Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation and In vitro Evaluation of Folated Pluronic F87/TPGS Co-modified Liposomes for Targeted Delivery of Curcumin

Author(s): Wenjuan Li, Xiangyuan Xiong, Yanchun Gong and Ziling Li*

Volume 21, Issue 4, 2024

Published on: 07 July, 2023

Page: [592 - 602] Pages: 11

DOI: 10.2174/1567201820666230619112502

Price: $65

conference banner
Abstract

Background: Using targeted liposomes to encapsulate and deliver drugs has become a hotspot in biomedical research. Folated Pluronic F87/D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) co-modified liposomes (FA-F87/TPGS-Lps) were fabricated for curcumin delivery, and intracellular targeting of liposomal curcumin was investigated.

Methods: FA-F87 was synthesized and its structural characterization was conducted through dehydration condensation. Then, cur-FA-F87/TPGS-Lps were prepared via thin film dispersion method combined with DHPM technique, and their physicochemical properties and cytotoxicity were determined. Finally, the intracellular distribution of cur-FA-F87/TPGS-Lps was investigated using MCF-7 cells.

Results: Incorporation of TPGS in liposomes reduced their particle size, but increased the negative charge of the liposomes as well as their storage stability, and the encapsulation efficiency of curcumin was improved. While, modification of liposomes with FA increased their particle size, and had no impact on the encapsulation efficiency of curcumin in liposomes. Among all the liposomes (cur-F87-Lps, cur-FA-F87-Lps, cur-FA-F87/TPGS-Lps and cur-F87/TPGS-Lps), cur-FA-F87/TPGS-Lps showed highest cytotoxicity to MCF-7 cells. Moreover, cur-FA-F87/TPGS-Lps was found to deliver curcumin into the cytoplasm of MCF-7 cells.

Conclusion: Folate-Pluronic F87/TPGS co-modified liposomes provide a novel strategy for drug loading and targeted delivery.

Keywords: Folate, TPGS, Pluronics, nanoliposomes, intracellular targeting, curcumin.

Graphical Abstract
[1]
Naeini, M.B.; Momtazi, A.A.; Jaafari, M.R.; Johnston, T.P.; Barreto, G.; Banach, M.; Sahebkar, A. Antitumor effects of curcumin: A lipid perspective. J. Cell. Physiol., 2019, 234(9), 14743-14758.
[http://dx.doi.org/10.1002/jcp.28262] [PMID: 30741424]
[2]
Rodrigues, F.C.; Anil Kumar, N.V.; Thakur, G. Developments in the anticancer activity of structurally modified curcumin: An up-to-date review. Eur. J. Med. Chem., 2019, 177, 76-104.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.058] [PMID: 31129455]
[3]
Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules, 2012, 17(5), 5972-5987.
[http://dx.doi.org/10.3390/molecules17055972] [PMID: 22609787]
[4]
Shao, P.; Qiu, Q.; Chen, H.; Zhu, J.; Sun, P. Physicochemical stability of curcumin emulsions stabilized by Ulva fasciata polysaccharide under different metallic ions. Int. J. Biol. Macromol., 2017, 105(Pt 1), 154-162.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.018] [PMID: 28687390]
[5]
Matloob, A.H.; Mourtas, S.; Klepetsanis, P.; Antimisiaris, S.G. Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems: A comparative study. Int. J. Pharm., 2014, 476(1-2), 108-115.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.041] [PMID: 25269006]
[6]
Yang, C.; Chen, H.; Zhao, J.; Pang, X.; Xi, Y.; Zhai, G. Development of a folate-modified curcumin loaded micelle delivery system for cancer targeting. Colloids Surf. B Biointerfaces, 2014, 121, 206-213.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.005] [PMID: 24984268]
[7]
Zou, L.; Zheng, B.; Zhang, R.; Zhang, Z.; Liu, W.; Liu, C.; Xiao, H.; McClements, D.J. Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Res. Int., 2016, 81, 74-82.
[http://dx.doi.org/10.1016/j.foodres.2015.12.035]
[8]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[9]
Goyal, P.; Goyal, K.; Vijaya Kumar, S.G.; Singh, A.; Katare, O.P.; Mishra, D.N. Liposomal drug delivery systems--clinical applications. Acta Pharm., 2005, 55(1), 1-25.
[PMID: 15907221]
[10]
Al-Jamal, W.T.; Kostarelos, K. Liposomes: From a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 2011, 44(10), 1094-1104.
[http://dx.doi.org/10.1021/ar200105p] [PMID: 21812415]
[11]
Wang, Y.; Liu, E.; Sun, X.; Huang, P.; Long, H.; Wang, H.; Yu, X.; Zheng, C.; Huang, Y. Pluronic L61 as a long-circulating modifier for enhanced liposomal delivery of cancer drugs. Polym. Chem., 2013, 4(10), 2958-2962.
[http://dx.doi.org/10.1039/c3py00042g]
[12]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Kim, D.D. Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells. J. Microencapsul., 2011, 28(6), 575-581.
[http://dx.doi.org/10.3109/02652048.2011.599436] [PMID: 21770706]
[13]
Chandaroy, P.; Sen, A.; Alexandridis, P.; Hui, S.W. Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome–cell adhesion. Biochim. Biophys. Acta Biomembr., 2002, 1559(1), 32-42.
[http://dx.doi.org/10.1016/S0005-2736(01)00431-X] [PMID: 11825586]
[14]
Park, E.K.; Lee, S.B.; Lee, Y.M. Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials, 2005, 26(9), 1053-1061.
[http://dx.doi.org/10.1016/j.biomaterials.2004.04.008] [PMID: 15369694]
[15]
Li, Z.; Xiong, X.; Peng, S.; Chen, X.; Liu, W.; Liu, C. Novel folated pluronic F127 modified liposomes for delivery of curcumin: Preparation, release, and cytotoxicity. J. Microencapsul., 2020, 37(3), 220-229.
[http://dx.doi.org/10.1080/02652048.2020.1720030] [PMID: 32039640]
[16]
Xiong, X.Y.; Qin, X.; Li, Z.L.; Gong, Y.C.; Li, Y.P. Synthesis, drug release and targeting behaviors of Novel Folated Pluronic F87/poly(lactic acid) block copolymer. Eur. Polym. J., 2015, 68, 233-242.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.05.003]
[17]
Cheng, C.; Peng, S.; Li, Z.; Zou, L.; Liu, W.; Liu, C. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 2017, 7(42), 25978-25986.
[http://dx.doi.org/10.1039/C7RA02861J]
[18]
Peng, S.; Zou, L.; Liu, W.; Liu, C.; McClements, D.J. Fabrication and characterization of curcumin-loaded liposomes formed from sunflower lecithin: Impact of composition and environmental stress. J. Agric. Food Chem., 2018, 66(46), 12421-12430.
[http://dx.doi.org/10.1021/acs.jafc.8b04136] [PMID: 30372060]
[19]
Omari-Siaw, E.; Wang, Q.; Sun, C.; Gu, Z.; Zhu, Y.; Cao, X.; Firempong, C.K.; Agyare, R.; Xu, X.; Yu, J. Tissue distribution and enhanced in vivo anti-hyperlipidemic-antioxidant effects of perillaldehyde-loaded liposomal nanoformulation against Poloxamer 407-induced hyperlipidemia. Int. J. Pharm., 2016, 513(1-2), 68-77.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.042] [PMID: 27567929]
[20]
Xu, W.; Cui, Y.; Ling, P.; Li, L. Preparation and evaluation of folate-modified cationic Pluronic micelles for poorly soluble anticancer drug. Drug Deliv., 2012, 19(4), 208-219.
[http://dx.doi.org/10.3109/10717544.2012.690005] [PMID: 22643055]
[21]
Zhang, W.; Shi, Y.; Chen, Y.; Ye, J.; Sha, X.; Fang, X. Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials, 2011, 32(11), 2894-2906.
[http://dx.doi.org/10.1016/j.biomaterials.2010.12.039] [PMID: 21256584]
[22]
Xia, H.X.; Yang, X.Q.; Song, J.T.; Chen, J.; Zhang, M.Z.; Yan, D.M.; Zhang, L.; Qin, M.Y.; Bai, L.Y.; Zhao, Y.D.; Ma, Z.Y. Folic acid-conjugated silica-coated gold nanorods and quantum dots for dual-modality CT and fluorescence imaging and photothermal therapy. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(14), 1945-1953.
[http://dx.doi.org/10.1039/c3tb21591a] [PMID: 32261631]
[23]
Chen, S.; Zhang, X.Z.; Cheng, S.X.; Zhuo, R.X.; Gu, Z.W. Functionalized amphiphilic hyperbranched polymers for targeted drug delivery. Biomacromolecules, 2008, 9(10), 2578-2585.
[http://dx.doi.org/10.1021/bm800371n] [PMID: 18665638]
[24]
Bae, Y.; Kataoka, K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv. Drug Deliv. Rev., 2009, 61(10), 768-784.
[http://dx.doi.org/10.1016/j.addr.2009.04.016] [PMID: 19422866]
[25]
Vijayakumar, M.R.; Vajanthri, K.Y.; Balavigneswaran, C.K.; Mahto, S.K.; Mishra, N.; Muthu, M.S.; Singh, S. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf. B Biointerfaces, 2016, 145, 479-491.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.037] [PMID: 27236510]
[26]
Saadati, R.; Dadashzadeh, S. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: In vitro and in vivo evaluation. Int. J. Pharm., 2014, 464(1-2), 135-144.
[http://dx.doi.org/10.1016/j.ijpharm.2014.01.014] [PMID: 24451238]
[27]
Sheu, M.T.; Chen, S.Y.; Chen, L.C.; Ho, H.O. Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol. J. Control. Release, 2003, 88(3), 355-368.
[http://dx.doi.org/10.1016/S0168-3659(02)00492-3] [PMID: 12644362]
[28]
Muthu, M.S.; Kulkarni, S.A.; Xiong, J.; Feng, S.S. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int. J. Pharm., 2011, 421(2), 332-340.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.045] [PMID: 22001537]
[29]
Farooq, M.A.; Xinyu, H.; Jabeen, A.; Ahsan, A.; Seidu, T.A.; Kutoka, P.T.; Wang, B. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes. Colloids Surf. B Biointerfaces, 2021, 199111523
[http://dx.doi.org/10.1016/j.colsurfb.2020.111523] [PMID: 33360624]
[30]
Gazzano, E.; Rolando, B.; Chegaev, K.; Salaroglio, I.C.; Kopecka, J.; Pedrini, I.; Saponara, S.; Sorge, M.; Buondonno, I.; Stella, B.; Marengo, A.; Valoti, M.; Brancaccio, M.; Fruttero, R.; Gasco, A.; Arpicco, S.; Riganti, C. Folate-targeted liposomal nitrooxy-doxorubicin: An effective tool against P-glycoprotein-positive and folate receptor-positive tumors. J. Control. Release, 2018, 270, 37-52.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.042] [PMID: 29191785]
[31]
Han, S.M.; Baek, J.S.; Kim, M.S.; Hwang, S.J.; Cho, C.W. Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: Enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells. Chem. Phys. Lipids, 2018, 213, 39-47.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.03.005] [PMID: 29550143]
[32]
Zhao, H.; Yung, L.Y.L. Addition of TPGS to folate-conjugated polymer micelles for selective tumor targeting. J. Biomed. Mater. Res. A, 2009, 91A(2), 505-518.
[http://dx.doi.org/10.1002/jbm.a.32220] [PMID: 18985763]
[33]
Su, Z.; Chen, M.; Xiao, Y.; Sun, M.; Zong, L.; Asghar, S.; Dong, M.; Li, H.; Ping, Q.; Zhang, C. ROS-triggered and regenerating anticancer nanosystem: An effective strategy to subdue tumor’s multidrug resistance. J. Control. Release, 2014, 196, 370-383.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.020] [PMID: 25278256]
[34]
Muthu, M.S.; Kutty, R.V.; Luo, Z.; Xie, J.; Feng, S.S. Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials, 2015, 39, 234-248.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.008] [PMID: 25468374]
[35]
Collnot, E.M.; Baldes, C.; Wempe, M.F.; Kappl, R.; Hüttermann, J.; Hyatt, J.A.; Edgar, K.J.; Schaefer, U.F.; Lehr, C.M. Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: Influence on ATPase activity and membrane fluidity. Mol. Pharm., 2007, 4(3), 465-474.
[http://dx.doi.org/10.1021/mp060121r] [PMID: 17367162]
[36]
Zhu, H.; Chen, H.; Zeng, X.; Wang, Z.; Zhang, X.; Wu, Y.; Gao, Y.; Zhang, J.; Liu, K.; Liu, R.; Cai, L.; Mei, L.; Feng, S.S. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials, 2014, 35(7), 2391-2400.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.086] [PMID: 24360574]
[37]
Kunwar, A.; Barik, A.; Mishra, B.; Rathinasamy, K.; Pandey, R.; Priyadarsini, K.I. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta, Gen. Subj., 2008, 1780(4), 673-679.
[http://dx.doi.org/10.1016/j.bbagen.2007.11.016] [PMID: 18178166]
[38]
Bi, D.; Zhao, L.; Li, H.; Guo, Y.; Wang, X.; Han, M. A comparative study of polydopamine modified and conventional chemical synthesis method in doxorubicin liposomes form the aspect of tumor targeted therapy. Int. J. Pharm., 2019, 559, 76-85.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.033] [PMID: 30677481]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy