Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Mini-Review Article

Role and Application of Nanostructures in Biotechnology

Author(s): Nidhi Rani*, Prerna Sharma, Aishwarya Gangwar, Inderjeet Verma and Aditya Walia

Volume 13, Issue 4, 2023

Published on: 13 June, 2023

Article ID: e170523217007 Pages: 6

DOI: 10.2174/2210681213666230517115957

Price: $65

Abstract

Nanotechnology is a major area of research entitling the production of an utmost different class of materials. There are various types of nanostructures, such as nanoparticles, nanocrystals, nano spores, nanorods, nanowires, nanoribbons, nanotubes, nano scaffolds, dendrimers, quantum dots, nanospheres, and nanocapsules. These are size-dependent; thus, altering their size and shape to the nanoscale can alter their properties. Also, they can be manufactured via various different methods. On a wider scale, in combination, nanostructured materials and nanotechnology can have profound impacts, including biomedical applications with advanced research in the delivery of biomolecules, the delivery of drugs, the diagnosis of cancer, tissue engineering, the detection of biomarkers and imaging. These materials have numerous applications in fabricating biotechnology, an advanced area of research.

Keywords: Biomedical applications, biomarkers, nanomaterials, nanostructures, nanobiotechnology, nanotechnology.

[1]
Ramrakhiani, M. Nanostructures and their applications. Recent Res. Sci. Technol., 2012, 4(8), 14-19.
[2]
Bellah, M.M.; Christensen, S.M.; Iqbal, S.M. Nanostructures for medical diagnostics. J. Nanomater., 2012, 2012, 486301.
[http://dx.doi.org/10.1155/2012/486301]
[3]
AlKahtani, R.N. The implications and applications of nanotechnology in dentistry: A review. Saudi Dent. J., 2018, 30(2), 107-116.
[http://dx.doi.org/10.1016/j.sdentj.2018.01.002] [PMID: 29628734]
[4]
Cheng, X. Nanostructures: Fabrication and applications. Nanolithography, 2014, 348-375.
[5]
Liang, X.J.; Kumar, A.; Shi, D.; Cui, D. Nanostructures for medicine and pharmaceuticals. J. Nanomater., 2012, 2012, 921897.
[http://dx.doi.org/10.1155/2012/921897]
[6]
Kailasa, S.K.; Mehta, V.N.; Koduru, J.R.; Basu, H.; Singhal, R.K.; Murthy, Z.V.P.; Park, T.J. An overview of molecular biology and nanotechnology based analytical methods for the detection of SARS-CoV-2: Promising biotools for the rapid diagnosis of COVID-19. Analyst, 2021, 146(5), 1489-1513.
[http://dx.doi.org/10.1039/D0AN01528H] [PMID: 33543178]
[7]
Lin, Y.X.; Wang, Y.; Blake, S.; Yu, M.; Mei, L.; Wang, H.; Shi, J. RNA nanotechnology-mediated cancer immunotherapy. Theranostics, 2020, 10(1), 281-299.
[http://dx.doi.org/10.7150/thno.35568] [PMID: 31903120]
[8]
Rottenberg, S.; Disler, C.; Perego, P. The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer, 2021, 21(1), 37-50.
[http://dx.doi.org/10.1038/s41568-020-00308-y] [PMID: 33128031]
[9]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 3702518.
[http://dx.doi.org/10.1155/2019/3702518]
[10]
Abu-Salah, KM; Ansari, AA Alrokayan, SA DNA-based applications in nanobiotechnology. J Biomed Biotechnol, 2010, 2010, 715295.
[11]
Wautelet, M. Scaling laws in the macro-, micro- and nanoworlds. Eur. J. Phys., 2001, 22(6), 601-611.
[http://dx.doi.org/10.1088/0143-0807/22/6/305]
[12]
Abu-Salah, K.; Alrokyan, S.A.; Khan, M.N.; Ansari, A.A. Nanomaterials as analytical tools for genosensors. Sensors, 2010, 10(1), 963-993.
[http://dx.doi.org/10.3390/s100100963] [PMID: 22315580]
[13]
Andrievski, R.A.; Glezer, A.M. Size effects in properties of nanomaterials. Scr. Mater., 2001, 44(8-9), 1621-1624.
[http://dx.doi.org/10.1016/S1359-6462(01)00786-2]
[14]
Kelsall, R.; Hamley, I.; Geoghegan, M. Nanoscale Science and Technology; JohnWiley & Sons: Chichester, UK, 2005.
[http://dx.doi.org/10.1002/0470020873]
[15]
Chan, W.C.W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385), 2016-2018.
[http://dx.doi.org/10.1126/science.281.5385.2016] [PMID: 9748158]
[16]
Santra, S.; Wang, K.; Tapec, R.; Tan, W. Development of novel dye-doped silica nanoparticles for biomarker application. J. Biomed. Opt., 2001, 6(2), 160-166.
[http://dx.doi.org/10.1117/1.1353590] [PMID: 11375725]
[17]
Andres, R.P.; Bein, T.; Dorogi, M.; Feng, S.; Henderson, J.I.; Kubiak, C.P.; Mahoney, W.; Osifchin, R.G.; Reifenberger, R. “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure. Science, 1996, 272(5266), 1323-1325.
[http://dx.doi.org/10.1126/science.272.5266.1323] [PMID: 8662464]
[18]
Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Self organization of CdSe nano crystallites into three-dimensional quantam dot super lattices. Science, 1995, 270(5240), 1335-1338.
[http://dx.doi.org/10.1126/science.270.5240.1335]
[19]
Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592), 607-609.
[http://dx.doi.org/10.1038/382607a0] [PMID: 8757129]
[20]
O’Neal, D.P.; Hirsch, L.R.; Halas, N.J.; Payne, J.D.; West, J.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett., 2004, 209(2), 171-176.
[http://dx.doi.org/10.1016/j.canlet.2004.02.004] [PMID: 15159019]
[21]
Zharov, V.P.; Galitovskaya, E.N.; Johnson, C.; Kelly, T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Lasers Surg. Med., 2005, 37(3), 219-226.
[http://dx.doi.org/10.1002/lsm.20223] [PMID: 16175635]
[22]
Waston, J.D.; Baker, T.A.; Bell, S.P.; Gann, A.; Levine, M.; Losick, R. Molecular Biology of the Gene, 6th ed.; Pearson-Benjamin Cummings: San Francisco, Calif, USA, 2008.
[23]
Holliday, R. A mechanism for gene conversion in fungi. Genet. Res., 1964, 5(2), 282-304.
[http://dx.doi.org/10.1017/S0016672300001233] [PMID: 18976517]
[24]
Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol., 1982, 99(2), 237-247.
[http://dx.doi.org/10.1016/0022-5193(82)90002-9] [PMID: 6188926]
[25]
Seeman, N.C. DNA NANOTECHNOLOGY: Novel DNA Constructions. Annu. Rev. Biophys. Biomol. Struct., 1998, 27(1), 225-248.
[http://dx.doi.org/10.1146/annurev.biophys.27.1.225] [PMID: 9646868]
[26]
Chen, J.; Seeman, N.C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 1991, 350(6319), 631-633.
[http://dx.doi.org/10.1038/350631a0] [PMID: 2017259]
[27]
Zhang, Y.; Seeman, N.C. Construction of a DNA struncated octahedron. J. Am. Chem. Soc., 1994, 116(5), 1661-1669.
[http://dx.doi.org/10.1021/ja00084a006]
[28]
Mao, C.; Sun, W.; Seeman, N.C. Assembly of Borromean rings from DNA. Nature, 1997, 386(6621), 137-138.
[http://dx.doi.org/10.1038/386137b0] [PMID: 9062186]
[29]
Ansari, A.A.; Khan, M.N.; Alhoshan, M.; Aldwayyan, A.S.; Alsalhi, M.S. Nanostructured materials: classification, properties, fabrication, characterization and their applications in biomedical sciences.Nanoparticles: Properties, Classification, Characterization, and Fabrication; Kestell, A.E.; De Lorey, G.T., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2010.
[30]
Kumar, A.; Phadtare, S.; Pasricha, R.; Guga, P.; Ganesh, K.N.; Sastry, M. Assembling gold nanoparticles in solution using phosphorothioate DNA as structural interconnects. Curr. Sci., 2003, 84(1), 71-74.
[31]
Maeda, Y.; Tabata, H.; Kawai, T. Two-dimensional assembly of gold nanoparticles with a DNA network template. Appl. Phys. Lett., 2001, 79(8), 1181-1183.
[http://dx.doi.org/10.1063/1.1396630]
[32]
Pathak, S.; Choi, S.K.; Arnheim, N.; Thompson, M.E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc., 2001, 123(17), 4103-4104.
[http://dx.doi.org/10.1021/ja0058334] [PMID: 11457171]
[33]
Chan, W.C.W.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M.; Nie, S. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol., 2002, 13(1), 40-46.
[http://dx.doi.org/10.1016/S0958-1669(02)00282-3] [PMID: 11849956]
[34]
Service, R.F. Semiconductor beacons light up cell structures. Science, 1998, 281(5385), 1930-1931.
[http://dx.doi.org/10.1126/science.281.5385.1930b] [PMID: 9767032]
[35]
Gerion, D.; Parak, W.J.; Williams, S.C.; Zanchet, D.; Micheel, C.M.; Alivisatos, A.P. Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc., 2002, 124(24), 7070-7074.
[http://dx.doi.org/10.1021/ja017822w] [PMID: 12059231]
[36]
Torimoto, T.; Yamashita, M.; Kuwabata, S.; Sakata, T.; Mori, H.; Yoneyama, H. Fabrication of CdS nanoparticle chains along DNA double strands. J. Phys. Chem. B, 1999, 103(42), 8799-8803.
[http://dx.doi.org/10.1021/jp991781x]
[37]
Cassell, A.M.; Scrivens, W.A.; Tour, J.M. Assembly of DNA/fullerene hybrid materials. Angew. Chem. Int. Ed., 1998, 37(11), 1528-1531.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1528::AID-ANIE1528>3.0.CO;2-Q] [PMID: 29710932]
[38]
Dittmer, W.U.; Simmel, F.C. Chains of semiconductor nanoparticles templated on DNA. Appl. Phys. Lett., 2004, 85(4), 633-635.
[http://dx.doi.org/10.1063/1.1775884]
[39]
Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998, 391(6669), 775-778.
[http://dx.doi.org/10.1038/35826] [PMID: 9486645]
[40]
Hahm, J.; Lieber, C.M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett., 2004, 4(1), 51-54.
[http://dx.doi.org/10.1021/nl034853b]
[41]
Trojanowicz, M. Analytical applications of carbon nanotubes: a review. Trends Analyt. Chem., 2006, 25(5), 480-489.
[http://dx.doi.org/10.1016/j.trac.2005.11.008]
[42]
Behabtu, N.; Green, M.; Pasquali, M. Carbon nanotube-based neat fibers. Nano Today, 2008, 3(5-6), 24-34.
[http://dx.doi.org/10.1016/S1748-0132(08)70062-8]
[43]
Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res., 2002, 35(12), 1035-1044.
[http://dx.doi.org/10.1021/ar0101640] [PMID: 12484791]
[44]
Wang, J.; Lin, Y. Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Analyt. Chem., 2008, 27(7), 619-626.
[http://dx.doi.org/10.1016/j.trac.2008.05.009] [PMID: 19122842]
[45]
Li, X.; Peng, Y.; Qu, X. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res., 2006, 34(13), 3670-3676.
[http://dx.doi.org/10.1093/nar/gkl513] [PMID: 16885240]
[46]
Williams, K.A.; Veenhuizen, P.T.M.; de la Torre, B.G.; Eritja, R.; Dekker, C. Carbon nanotubes with DNA recognition. Nature, 2002, 420(6917), 761.
[http://dx.doi.org/10.1038/420761a] [PMID: 12490938]
[47]
Heller, D.A.; Jeng, E.S.; Yeung, T.K.; Martinez, B.M.; Moll, A.E.; Gastala, J.B.; Strano, M.S. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science, 2006, 311(5760), 508-511.
[http://dx.doi.org/10.1126/science.1120792] [PMID: 16439657]
[48]
Carbon Nanotubes: Synthesis, Structure, Properties and Applications; Dresselhaus, M.S.; Dresselhaus, G.; Avouris, P., Eds.; Springler: Berhin, Germany, 2001.
[http://dx.doi.org/10.1007/3-540-39947-X]
[49]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[50]
Liu, J.; Rinzler, A.G.; Dai, H.; Hafner, J.H.; Bradley, R.K.; Boul, P.J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.B.; Rodriguez-Macias, F.; Shon, Y.S.; Lee, T.R.; Colbert, D.T.; Smalley, R.E. Fullerene Pipes. Science, 1998, 280(5367), 1253-1256.
[http://dx.doi.org/10.1126/science.280.5367.1253] [PMID: 9596576]
[51]
Keren, K.; Berman, R.S.; Buchstab, E.; Sivan, U.; Braun, E. DNA-templated carbon nanotube field-effect transistor. Science, 2003, 302(5649), 1380-1382.
[http://dx.doi.org/10.1126/science.1091022] [PMID: 14631035]
[52]
Wong, S.S.; Joselevich, E.; Woolley, A.T.; Cheung, C.L.; Lieber, C.M. Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature, 1998, 394(6688), 52-55.
[http://dx.doi.org/10.1038/27873] [PMID: 9665127]
[53]
Dwyer, C.; Guthold, M.; Falvo, M.; Washburn, S.; Superfine, R.; Erie, D. DNA-functionalized single-walled carbon nanotubes. Nanotechnology, 2002, 13(5), 601-604.
[http://dx.doi.org/10.1088/0957-4484/13/5/311]
[54]
Fang, X.; Li, J.J.; Perlette, J.; Tan, W.; Wang, K. Molecular beacons: Novel fluorescent probes. Anal. Chem., 2000, 72(23), 747 A-753 A.
[http://dx.doi.org/10.1021/ac003001i] [PMID: 11128959]
[55]
Blezinger, P.; Wang, J.; Gondo, M.; Quezada, A.; Mehrens, D.; French, M.; Singhal, A.; Sullivan, S.; Rolland, A.; Ralston, R.; Min, W. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat. Biotechnol., 1999, 17(4), 343-348.
[http://dx.doi.org/10.1038/7895] [PMID: 10207881]
[56]
Hirao, K.; Sugita, T.; Kubo, T.; Igarashi, K.; Tanimoto, K.; Murakami, T.; Yasunaga, Y.; Ochi, M. Targeted gene delivery to human osteosarcoma cells with magnetic cationic liposomes under a magnetic field. Int. J. Oncol., 2003, 22(5), 1065-1071.
[http://dx.doi.org/10.3892/ijo.22.5.1065] [PMID: 12684673]
[57]
Gregoriadis, G.; Florence, A.T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs, 1993, 45(1), 15-28.
[http://dx.doi.org/10.2165/00003495-199345010-00003] [PMID: 7680982]
[58]
Xu, L.; Frederik, P.; Pirollo, K.F.; Tang, W.H.; Rait, A.; Xiang, L.M.; Huang, W.; Cruz, I.; Yin, Y.; Chang, E.H. Self-assembly of a virus-mimicking nanostructure system for efficient tumor-targeted gene delivery. Hum. Gene Ther., 2002, 13(3), 469-481.
[http://dx.doi.org/10.1089/10430340252792594] [PMID: 11860713]
[59]
Forjo, R.; Skaggs, J.; Quiambao, A.B.; Cooper, M.J.; Naash, M.I. Non-viral gene delivery for ocular diseases with compacted DNA nanoparticles. Mol. Ther., 2005, 11, S258.
[http://dx.doi.org/10.1016/j.ymthe.2005.07.208]
[60]
Yurek, D.M.; Fletcher-Turner, A.; Copper, M.J. Compacted DNA nanoparticles effectively transfect brain cells in vitro and in vivo. Mol. Ther., 2005, 11, S253.
[http://dx.doi.org/10.1016/j.ymthe.2005.07.195]
[61]
Ziady, A.G.; Gedeon, C.R.; Miller, T.; Quan, W.; Payne, J.M.; Hyatt, S.L.; Fink, T.L.; Muhammad, O.; Oette, S.; Kowalczyk, T.; Pasumarthy, M.K.; Moen, R.C.; Cooper, M.J.; Davis, P.B. Transfection of airway epithelium by stable PEGylated poly-l-lysine DNA nanoparticles in vivo. Mol. Ther., 2003, 8(6), 936-947.
[http://dx.doi.org/10.1016/j.ymthe.2003.07.007] [PMID: 14664796]
[62]
Liu, G.; Li, D.; Pasumarthy, M.K.; Kowalczyk, T.H.; Gedeon, C.R.; Hyatt, S.L.; Payne, J.M.; Miller, T.J.; Brunovskis, P.; Fink, T.L.; Muhammad, O.; Moen, R.C.; Hanson, R.W.; Cooper, M.J. Nanoparticles of compacted DNA transfect postmitotic cells. J. Biol. Chem., 2003, 278(35), 32578-32586.
[http://dx.doi.org/10.1074/jbc.M305776200] [PMID: 12807905]
[63]
Chen, X.; Davis, P.B. Compacted DNA nanoparticles transfect cells by binding to cell surface nucleolin. Mol. Ther., 2006, 13, S152.
[http://dx.doi.org/10.1016/j.ymthe.2006.08.459]
[64]
Malonga, H.; Neault, J.; Diamantoglou, S.; Tajmir-Riahi, H. Taxol anticancer activity and DNA binding. Mini Rev. Med. Chem., 2005, 5(3), 307-311.
[http://dx.doi.org/10.2174/1389557053175371] [PMID: 15777264]
[65]
Mao, H.Q.; Roy, K.; Troung-Le, V.L.; Janes, K.A.; Lin, K.Y.; Wang, Y.; August, J.T.; Leong, K.W. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J. Control. Release, 2001, 70(3), 399-421.
[http://dx.doi.org/10.1016/S0168-3659(00)00361-8] [PMID: 11182210]
[66]
Iqbal, M.; Lin, W.; Jabbal-Gill, I.; Davis, S.S.; Steward, M.W.; Illum, L. Nasal delivery of chitosan–DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine, 2003, 21(13-14), 1478-1485.
[http://dx.doi.org/10.1016/S0264-410X(02)00662-X] [PMID: 12615444]
[67]
Mansouri, S.; Lavigne, P.; Corsi, K.; Benderdour, M.; Beaumont, E.; Fernandes, J.C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm., 2004, 57(1), 1-8.
[http://dx.doi.org/10.1016/S0939-6411(03)00155-3] [PMID: 14729076]
[68]
Broz, P.; Driamov, S.; Ziegler, J.; Ben-Haim, N.; Marsch, S.; Meier, W.; Hunziker, P. Toward intelligent nanosize bioreactors: A pH-switchable, channel-equipped, functional polymer nanocontainer. Nano Lett., 2006, 6(10), 2349-2353.
[http://dx.doi.org/10.1021/nl0619305] [PMID: 17034109]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy