)(Suppl.), 1995-2002.
[PMID: 34836872]
[7]
Sapra, R.; Patel, D.; Meshram, D. A mini-review: Recent developments of heterocyclic chemistry in some drug discovery scaffolds synthesis. J. Med. Chem. Sci, 2020, 3, 71-78.
[8]
Higasio, Y.S.; Shoji, T. Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins. Appl. Catal. A Gen., 2001, 221(1-2), 197-207.
[http://dx.doi.org/10.1016/S0926-860X(01)00815-8]
[9]
Bur, S.K.; Padwa, A. The Pummerer reaction: methodology and strategy for the synthesis of heterocyclic compounds. Chem. Rev., 2004, 104(5), 2401-2432.
[http://dx.doi.org/10.1021/cr020090l] [PMID: 15137795]
[10]
Sharma, P.K.; Qadir, T.; Amin, A.; Sarkar, D. Synthesis of medicinally important indole derivatives: A review. Open Med. Chem. J., 2021, 15(1), 1-16.
[http://dx.doi.org/10.2174/1874104502015010001]
[11]
Zhang, B.; Studer, A. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors. Chem. Soc. Rev., 2015, 44(11), 3505-3521.
[http://dx.doi.org/10.1039/C5CS00083A] [PMID: 25882084]
[12]
Mahmood, R.M.U.; Aljamali, N.M. Synthesis, spectral investigation, and microbial studying of pyridine-heterocyclic compounds. Eur. J. Mol. Clin. Med., 2020, 7, 4444-4453.
[13]
Midya, S.P.; Landge, V.G.; Sahoo, M.K.; Rana, J.; Balaraman, E. Cobalt-catalyzed acceptorless dehydrogenative coupling of aminoalcohols with alcohols: direct access to pyrrole, pyridine and pyrazine derivatives. Chem. Commun. (Camb.), 2018, 54(1), 90-93.
[http://dx.doi.org/10.1039/C7CC07427A] [PMID: 29211066]
[14]
Chaucer, P.; Sharma, P.K. Study of thiazines as potential anticancer agents. Plant Arch., 2020, 20, 3199-3202.
[15]
Zhang, H.; Liu, C. Synthesis and properties of furan/thiophene substituted difluoroboron β-diketonate derivatives bearing a triphenylamine moiety. Dyes Pigments, 2017, 143, 143-150.
[http://dx.doi.org/10.1016/j.dyepig.2017.04.022]
[16]
Raychev, D.; Guskova, O.; Seifert, G.; Sommer, J.U. Conformational and electronic properties of small benzothiadiazole-cored oligomers with aryl flanking units: Thiophene versus Furan. Comput. Mater. Sci., 2017, 126, 287-298.
[http://dx.doi.org/10.1016/j.commatsci.2016.09.044]
[17]
Hossain, M.; Nanda, A.K. A review on heterocyclic: Synthesis and their application in medicinal chemistry of imidazole moiety. Science, 2018, 6, 83-94.
[18]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[19]
Ji, Y.; Fan, Y.; Liu, K.; Kong, D.; Lu, J. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Water Res., 2015, 87, 1-9.
[http://dx.doi.org/10.1016/j.watres.2015.09.005] [PMID: 26378726]
[20]
Panchal, N.B.; Patel, P.H.; Chhipa, N.M.; Parmar, R.S. Acridine a versatile heterocyclic moiety as anticancer agent. Int. J. Pharm. Sci. Res., 2020, 11, 4739-4748.
[21]
Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem., 2019, 162, 435-447.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.027] [PMID: 30469039]
[22]
Campanati, M.; Vaccari, A.; Piccolo, O. Environment-friendly synthesis of nitrogen-containing heterocyclic compounds. Catal. Today, 2000, 60(3-4), 289-295.
[http://dx.doi.org/10.1016/S0920-5861(00)00345-X]
[23]
Vekariya, R.H.; Patel, K.D.; Prajapati, N.P.; Patel, H.D. Phenacyl bromide: A versatile organic intermediate for the synthesis of heterocyclic compounds. Synth. Commun., 2018, 48(13), 1505-1533.
[http://dx.doi.org/10.1080/00397911.2017.1329440]
[24]
Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med Chem J, 2022.
[http://dx.doi.org/10.2174/18741045-v16-e2202280]
[25]
Abdel-Wahab, B.F.; Shaaban, S.; El-Hiti, G.A. Synthesis of sulfur-containing heterocycles via ring enlargement. Mol. Divers., 2018, 22(2), 517-542.
[http://dx.doi.org/10.1007/s11030-017-9810-3] [PMID: 29388031]
[26]
Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[27]
Saroha, S.C.; Sharma, P.K. Study of heterocyclic ring systems: Biopharmaceutical applications of substituted 4H-1,4-benzothiazine and piperazine. Phys. Conf., 2020, p. 1531.
[http://dx.doi.org/10.1088/1742-6596/1531/1/012094]
[28]
Sharma, S.; Sharma, K.; Pathak, S.; Kumar, M.; Sharma, P.K. Synthesis of medicinally important quinazolines and their derivatives: A review. Open Med. Chem. J., 2020, 14(1), 108-121.
[http://dx.doi.org/10.2174/1874104502014010108]
[29]
Sharma, P.K.; Amin, A.; Kumar, M. A review: medicinally important nitrogen sulphur containing heterocycles. Open Med. Chem. J., 2020, 14(1), 49-64.
[http://dx.doi.org/10.2174/1874104502014010049]
[30]
Sharma, P.K.; Amin, A.; Kumar, M. Synthetic methods of medicinally important heterocycles-thiazines: A review. Open Med. Chem. J., 2020, 14(1), 71-82.
[http://dx.doi.org/10.2174/1874104502014010071]
[31]
Stopschinski, B.E.; Diamond, M.I. The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol., 2017, 16(4), 323-332.
[http://dx.doi.org/10.1016/S1474-4422(17)30037-6] [PMID: 28238712]
[32]
Marešová, P.; Mohelská, H.; Dolejš, J.; Kuča, K. Socio-economic aspects of Alzheimer’s disease. Curr. Alzheimer Res., 2015, 12(9), 903-911.
[http://dx.doi.org/10.2174/156720501209151019111448] [PMID: 26510983]
[33]
Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr., 2005, 10(S18), 6-9.
[http://dx.doi.org/10.1017/S1092852900014164] [PMID: 16273023]
[34]
Selkoe, D.J. The molecular pathology of Alzheimer’s disease. Neuron, 1991, 6(4), 487-498.
[http://dx.doi.org/10.1016/0896-6273(91)90052-2] [PMID: 1673054]
[35]
Alghamdi, S.; Asif, M. Role of pyridazine analogs as acetylcholinesterase inhibitor: An approach for management of Alzheimer’s disease. Eurasian Chem. Commun., 2021, 3, 435-442.
[36]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[37]
Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf., 2014, 13(6), 759-774.
[PMID: 24845946]
[38]
van der Staay, F.J.; Rutten, K.; Bärfacker, L.; DeVry, J.; Erb, C.; Heckroth, H.; Karthaus, D.; Tersteegen, A.; van Kampen, M.; Blokland, A.; Prickaerts, J.; Reymann, K.G.; Schröder, U.H.; Hendrix, M. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology, 2008, 55(5), 908-918.
[http://dx.doi.org/10.1016/j.neuropharm.2008.07.005] [PMID: 18674549]
[39]
Hatami, M.; Mortazavi, M.; Baseri, Z.; Khani, B.; Rahimi, M.; Babaei, S. Antioxidant compounds in the treatment of Alzheimer's disease: Natural, hybrid, and synthetic products. Evid. Based Complement. Alternat. Med., 2023, 2023, 8056462.
[http://dx.doi.org/10.1155/2023/8056462] [PMID: 36865743]
[40]
Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol., 2018, 15, 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[41]
Beal, M.F.; Chiluwal, J.; Calingasan, N.Y.; Milne, G.L.; Shchepinov, M.S.; Tapias, V. Isotope-reinforced polyunsaturated fatty acids improve Parkinson’s disease-like phenotype in rats overexpressing α-synuclein. Acta Neuropathol. Commun., 2020, 8(1), 220.
[http://dx.doi.org/10.1186/s40478-020-01090-6] [PMID: 33308320]
[42]
Tapias, V.; McCoy, J.L.; Greenamyre, J.T. Phenothiazine normalizes the NADH/NAD+ ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson’s disease. Redox Biol., 2019, 24, 101164.
[http://dx.doi.org/10.1016/j.redox.2019.101164] [PMID: 30925294]
[43]
Ritchie, C.W.; Molinuevo, J.L.; Truyen, L.; Satlin, A.; Van der Geyten, S.; Lovestone, S. Development of interventions for the secondary prevention of Alzheimer’s dementia: the European Prevention of Alzheimer’s Dementia (EPAD) project. Lancet Psychiatry, 2016, 3(2), 179-186.
[http://dx.doi.org/10.1016/S2215-0366(15)00454-X] [PMID: 26683239]
[44]
Schinder, A.F.; Olson, E.C.; Spitzer, N.C.; Montal, M. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J. Neurosci., 1996, 16(19), 6125-6133.
[http://dx.doi.org/10.1523/JNEUROSCI.16-19-06125.1996] [PMID: 8815895]
[45]
Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: current status and future prospects. Curr. Med. Chem., 2011, 18(25), 3871-3888.
[http://dx.doi.org/10.2174/092986711803414368] [PMID: 21824100]
[46]
García-Osta, A.; Cuadrado-Tejedor, M.; García-Barroso, C.; Oyarzábal, J.; Franco, R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem. Neurosci., 2012, 3(11), 832-844.
[http://dx.doi.org/10.1021/cn3000907] [PMID: 23173065]
[47]
Zhang, C.; Zhou, Q.; Wu, X.N.; Huang, Y.D.; Zhou, J.; Lai, Z.; Wu, Y.; Luo, H.B. Discovery of novel PDE9A inhibitors with antioxidant activities for treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 260-270.
[http://dx.doi.org/10.1080/14756366.2017.1412315] [PMID: 29271265]
[48]
Xu, P.; Zhang, M.; Sheng, R.; Ma, Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ 1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 174-186.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.045] [PMID: 28061347]
[49]
Yang, X.; Qiang, X.; Li, Y.; Luo, L.; Xu, R.; Zheng, Y.; Cao, Z.; Tan, Z.; Deng, Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg. Chem., 2017, 71, 305-314.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.016] [PMID: 28267984]
[50]
Lu, C.; Zhou, Q.; Yan, J.; Du, Z.; Huang, L.; Li, X. A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 62, 745-753.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.039] [PMID: 23454517]
[51]
Sun, Y.; Chen, J.; Chen, X.; Huang, L.; Li, X. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine–Homoisoflavonoid hybrids. Bioorg. Med. Chem., 2013, 21(23), 7406-7417.
[http://dx.doi.org/10.1016/j.bmc.2013.09.050] [PMID: 24128814]
[52]
Mao, F.; Huang, L.; Luo, Z.; Liu, A.; Lu, C.; Xie, Z.; Li, X. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Bioorg. Med. Chem., 2012, 20(19), 5884-5892.
[http://dx.doi.org/10.1016/j.bmc.2012.07.045] [PMID: 22944335]
[53]
Chand, K.; Alsoghier, H.M.; Chaves, S.; Santos, M.A. Tacrine-(hydroxybenzoyl-pyridone) hybrids as potential multifunctional anti-Alzheimer’s agents: AChE inhibition, antioxidant activity and metal chelating capacity. J. Inorg. Biochem., 2016, 163, 266-277.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.05.005] [PMID: 27235273]
[54]
Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.064] [PMID: 28478343]
[55]
Fernández-Bachiller, M.I.; Pérez, C.; González-Muñoz, G.C.; Conde, S.; López, M.G.; Villarroya, M.; García, A.G.; Rodríguez-Franco, M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem., 2010, 53(13), 4927-4937.
[http://dx.doi.org/10.1021/jm100329q] [PMID: 20545360]
[56]
Rodríguez-Franco, M.I.; Fernández-Bachiller, M.I.; Pérez, C.; Hernández-Ledesma, B.; Bartolomé, B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J. Med. Chem., 2006, 49(2), 459-462.
[http://dx.doi.org/10.1021/jm050746d] [PMID: 16420031]
[57]
Mao, F.; Chen, J.; Zhou, Q.; Luo, Z.; Huang, L.; Li, X. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg. Med. Chem. Lett., 2013, 23(24), 6737-6742.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.034] [PMID: 24220172]
[58]
Xie, S.S.; Wang, X.; Jiang, N.; Yu, W.; Wang, K.D.G.; Lan, J.S.; Li, Z.R.; Kong, L.Y. Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur. J. Med. Chem., 2015, 95, 153-165.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.040] [PMID: 25812965]
[59]
Zhu, J.; Yang, H.; Chen, Y.; Lin, H.; Li, Q.; Mo, J.; Bian, Y.; Pei, Y.; Sun, H. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 496-506.
[http://dx.doi.org/10.1080/14756366.2018.1430691] [PMID: 29405075]
[60]
Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.048] [PMID: 28064079]
[61]
Girek, M.; Szymański, P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: Influence of chemical structures on biological activities. Chem. Pap., 2018, 1-21.
[62]
Pérez-Areales, F.J.; Di Pietro, O.; Espargaró, A.; Vallverdú-Queralt, A.; Galdeano, C.; Ragusa, I.M.; Viayna, E.; Guillou, C.; Clos, M.V.; Pérez, B.; Sabaté, R.; Lamuela-Raventós, R.M.; Luque, F.J.; Muñoz-Torrero, D. Shogaol–huprine hybrids: Dual antioxidant and anticholinesterase agents with β-amyloid and tau anti-aggregating properties. Bioorg. Med. Chem., 2014, 22(19), 5298-5307.
[http://dx.doi.org/10.1016/j.bmc.2014.07.053] [PMID: 25156301]
[63]
Pérez-Areales, F.J.; Betari, N.; Viayna, A.; Pont, C.; Espargaró, A.; Bartolini, M.; De Simone, A.; Rinaldi Alvarenga, J.F.; Pérez, B.; Sabate, R.; Lamuela-Raventós, R.M.; Andrisano, V.; Luque, F.J.; Muñoz-Torrero, D. Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein–huprine hybrids. Future Med. Chem., 2017, 9(10), 965-981.
[http://dx.doi.org/10.4155/fmc-2017-0049] [PMID: 28632395]
[64]
Pisani, L.; Catto, M.; Giangreco, I.; Leonetti, F.; Nicolotti, O.; Stefanachi, A.; Cellamare, S.; Carotti, A. Design, synthesis, and biological evaluation of coumarin derivatives tethered to an edrophonium-like fragment as highly potent and selective dual binding site acetylcholinesterase inhibitors. Chem. Med. Chem., 2010, 5(9), 1616-1630.
[http://dx.doi.org/10.1002/cmdc.201000210] [PMID: 20677317]
[65]
Khoobi, M.; Emami, S.; Dehghan, G.; Foroumadi, A.; Ramazani, A.; Shafiee, A. Synthesis and free radical scavenging activity of coumarin derivatives containing a 2-methylbenzothiazoline motif. Arch. Pharm. (Weinheim), 2011, 344(9), 588-594.
[http://dx.doi.org/10.1002/ardp.201000271] [PMID: 21887798]
[66]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 1175-1180.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[67]
Radić, Z.; Reiner, E.; Taylor, P. Role of the peripheral anionic site on acetylcholinesterase: Inhibition by substrates and coumarin derivatives. Mol. Pharmacol., 1991, 39(1), 98-104.
[PMID: 1987454]
[68]
Catto, M.; Pisani, L.; Leonetti, F.; Nicolotti, O.; Pesce, P.; Stefanachi, A.; Cellamare, S.; Carotti, A. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg. Med. Chem., 2013, 21(1), 146-152.
[http://dx.doi.org/10.1016/j.bmc.2012.10.045] [PMID: 23199476]
[69]
Catto, M.; Nicolotti, O.; Leonetti, F.; Carotti, A.; Favia, A.D.; Soto-Otero, R.; Méndez-Álvarez, E.; Carotti, A. Structural insights into monoamine oxidase inhibitory potency and selectivity of 7-substituted coumarins from ligand- and target-based approaches. J. Med. Chem., 2006, 49(16), 4912-4925.
[http://dx.doi.org/10.1021/jm060183l] [PMID: 16884303]
[70]
Alipour, M.; Khoobi, M.; Foroumadi, A.; Nadri, H.; Moradi, A.; Sakhteman, A.; Ghandi, M.; Shafiee, A. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: Potent and dual binding site acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2012, 20(24), 7214-7222.
[http://dx.doi.org/10.1016/j.bmc.2012.08.052] [PMID: 23140986]
[71]
Razavi, S.F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 64, 252-259.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.021] [PMID: 23644208]
[72]
Alipour, M.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Ghandi, M. Synthesis of some new 3‐C oumaranone and coumarin derivatives as dual inhibitors of acetyl‐and butyrylcholinesterase. Arch. Pharm. (Weinheim), 2013, 346(8), 577-587.
[http://dx.doi.org/10.1002/ardp.201300080] [PMID: 23852709]
[73]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[74]
Asadipour, A.; Alipour, M.; Jafari, M.; Khoobi, M.; Emami, S.; Nadri, H.; Sakhteman, A.; Moradi, A.; Sheibani, V.; Homayouni Moghadam, F.; Shafiee, A.; Foroumadi, A. Novel coumarin-3-carboxamides bearing N-benzylpiperidine moiety as potent acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 70, 623-630.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.024] [PMID: 24211638]
[75]
Khoobi, M.; Alipour, M.; Sakhteman, A.; Nadri, H.; Moradi, A.; Ghandi, M.; Emami, S.; Foroumadi, A.; Shafiee, A. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 68, 260-269.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.038] [PMID: 23988409]
[76]
Pudlo, M.; Luzet, V.; Ismaïli, L.; Tomassoli, I.; Iutzeler, A.; Refouvelet, B. Quinolone–benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer Disease. Bioorg. Med. Chem., 2014, 22(8), 2496-2507.
[http://dx.doi.org/10.1016/j.bmc.2014.02.046] [PMID: 24657052]
[77]
Detsi, A.; Bouloumbasi, D.; Prousis, K.C.; Koufaki, M.; Athanasellis, G.; Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Kontogiorgis, C.; Hadjipavlou-Litina, D.J. Design and synthesis of novel quinolinone-3-aminoamides and their α-lipoic acid adducts as antioxidant and anti-inflammatory agents. J. Med. Chem., 2007, 50(10), 2450-2458.
[http://dx.doi.org/10.1021/jm061173n] [PMID: 17444626]
[78]
Naito, Y.; Yoshikawa, T.; Tanigawa, T.; Sakurai, K.; Yamasaki, K.; Uchida, M.; Kondo, M. Hydroxyl radical scavenging by rebamipide and related compounds: Electron paramagnetic resonance study. Free Radic. Biol. Med., 1995, 18(1), 117-123.
[http://dx.doi.org/10.1016/0891-5849(94)00110-6] [PMID: 7896165]
[79]
Allmang, C.; Wurth, L.; Krol, A. The selenium to selenoprotein pathway in eukaryotes: More molecular partners than anticipated. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(11), 1415-1423.
[http://dx.doi.org/10.1016/j.bbagen.2009.03.003] [PMID: 19285539]
[80]
Wilson, S.R.; Zucker, P.A.; Huang, R.R.C.; Spector, A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc., 1989, 111(15), 5936-5939.
[http://dx.doi.org/10.1021/ja00197a065]
[81]
Xie, L.; Zheng, W.; Xin, N.; Xie, J.W.; Wang, T.; Wang, Z.Y. Ebselen inhibits iron-induced tau phosphorylation by attenuating DMT1 up-regulation and cellular iron uptake. Neurochem. Int., 2012, 61(3), 334-340.
[http://dx.doi.org/10.1016/j.neuint.2012.05.016] [PMID: 22634399]
[82]
Luo, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Luo, H.; Huang, L.; Li, X. Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J. Med. Chem., 2013, 56(22), 9089-9099.
[http://dx.doi.org/10.1021/jm401047q] [PMID: 24160297]
[83]
Luo, Z.; Liang, L.; Sheng, J.; Pang, Y.; Li, J.; Huang, L.; Li, X. Synthesis and biological evaluation of a new series of ebselen derivatives as glutathione peroxidase (GPx) mimics and cholinesterase inhibitors against Alzheimer’s disease. Bioorg. Med. Chem., 2014, 22(4), 1355-1361.
[http://dx.doi.org/10.1016/j.bmc.2013.12.066] [PMID: 24461494]
[84]
Luo, X.T.; Wang, C.M.; Liu, Y.; Huang, Z.G. New multifunctional melatonin-derived benzylpyridinium bromides with potent cholinergic, antioxidant, and neuroprotective properties as innovative drugs for Alzheimer’s disease. Eur. J. Med. Chem., 2015, 103, 302-311.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.052] [PMID: 26363866]
[85]
Ramos, E.; Egea, J.; de los Ríos, C.; Marco-Contelles, J.; Romero, A. Melatonin as a versatile molecule to design novel multitarget hybrids against neurodegeneration. Future Med. Chem., 2017, 9(8), 765-780.
[http://dx.doi.org/10.4155/fmc-2017-0014] [PMID: 28498717]
[86]
Nguyen, T.; Hamby, A.; Massa, S.M. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11840-11845.
[http://dx.doi.org/10.1073/pnas.0502177102] [PMID: 16087879]
[87]
Wu, M.Y.; Esteban, G.; Brogi, S.; Shionoya, M.; Wang, L.; Campiani, G.; Unzeta, M.; Inokuchi, T.; Butini, S.; Marco-Contelles, J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur. J. Med. Chem., 2016, 121, 864-879.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.001] [PMID: 26471320]
[88]
Prati, F.; Bergamini, C.; Fato, R.; Soukup, O.; Korabecny, J.; Andrisano, V.; Bartolini, M.; Bolognesi, M.L. Novel 8-hydroxyquinoline derivatives as multitarget compounds for the treatment of Alzheimer′s disease. ChemMedChem, 2016, 11(12), 1284-1295.
[http://dx.doi.org/10.1002/cmdc.201600014] [PMID: 26880501]
[89]
Korábečný, J.; Nepovimová, E.; Cikánková, T.; Špilovská, K.; Vašková, L.; Mezeiová, E.; Kuča, K.; Hroudová, J. Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience, 2018, 370, 191-206.
[http://dx.doi.org/10.1016/j.neuroscience.2017.06.034] [PMID: 28673719]
[90]
Wang, Z.M.; Cai, P.; Liu, Q.H.; Xu, D.Q.; Yang, X.L.; Wu, J.J.; Kong, L.Y.; Wang, X.B. Rational modification of donepezil as multifunctional acetylcholinesterase inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2016, 123, 282-297.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.052] [PMID: 27484514]
[91]
Castañeda-Arriaga, R.; Alvarez-Idaboy, J.R. Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data. J. Chem. Inf. Model., 2014, 54(6), 1642-1652.
[http://dx.doi.org/10.1021/ci500213p] [PMID: 24881907]
[92]
Estrada, M.; Pérez, C.; Soriano, E.; Laurini, E.; Romano, M.; Pricl, S.; Morales-García, J.A.; Pérez-Castillo, A.; Rodríguez-Franco, M.I. New neurogenic lipoic-based hybrids as innovative Alzheimer’s drugs with σ-1 agonism and β-secretase inhibition. Future Med. Chem., 2016, 8(11), 1191-1207.
[http://dx.doi.org/10.4155/fmc-2016-0036] [PMID: 27402296]
[93]
Rosini, M.; Simoni, E.; Bartolini, M.; Tarozzi, A.; Matera, R.; Milelli, A.; Hrelia, P.; Andrisano, V.; Bolognesi, M.L.; Melchiorre, C. Exploiting the lipoic acid structure in the search for novel multitarget ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2011, 46(11), 5435-5442.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.001] [PMID: 21924801]
[94]
Irannejad, H.; Amini, M.; Khodagholi, F.; Ansari, N.; Tusi, S.K.; Sharifzadeh, M.; Shafiee, A. Synthesis and in vitro evaluation of novel 1,2,4-triazine derivatives as neuroprotective agents. Bioorg. Med. Chem., 2010, 18(12), 4224-4230.
[http://dx.doi.org/10.1016/j.bmc.2010.04.097] [PMID: 20510620]
[95]
Meena, P.; Nemaysh, V.; Khatri, M.; Manral, A.; Luthra, P.M.; Tiwari, M. Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(5), 1135-1148.
[http://dx.doi.org/10.1016/j.bmc.2014.12.057] [PMID: 25624107]
[96]
Estrada Valencia, M.; Herrera-Arozamena, C.; de Andrés, L.; Pérez, C.; Morales-García, J.A.; Pérez-Castillo, A.; Ramos, E.; Romero, A.; Viña, D.; Yáñez, M.; Laurini, E.; Pricl, S.; Rodríguez-Franco, M.I. Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer’s disease. Eur. J. Med. Chem., 2018, 156, 534-553.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.026] [PMID: 30025348]
[97]
Dias, K.S.T.; de Paula, C.T.; dos Santos, T.; Souza, I.N.O.; Boni, M.S.; Guimarães, M.J.R.; da Silva, F.M.R.; Castro, N.G.; Neves, G.A.; Veloso, C.C.; Coelho, M.M.; de Melo, I.S.F.; Giusti, F.C.V.; Giusti-Paiva, A.; da Silva, M.L.; Dardenne, L.E.; Guedes, I.A.; Pruccoli, L.; Morroni, F.; Tarozzi, A.; Viegas, C., Jr Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 130, 440-457.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.043] [PMID: 28282613]
[98]
Cai, P.; Fang, S.Q.; Yang, H.L.; Yang, X.L.; Liu, Q.H.; Kong, L.Y.; Wang, X.B. Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer’s disease agents with cholinergic, antioxidant, and neuroprotective properties. Eur. J. Med. Chem., 2018, 157, 161-176.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.005] [PMID: 30096650]
[99]
Cai, P.; Fang, S.Q.; Yang, X.L.; Wu, J.J.; Liu, Q.H.; Hong, H.; Wang, X.B.; Kong, L.Y. Rational design and multibiological profiling of novel donepezil–trolox hybrids against Alzheimer’s disease, with cholinergic, antioxidant, neuroprotective, and cognition enhancing properties. ACS Chem. Neurosci., 2017, 8(11), 2496-2511.
[http://dx.doi.org/10.1021/acschemneuro.7b00257] [PMID: 28806057]
[100]
Xiao, G.; Li, Y.; Qiang, X.; Xu, R.; Zheng, Y.; Cao, Z.; Luo, L.; Yang, X.; Sang, Z.; Su, F.; Deng, Y. Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2017, 25(3), 1030-1041.
[http://dx.doi.org/10.1016/j.bmc.2016.12.013] [PMID: 28011206]
[101]
Wang, L.; Wang, Y.; Tian, Y.; Shang, J.; Sun, X.; Chen, H.; Wang, H.; Tan, W. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorg. Med. Chem., 2017, 25(1), 360-371.
[http://dx.doi.org/10.1016/j.bmc.2016.11.002] [PMID: 27856236]
[102]
Nesi, G.; Chen, Q.; Sestito, S.; Digiacomo, M.; Yang, X.; Wang, S.; Pi, R.; Rapposelli, S. Nature-based molecules combined with rivastigmine: A symbiotic approach for the synthesis of new agents against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 141, 232-239.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.006] [PMID: 29031070]
[103]
Chen, Z.; Digiacomo, M.; Tu, Y.; Gu, Q.; Wang, S.; Yang, X.; Chu, J.; Chen, Q.; Han, Y.; Chen, J.; Nesi, G.; Sestito, S.; Macchia, M.; Rapposelli, S.; Pi, R. Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 784-792.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.052] [PMID: 27736684]
[104]
Jalili-Baleh, L.; Forootanfar, H.; Küçükkılınç, T.T.; Nadri, H.; Abdolahi, Z.; Ameri, A.; Jafari, M.; Ayazgok, B.; Baeeri, M.; Rahimifard, M.; Abbas Bukhari, S.N.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur. J. Med. Chem., 2018, 152, 600-614.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.058] [PMID: 29763808]
[105]
Xu, Q.X.; Hu, Y.; Li, G.Y.; Xu, W.; Zhang, Y.T.; Yang, X.W. Multi-target anti-alzheimer activities of four prenylated compounds from Psoralea fructus. Molecules, 2018, 23(3), 614.
[http://dx.doi.org/10.3390/molecules23030614] [PMID: 29518051]
[106]
Kaur, A.; Mann, S.; Kaur, A.; Priyadarshi, N.; Goyal, B.; Singhal, N.K.; Goyal, D. Multi-target-directed triazole derivatives as promising agents for the treatment of Alzheimer’s Disease. Bioorg. Chem., 2019, 87, 572-584.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.058] [PMID: 30928879]
[107]
Osmaniye, D.; Sağlık, B.N.; Acar Çevik, U.; Levent, S.; Kaya Çavuşoğlu, B.; Özkay, Y.; Kaplancıklı, Z.A.; Turan, G. Synthesis and AChE inhibitory activity of novel thiazolylhydrazone derivatives. Molecules, 2019, 24(13), 2392.
[http://dx.doi.org/10.3390/molecules24132392] [PMID: 31261693]
[108]
Abdalla, M.M.; Al-Omar, M.A.; Al-Salahi, R.A.; Amr, A.G.E.; Sabrye, N.M. A new investigation for some steroidal derivatives as anti-Alzheimer agents. Int. J. Biol. Macromol., 2012, 51(1-2), 56-63.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.04.012] [PMID: 22542854]
[109]
Attaby, F.A.; Abdel-Fattah, A.M.; Shaif, L.M.; Elsayed, M.M. Anti-Alzheimer and anti-COX-2 activities of the newly synthesized 2,3′-bipyridine derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2009, 185(1), 129-139.
[http://dx.doi.org/10.1080/10426500902717333]
[110]
Gülçin, İ.; Trofimov, B.; Kaya, R.; Taslimi, P.; Sobenina, L.; Schmidt, E.; Petrova, O.; Malysheva, S.; Gusarova, N.; Farzaliyev, V.; Sujayev, A.; Alwasel, S.; Supuran, C.T. Synthesis of nitrogen, phosphorus, selenium and sulfur-containing heterocyclic compounds – Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg. Chem., 2020, 103, 104171.
[http://dx.doi.org/10.1016/j.bioorg.2020.104171] [PMID: 32891857]
[111]
Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[112]
Attaby, F.; Abdel-Fattah, A.; Shaif, L.; Elsayed, M. Reactions, anti-Alzheimer and anti COX-2 activities of the newly synthesized 2-substituted thienopyridines. Curr. Org. Chem., 2009, 13(16), 1654-1663.
[http://dx.doi.org/10.2174/138527209789578135]
[113]
Latif, A.; Bibi, S.; Ali, S.; Ammara, A.; Ahmad, M.; Khan, A.; Al-Harrasi, A.; Ullah, F.; Ali, M. New multitarget directed benzimidazole‐2‐thiol‐based heterocycles as prospective anti‐radical and anti‐Alzheimer 's agents. Drug Dev. Res., 2021, 82(2), 207-216.
[http://dx.doi.org/10.1002/ddr.21740] [PMID: 32897587]
[114]
Husain, A.; Balushi K, A.; Akhtar, M.J.; Khan, S.A. Coumarin linked heterocyclic hybrids: A promising approach to develop multi target drugs for Alzheimer’s disease. J. Mol. Struct., 2021, 1241, 130618.
[http://dx.doi.org/10.1016/j.molstruc.2021.130618]
[115]
Topcu, A.; Saral, S.; Ozturk, A.; Saral, O.; Kaya, A.K. The effect of the calcium channel blocker nimodipine on hippocampal BDNF/Ach levels in rats with experimental cognitive impairment. Neurol. Res., 2023, 45(6), 544-553.
[http://dx.doi.org/10.1080/01616412.2022.2164452] [PMID: 36598971]
[116]
Butterfield, D.A.; Mattson, M.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease. Neurobiol. Dis., 2020, 138, 104795.
[http://dx.doi.org/10.1016/j.nbd.2020.104795] [PMID: 32036033]
[117]
Sharma, A.; Weber, D.; Raupbach, J.; Dakal, T.C.; Fließbach, K.; Ramirez, A.; Grune, T.; Wüllner, U. Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson’s and Alzheimer’s Disease. Redox Biol., 2020, 34, 101546.
[http://dx.doi.org/10.1016/j.redox.2020.101546] [PMID: 32460130]
[118]
Calvo-Rodriguez, M.; García-Rodríguez, C.; Villalobos, C.; Núñez, L. Role of toll like receptor 4 in Alzheimer’s Disease. Front. Immunol., 2020, 11, 1588.
[http://dx.doi.org/10.3389/fimmu.2020.01588] [PMID: 32983082]
[119]
Higham, J.P.; Hidalgo, S.; Buhl, E.; Hodge, J.J.L. Restoration of olfactory memory in Drosophila overexpressing human alzheimer’s disease associated tau by manipulation of L-Type Ca2+ Channels. Front. Cell. Neurosci., 2019, 13, 409.
[http://dx.doi.org/10.3389/fncel.2019.00409] [PMID: 31551716]
[120]
Zheng, Z.; Wu, K.; Ruan, Q.; Li, D.; Liu, W.; Wang, M.; Li, Y.; Xia, J.; Yang, D.; Guo, J. Suppression of selective voltage-gated calcium channels alleviates neuronal degeneration and dysfunction through glutathione s-transferase-mediated oxidative stress resistance in a Caenorhabditis elegans model of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2022, 2022, 1-19.
[http://dx.doi.org/10.1155/2022/8287633] [PMID: 36600949]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy