Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

Erucic Acid: A Possible Therapeutic Agent for Neurodegenerative Diseases

Author(s): Ahsas Goyal*, Nandini Dubey, Aanchal Verma and Anant Agrawal

Volume 24, Issue 4, 2024

Published on: 05 June, 2023

Page: [419 - 427] Pages: 9

DOI: 10.2174/1566524023666230509123536

Price: $65

Open Access Journals Promotions 2
Abstract

Neurodegenerative disorders are among the most common life-threatening disorders among the elderly worldwide and are marked by neuronal death in the brain and spinal cord. Several studies have demonstrated the beneficial role of dietary fatty acids in different brain disorders. This is due to their neurotrophic, antioxidant, and anti-inflammatory properties. Furthermore, extensive evidence shows that an unbalanced intake of certain dietary fatty acids increases the risk of neuropsychiatric diseases. Several research has been done on erucic acid, an ingestible omega-9 fatty acid that is found in Lorenzo's oil. Erucic acid was previously thought to be a natural toxin because of its negative effects on heart muscle function and hepatic steatosis, but it has been discovered that erucic acid is regularly consumed in Asian countries through the consumption of cruciferous vegetables like mustard and rapeseed oil with no evidence of cardiac harm. Erucic acid can also be transformed into nervonic acid, a crucial element of myelin. Therefore, erucic acid may have remyelinating effects, which may be crucial for treating different demyelinating conditions. Also, erucic acid exerts antioxidant and anti-inflammatory effects, suggesting its possible therapeutic role in different neurodegenerative disorders. Considering the fruitful effects of this compound, this article reviews the probable role of erucic acid as a pharmacological agent for treating and managing different neurodegenerative disorders.

Keywords: Erucic acid, omega-9 fatty acid, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, adrenoleukodystrophy.

[1]
Bianchi VE, Herrera PF, Laura R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr Neurosci 2021; 24(10): 810-34.
[http://dx.doi.org/10.1080/1028415X.2019.1681088] [PMID: 31684843]
[2]
Ilieva H, Polymenidou M, Cleveland DW. Non–cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009; 187(6): 761-72.
[http://dx.doi.org/10.1083/jcb.200908164] [PMID: 19951898]
[3]
Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting regional neurodegeneration from the healthy brain func-tional connectome. Neuron 2012; 73(6): 1216-27.
[http://dx.doi.org/10.1016/j.neuron.2012.03.004] [PMID: 22445348]
[4]
Engelen M, Kemp S, Poll-The BT. X-linked adrenoleukodystrophy: Pathogenesis and treatment. Curr Neurol Neurosci Rep 2014; 14(10): 486.
[http://dx.doi.org/10.1007/s11910-014-0486-0] [PMID: 25115486]
[5]
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 2017; 9(7): a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[6]
Hung CW, Chen YC, Hsieh WL, Chiou SH, Kao CL. Ageing and neurodegenerative diseases. Ageing Res Rev 2010; 9(S1): S36-46.
[http://dx.doi.org/10.1016/j.arr.2010.08.006] [PMID: 20732460]
[7]
Fu H, Hardy J, Duff KE. Selective vulnerability in neurodegenerative diseases. Nat Neurosci 2018; 21(10): 1350-8.
[http://dx.doi.org/10.1038/s41593-018-0221-2] [PMID: 30250262]
[8]
Durães F, Pinto M, Sousa E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals 2018; 11(2): 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[9]
Trippier PC, Jansen Labby K, Hawker DD, Mataka JJ, Silverman RB. Target- and mechanism-based therapeutics for neuro-degenerative diseases: strength in numbers. J Med Chem 2013; 56(8): 3121-47.
[http://dx.doi.org/10.1021/jm3015926] [PMID: 23458846]
[10]
Kumar JBS, Sharma B. A review on neuropharmacological role of erucic acid: An omega-9 fatty acid from edible oils. Nutr Neurosci 2022; 25(5): 1041-55.
[http://dx.doi.org/10.1080/1028415X.2020.1831262] [PMID: 33054628]
[11]
Wang P, Xiong X, Zhang X, Wu G, Liu F. A review of erucic acid production in Brassicaceae oilseeds: Progress and prospects for the genetic engineering of high and low-erucic acid rapeseeds (Brassica napus). Front Plant Sci 2022; 13: 899076.
[http://dx.doi.org/10.3389/fpls.2022.899076] [PMID: 35645989]
[12]
Altinoz MA, Ozpinar A, Ozpinar A, Hacker E. Erucic acid, a nutritional PPARδ-ligand may influence Huntington’s disease pathogenesis. Metab Brain Dis 2020; 35(1): 1-9.
[http://dx.doi.org/10.1007/s11011-019-00500-6] [PMID: 31625071]
[13]
Terluk MR, Tieu J, Sahasrabudhe SA, et al. Nervonic acid attenuates accumulation of very long-chain fatty acids and is a po-tential therapy for adrenoleukodystrophy. Neurotherapeutics 2022; 19(3): 1007-17.
[http://dx.doi.org/10.1007/s13311-022-01226-7] [PMID: 35378685]
[14]
Song W, Zhang K, Xue T, et al. Cognitive improvement effect of nervonic acid and essential fatty acids on rats ingesting Acer truncatum Bunge seed oil revealed by lipidomics approach. Food Funct 2022; 13(5): 2475-90.
[http://dx.doi.org/10.1039/D1FO03671H] [PMID: 35147628]
[15]
Lin L, Allemekinders H, Dansby A, et al. Evidence of health benefits of canola oil. Nutr Rev 2013; 71(6): 370-85.
[http://dx.doi.org/10.1111/nure.12033] [PMID: 23731447]
[16]
Stiller CA, Nectoux J. International incidence of childhood brain and spinal tumours. Int J Epidemiol 1994; 23(3): 458-64.
[http://dx.doi.org/10.1093/ije/23.3.458] [PMID: 7960369]
[17]
Yuhas R, Pramuk K, Lien EL. Human milk fatty acid composition from nine countries varies most in DHA. Lipids 2006; 41(9): 851-8.
[http://dx.doi.org/10.1007/s11745-006-5040-7] [PMID: 17152922]
[18]
Altinoz MA, Ozpinar A. PPAR-δ and erucic acid in multiple sclerosis and Alzheimer’s Disease. Likely benefits in terms of im-munity and metabolism. Int Immunopharmacol 2019; 69: 245-56.
[http://dx.doi.org/10.1016/j.intimp.2019.01.057] [PMID: 30738994]
[19]
Iwashita A, Muramatsu Y, Yamazaki T, et al. Neuroprotective efficacy of the peroxisome proliferator-activated receptor delta-selective agonists in vitro and in vivo. J Pharmacol Exp Ther 2007; 320(3): 1087-96.
[http://dx.doi.org/10.1124/jpet.106.115758] [PMID: 17167170]
[20]
Dickey AS, Pineda VV, Tsunemi T, et al. PPAR-δ is repressed in Huntington’s disease, is required for normal neuronal function and can be targeted therapeutically. Nat Med 2016; 22(1): 37-45.
[http://dx.doi.org/10.1038/nm.4003] [PMID: 26642438]
[21]
Golovko MY, Murphy EJ. Uptake and metabolism of plasma-derived erucic acid by rat brain. J Lipid Res 2006; 47(6): 1289-97.
[http://dx.doi.org/10.1194/jlr.M600029-JLR200] [PMID: 16525189]
[22]
Scrimgeour CM, Harwood JL. Fatty acid and lipid structure.The Lipid Handbook 2007; pp. 15-50.
[23]
Erucic acid (CHEBI:28792).. Available from: https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:28792 (Accessed on: July 12, 2022).
[24]
Erucic Acid | C22H42O2. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Erucic-acid (Accessed on: July 12, 2022).
[25]
Heijenskjöld L, Ernster L. Studies of the mode of action of erucic acid on heart metabolism. Acta Med Scand Suppl 1975; 585: 75-83.
[PMID: 1062121]
[26]
Galanty A, Grudzińska M, Paździora W, Paśko P. Erucic acid-both sides of the story: A concise review on its beneficial and toxic properties. Molecules 2023; 28(4): 1924.
[http://dx.doi.org/10.3390/molecules28041924] [PMID: 36838911]
[27]
Gooch JW. Calvin Cycle. In: Gooch JW, Ed. Encyclopedic Dictionary of Polymers. New York: Springer 2007; pp. 666-758.
[28]
Harwood JL. Fatty acid biosynthesis. In: Murphy DJ, Ed. Plant Lipids: Biology, Utilization and Manipulation. Oxford: Blackwell 2020; pp. 27-66.
[http://dx.doi.org/10.1201/9780367813123-2]
[29]
Li-Beisson Y, Shorrosh B, Beisson F, et al. Acyl-lipid metabolism. Arabidopsis Book 2013; 11: e0161.
[http://dx.doi.org/10.1199/tab.0161] [PMID: 23505340]
[30]
Salas JJ, Ohlrogge JB. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 2002; 403(1): 25-34.
[http://dx.doi.org/10.1016/S0003-9861(02)00017-6] [PMID: 12061798]
[31]
Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB. Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell 2003; 15(4): 1020-33.
[http://dx.doi.org/10.1105/tpc.008946] [PMID: 12671095]
[32]
Tjellström H, Strawsine M, Silva J, Cahoon EB, Ohlrogge JB. Disruption of plastid acyl:Acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. FEBS Lett 2013; 587(7): 936-42.
[http://dx.doi.org/10.1016/j.febslet.2013.02.021] [PMID: 23454211]
[33]
Chen JM, Qi WC, Wang SY, Guan RZ, Zhang HS. Correlation of Kennedy pathway efficiency with seed oil content of canola (Brassica napus L.) lines. Can J Plant Sci 2011; 91(2): 251-9.
[http://dx.doi.org/10.4141/CJPS09178]
[34]
Ackman RG. Fatty Acids in Fish and Shellfish. In: Chow CK, Ed. Fatty Acids in Foods and Their Health Implications. London: Taylor and Francis Group 2008.
[35]
Knutsen HK, Alexander J, Barregård L, et al. Erucic acid in feed and food. EFSA J 2016; 14(11): e04593.
[36]
Jiang Y, Tian E, Li R, Chen L, Meng J. Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B. rapa. Plant Breed 2007; 126(5): 487-91.
[http://dx.doi.org/10.1111/j.1439-0523.2007.01393.x]
[37]
Taylor DC, Falk KC, Palmer CD, et al. Brassica carinata - a new molecular farming platform for delivering bio-industrial oil feed-stocks: Case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels Bioprod Biorefin 2010; 4(5): 538-61.
[http://dx.doi.org/10.1002/bbb.231]
[38]
Taylor DC, Francis T, Guo Y, et al. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Plant Biotechnol J 2009; 7(9): 925-38.
[http://dx.doi.org/10.1111/j.1467-7652.2009.00454.x] [PMID: 19843251]
[39]
Zasada IA, Weiland JE, Reed RL, Stevens JF. Activity of meadowfoam (Limnanthes alba) seed meal glucolimnanthin degradation products against soilborne pathogens. J Agric Food Chem 2012; 60(1): 339-45.
[http://dx.doi.org/10.1021/jf203913p] [PMID: 22142246]
[40]
Zealand AN. Erucic acid in food: A toxicological review and risk assessment. New Zealand: Food Standards Australia 2003.
[41]
Vaisey M, Latta M, Bruce VM, McDonald BE. Assessment of the intake and digestibility of high and low erucic acid rapeseed oils in a mixed Canadian diet. Can Inst Food Sci Technol J 1973; 6(3): 142-7.
[http://dx.doi.org/10.1016/S0315-5463(73)74002-5]
[42]
Falcone R, Marilena Florio T, Giacomo ED, et al. PPARβ/δ and γ in a rat model of Parkinson’s disease: Possible involve-ment in PD symptoms. J Cell Biochem 2015; 116(5): 844-55.
[http://dx.doi.org/10.1002/jcb.25041] [PMID: 25530507]
[43]
Tong Q, Wu L, Gao Q, Ou Z, Zhu D, Zhang Y. PPARβ/δ agonist provides neuroprotection by suppression of ire1α–caspase-12-mediated endoplasmic reticulum stress pathway in the rotenone rat model of Parkinson’s disease. Mol Neurobiol 2016; 53(6): 3822-31.
[http://dx.doi.org/10.1007/s12035-015-9309-9] [PMID: 26160761]
[44]
Chen L, Xue L, Zheng J, Tian X, Zhang Y, Tong Q. PPARß/δ agonist alleviates NLRP3 inflammasome-mediated neuroinflam-mation in the MPTP mouse model of Parkinson’s disease. Behav Brain Res 2019; 356: 483-9.
[http://dx.doi.org/10.1016/j.bbr.2018.06.005] [PMID: 29885849]
[45]
Deǧer O, Bekaroǧlu M, Örem A, Örem S, Uluutku N, Soylu C. Polymorphonuclear (PMN) elastase levels in depressive disor-ders. Biol Psychiatry 1996; 39(5): 357-63.
[http://dx.doi.org/10.1016/0006-3223(95)00176-X] [PMID: 8704067]
[46]
Rennert B, Melzig MF. Free fatty acids inhibit the activity of Clostridium histolyticum collagenase and human neutrophil elas-tase. Planta Med 2002; 68(9): 767-9.
[http://dx.doi.org/10.1055/s-2002-34411] [PMID: 12357383]
[47]
Melzig MF, Henke K. Inhibition of thrombin activity by selected natural products in comparison to neutrophil elastase. Planta Med 2005; 71(8): 787-9.
[http://dx.doi.org/10.1055/s-2005-871253] [PMID: 16142650]
[48]
Citron BA, Ameenuddin S, Uchida K, Suo WZ, SantaCruz K, Festoff BW. Membrane lipid peroxidation in neurodegeneration: Role of thrombin and proteinase-activated receptor-1. Brain Res 2016; 1643: 10-7.
[http://dx.doi.org/10.1016/j.brainres.2016.04.071] [PMID: 27138068]
[49]
Varshney V, Garabadu D. Ang (1–7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioen-ergetics in discrete brain regions of Alzheimer’s disease-like rats. Neuropeptides 2021; 86: 102122.
[http://dx.doi.org/10.1016/j.npep.2021.102122] [PMID: 33508525]
[50]
Varshney V, Garabadu D. Ang(1–7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents. Mol Biol Rep 2021; 48(5): 4319-31.
[http://dx.doi.org/10.1007/s11033-021-06447-1] [PMID: 34075536]
[51]
Singh NK, Garabadu D. Alpha7 nicotinic acetylcholine receptor down regulation impairs mitochondrial function in strepto-zotocin-induced sporadic Alzheimer’s disease model in rats. Indian J Pharm Educ Res 2021; 55(1): 153-63.
[http://dx.doi.org/10.5530/ijper.55.1.17]
[52]
Singh NK, Garabadu D. Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondri-al toxicity and cognitive impairments in experimental rodents. Neurotox Res 2021; 39(6): 1859-79.
[http://dx.doi.org/10.1007/s12640-021-00410-5] [PMID: 34554409]
[53]
Kim E, Ko HJ, Jeon SJ, et al. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice. Pharmacol Biochem Behav 2016; 142: 85-90.
[http://dx.doi.org/10.1016/j.pbb.2016.01.006] [PMID: 26780350]
[54]
Kim Y, Kim D, Park Y. Conjugated linoleic acid (CLA) promotes endurance capacity via peroxisome proliferator-activated re-ceptor δ-mediated mechanism in mice. J Nutr Biochem 2016; 38: 125-33.
[http://dx.doi.org/10.1016/j.jnutbio.2016.08.005] [PMID: 27736732]
[55]
Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alz-heimer’s disease. Life Sci 2020; 257: 118020.
[http://dx.doi.org/10.1016/j.lfs.2020.118020] [PMID: 32603820]
[56]
Kim CR, Kim HS, Choi SJ, et al. Erucamide from radish leaves has an inhibitory effect against acetylcholinesterase and pre-vents memory deficit induced by trimethyltin. J Med Food 2018; 21(8): 769-76.
[http://dx.doi.org/10.1089/jmf.2017.4117] [PMID: 30110203]
[57]
Kanrar S, Venkateswari J, Dureja P, Kirti PB, Chopra VL. Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea FAT TY ACID ELONGATION1 (BjFAE1) gene. Plant Cell Rep 2006; 25(2): 148-55.
[http://dx.doi.org/10.1007/s00299-005-0068-3] [PMID: 16322995]
[58]
Thakur AK, Chatterjee SS, Kumar V. Beneficial effects of Brassica juncea on cognitive functions in rats. Pharm Biol 2013; 51(10): 1304-10.
[http://dx.doi.org/10.3109/13880209.2013.789917] [PMID: 23848339]
[59]
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Demyelination in multiple sclerosis: Reprogramming energy metabolism and potential PPARγ agonist treatment approaches. Int J Mol Sci 2018; 19(4): 1212.
[http://dx.doi.org/10.3390/ijms19041212] [PMID: 29659554]
[60]
Sargent JR, Coupland K, Wilson R. Nervonic acid and demyelinating disease. Med Hypotheses 1994; 42(4): 237-42.
[http://dx.doi.org/10.1016/0306-9877(94)90122-8] [PMID: 8072429]
[61]
Johnson TE, Holloway MK, Vogel R, et al. Structural requirements and cell-type specificity for ligand activation of peroxisome proliferator-activated receptors. J Steroid Biochem Mol Biol 1997; 63(1-3): 1-8.
[http://dx.doi.org/10.1016/S0960-0760(97)00064-2] [PMID: 9449199]
[62]
Almad A, McTigue DM. Chronic expression of PPAR-δ by oligodendrocyte lineage cells in the injured rat spinal cord. J Comp Neurol 2010; 518(6): 785-99.
[http://dx.doi.org/10.1002/cne.22242] [PMID: 20058304]
[63]
Altinoz MA, Bilir A, Elmaci İ. Erucic acid, a component of Lorenzo’s oil and PPAR-δ ligand modifies C6 glioma growth and toxicity of doxorubicin. Experimental data and a comprehensive literature analysis. Chem Biol Interact 2018; 294: 107-17.
[http://dx.doi.org/10.1016/j.cbi.2018.08.024] [PMID: 30142312]
[64]
Asadi-Samani M, Bahmani M, Rafieian-Kopaei M. The chemical composition, botanical characteristic and biological activities of Borago officinalis: A review Asian Pac J Trop Med 2014; 7S1: S22-8.
[65]
Moraes CT. Adrenoleukodystrophy and the mitochondrial connection: Clues for supplementing Lorenzo’s oil. Brain 2013; 136(8): 2339-41.
[http://dx.doi.org/10.1093/brain/awt189] [PMID: 23842565]
[66]
Deon M, Marchetti DP, Donida B, Wajner M, Vargas C. Oxidative stress in patients with X-linked adrenoleukodystrophy. Cell Mol Neurobiol 2016; 36(4): 497-512.
[http://dx.doi.org/10.1007/s10571-015-0234-2] [PMID: 26169524]
[67]
Henry GE, Momin RA, Nair MG, Dewitt DL. Antioxidant and cyclooxygenase activities of fatty acids found in food. J Agric Food Chem 2002; 50(8): 2231-4.
[http://dx.doi.org/10.1021/jf0114381] [PMID: 11929276]
[68]
Cappa M, Bizzarri C, Petroni A, et al. A mixture of oleic, erucic and conjugated linoleic acids modulates cerebrospinal fluid in-flammatory markers and improve somatosensorial evoked potential in X-linked adrenoleukodystrophy female carriers. J Inherit Metab Dis 2012; 35(5): 899-907.
[http://dx.doi.org/10.1007/s10545-011-9432-3] [PMID: 22189598]
[69]
Sassa T, Wakashima T, Ohno Y, Kihara A. Lorenzo’s oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturat-ed very long-chain fatty acid. J Lipid Res 2014; 55(3): 524-30.
[http://dx.doi.org/10.1194/jlr.M044586] [PMID: 24489110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy